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Abstract

This thesis proposes several new techniques for hyperspeakt image segmentation based on
discriminative Bayesian approaches, where the posteriorlass distributions are modeled by the
multinomial logistic regression (MLR) model and the spatial information is modeled by means
of Markov random elds (MRFs). Our proposed framework intro duces signi cant innovations
with regards to previous approaches in the same eld, many ofwhich are mainly based on
exploiting the spectral information alone. Another contribution of the thesis is that we enhance
our proposed supervised techniques with semi-supervise@drning capabilities, thus exploiting
unlabeled samples by means of an active learning paradigm.uhermore, the thesis introduces
new active sampling strategies based on labeled query selien which are thoroughly discussed
and compared with previous developments in the same eld. Fially, we also develop subspace-
based techniques that can better discriminate land-cover lasses in the presence of heavily mixed
pixels. The e ectiveness of the proposed techniques is illiusated by comparing with state-of-

the-art methods by using both simulated and real hyperspeatal data sets.

Keywords:
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gression, multi-level logistic prior, unlabeled samplessubspace learning, ill-posed problems.






Resumo

Esta tese introduz \arias contribucees em segmentawe de imagem hiperespectral explorando
abordagens discriminativas num quadro conceptual bayesim. Para um dado pixel, a dis-
tribuceo a posteriori das classes, dado o respectivo vector espectral,e modelida pela regressao
logstica multinomial. A informacao contextual espacial contida nas imagem hiperespectraise
modelizada por um campo esto@stico de Markov, mais especamente pelo modelo logstico
multi-nvel. Relativamente ao estado-da-arte em classi cacao hiperespectral, a preserca de in-
formacao espaciale um elemento distintivo de todas contibucees. Foram consideradas nmetodos
semi-supervisionados e supervisionados com aprendizagettiva baseada, respectivamente, em
amostras sem e com etiquetas. Finalmente, desenvolveu-sena nova ecnica de segmentacao
baseada em subespacos concebida para lidar com os chamadp#eis misturados”, que fre-
guentemente surgem em imagens hiperespectrais de nedia aika resolucao. Referem-se duas
componentes principais de todas as novas abordagens introzidas: a) a e ciéncia dos algorit-
mos de aprendizagem propostos e b) a qualidade das aproxio@es, obtidas por em tcnicas de
cortes em grafos, para os problemas de optimizacao inteirassociados segmentacao de nmaxima
probabilidade a posteriori. A e ciéncia e competitividade dos metodos propostose documentada
atraves de comparacees exaustivas com o estado-da-ariesando imagens hiperespectrais reais e

simuladas.

Palavras-Chave:

Segmentacao hiperespectral, regressao logstica minomial, modelo logstico multi-nvel, abor-
dagen discriminativa, aprendizagem activa, aprendizagensupervisionada, aprendizagem rao-

supervisionada, aprendizagem baseda em sub-espeacos, impizacao inteira, cortes em grafos.
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Chapter 1

Introduction

1.1 Context

The work presented in this thesis was supported by the Europan Community's Marie Curie
Research Training Networks Program under contract MREST-CT-2005-021175 (European Doc-
toral Program in Signal Processing, SIGNAL), by a Instituto de Telecomunicecees (IT) PhD
grant and by the Spanish Ministry of Science and Innovation HYPERCOMP/EODIX project,
reference AYA2008-05965-C04-02). The SIGNAL project has éen awarded funding (about
3.000.000 Euros) for 16 PhD grants + 9 short stays) from the EUHuman Resources and Mobil-
ity program. These Early Stage Research Training Host Fellavships are the most competitive

EU Marie Curie Actions. SIGNAL is a consortium of four univer sities:
Signal and Systems laboratory (13S), University of Nice, Fance.
KOM department, University of Aalborg, Denmark.

Technical Institute (IST), University of Lisbon, Portugal .
Signal and Systems division (ESAT), University of Leuven, Belgium.

SIGNAL was aimed at providing a uni ed training in signal pro cessing, focusing on the
fundamental research aspects of signal processing, o eringarly stage researchers (ESRs) an
in-depth knowledge of the eld, not restricted to a particul ar sub-domain of applications. More-
over, due to the strong links of the participants in industrial projects and in various types of
applications, the researchers had the opportunity to applytheir results in the real world.

The author of this thesis, Ms. Jun Li, joined SIGNAL as an ESR in September 2007, when
she started her research activity at Instituto Superior Te cnico (IST), Lisbon, Portugal, under
the joint supervision of Prof. Joe M. Bioucas Dias and Prof Antonio Plaza from University
of Extremadura (UEX), Gaceres, Spain. She registered as a RD student at IST in October
2008. Her contract with SIGNAL project ended in April 2010. Then she was supported by an

1



Table 1.1: Overview of some present and future remote senggmmissions including hyperspectral
sensors.

Hyperion ~ Prisma Y EnMAP ? HyspIRI X
Country of origin USA Italy Germany USA
Spatial Resolution 30 meters 5-30 meters 30 meters 60 meters
Revisit Time 16 days 3/7 days 4 days 18 days
Spectral Range 400-2500 nanometers | 400-2500 nanometers | 420-2450 nanometers | 380-2500 nanometers
Spectral Resolution 10 nanometers 10 nanometers 6.5-10 nanometers 10 nanometers
Swath width 7.7 kilometers 30 kilometers 30 kilometers 120 kilometers
Earth coverage Partial Full Full Full
Launch 2000 2010 2012 2018
Lifetime 10 years 6 years 6 years 6 years

" http:/leol.gsfc.nasa.gov Yhttp://www.asi.it/en/ ash  _en/observing/prisma Zhttp://www.enmap.org
*http://hyspiri.jpl.nasa.gov
IT PhD grant for 6 months from May to October 2010. Then she wasappointed as a researcher
with the Hyperspectral Computing Laboratory (HyperComp) r esearch group coordinated by
Prof. Antonio J. Plaza at the Department of Technology of Computers and Communications,

University of Extremadura, Gaceres, Spain.

1.2 Thesis overview

This thesis addresses the problem of remotely sensed hypeexctral image segmentation. Re-
motely sensed hyperspectral imaging instruments are capdé of collecting hundreds of images,
corresponding to di erent wavelength channels, for the samearea on the surface of the Earth.
The concept of hyperspectral imaging was rst introduced at NASA's Jet Propulsion Labora-
tory [59], where a system called Airborne Imaging Spectronter (AlS) was built to demonstrate
this technology. Today, NASA is continuously gathering high-dimensional image data with in-
struments such as Jet Propulsion Laboratory's Airborne Vidble-Infrared Imaging Spectrometer
(AVIRIS). This advanced sensor for Earth observation recods the visible and near-infrared
spectrum of the re ected light using more than 200 spectral lands, thus producing a stack of
images in which each pixel (vector) is represented by a spewl signal that uniquely character-
izes the underlying objects (see Figure 1.1). Nowadays, theoncept of hyperspectral imaging is
extended to describe systems with hundreds to thousands opgctral channels, with many new
instruments currently in development for spaceborne operion. Table 1.1 presents a summary
of several hyperspectral sensor systems (of satellite typewhich are currently in operation or
under development.

The number and variety of processing tasks in hyperspectralfemote sensing is enormous
[107]. However, the majority of algorithms can be organizedaccording to the following speci ¢
tasks [125]:

Dimensionality reduction consists of reducing the dimensionality of the input hypergectral

2
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Figure 1.1: Hyperspectral data cube.

scene in order to facilitate subsequent processing tasks.

Target and anomaly detectionconsist of searching the pixels of a hyperspectral data cube

for \rare" (either known or unknown) spectral signatures.

Change detectionconsists of nding the \signi cant" (i.e., important to the user) changes

between two hyperspectral scenes of the same geographic i@g

Classi cation/segmentation consist of assigning a label to each pixel/region in order to

generate a thematic land-cover map.

Spectral unmixing consists of estimating the fraction of the pixel area coveré by each

material present in the scene.

In this thesis, we particularly focus on the problem of supevised and semi-supervised hy-
perspectral image segmentation (i.e., how to partition an mage into spatially consistent regions
associated to dierent land-cover classes starting from som {limited{ reference information
available a priori ). The high dimensionality of hyperspectral data in the spedral domain poses
critical problems for supervised algorithms [19, 107], mdsnotably, in order for supervised clas-
si ers to perform properly there is a need for large training sets in order to avoid the well-known
Hughes e ect [68, 84]. However, training samples are limitedexpensive and very di cult to

obtain in real remote sensing scenarios.



Further, in this problem it is very important to take advanta ge of the fact that, in addition
to the very rich spectral information available in the hyperspectral data, hyperspectral images
exhibit (as many other classes of images) some kind of piecée statistical continuity among
neighboring pixels. As a result, hyperspectral image segnméation should exploit such spatial
information in conjunction with spectral information in or der to partition an image into a set
of homogeneous regions (in statistical sense). In this regd, hyperspectral image segmentation
provides an extension of multi-class image classi cation,where the spatial interdependencies
among class labels are enforced by a suitable model. Withoubss of generality, in this thesis we
will use the term classi cation when the learning process only considers the spectral inforation.
Similarly, we use the term segmentationwhen the spatial contextual information in the original
scene is used.

In the thesis, we particularly focus on the problem of superised and semi-supervised hyper-
spectral image segmentation. We introduce several new Bag&n approaches for hyperspectral
image segmentation which include spatial-contextual infomation in the analysis. Another im-
portant contribution of the thesis is the inclusion of unlabeled samples (which are easy to obtain
in practice) by means of active learning paradigms. Finally we also develop innovative strategies
to cope with one of the most important problems in hyperspectal image analysis: the presence
of mixed pixels (with possibly many participating constitu ents at a sub-pixel level) due to lim-
ited spatial resolution, mixing phenomena happening at di erent scales, etc. For instance, the
pixel vector labeled as \vegetation" in Figure 1.1 may actudly comprise a mixture of vegeta-
tion and soil, or di erent types of soil and vegetation canopies. To address this issue we resort
to subspace-based techniques that can better discriminatéand-cover classes in the presence of
heavily mixed pixels.

Combined, these topics intend to address cutting-edge prdems in hyperspectral image
analysis and interpretation. To introduce these topics, wtich will be presented in detail in the
remaining chapters of the present document, we have orgargzthe rest of this introductory
chapter as follows. In Section 1.2.1, we focus on the classiation of hyperspectral images,
describing the advantages of discriminative versus geneti@e models in our context, and present
the state-of-the-art in discriminative hyperspectral image classi cation. Then, we focus on two
widely used discriminative methods: the multinomial logigic regression (MLR) and the support
vector machine (SVM). In Section 1.2.2 we discuss the impognce of integrating spatial and
spectral information in hyperspectral image segmentation We also describe related works in
this area. Furthermore, in Section 1.2.3 we speci cally addess the problems that supervised

classi ers can found when limited training sets are availatbe. Then, we present available solutions



in the literature to cope with this problem by adopting semi-supervised learning and active
learning strategies. Finally, in Section 1.2.4 we present &d categorize our main contributions
in this thesis. We patrticularly address the strategies thatwe have adopted in order to overcome

the aforementioned problems.

1.2.1 Hyperspectral image classi cation

The problem of hyperspectral image classi cation has beendckled in the past using several
di erent approaches. For instance, several machine learnig and image processing techniques
have been applied to extract relevant information from hypeaspectral data during the last decade
[107]. In the context of supervised classi cation, a relevat challenge is the fact that we need to
deal with very high-dimensional data volumes (with limited training samples availablea priori ).
In other words, due to the small number of training samples aul the high number of features
available in remote sensing applications, reliable estim#gon of statistical class parameters is
a very challenging goal [85]. As a result, with a limited training set, classi cation accuracy
tends to decrease as the number of features increases. Thsknown as the Hughes e ect [68].
High-dimensional spaces have been demonstrated to be mogttmpty [72], thus making density
estimation even more dicult. One possible approach to hande the high-dimensional nature
of hyperspectral data sets is to consider the geometrical mperties rather than the statistical
properties of the classes, which leads to the use of kernel th@ds which have been shown to be
a very e ective tool for hyperspectral image interpretation [28]. Another widely used solution
is to resort to Bayesian techniques [70], possibly combinedith spatial-contextual information.

In this context, we can de ne the classi cation problems in mathematical terms as follows.

posterior density p(yjx) is the central element of the risk-based inference, and wesaociate the
term classi cation with ¥ ( arg max p(yijX;) (only spectral information is considered) and the
term segmentation with ® ( argmax p(xjy)p(y) (both spectral and spatial information are
considered). In general, there are two rather di erent points of view in modeling this density

p(yjx), namely, the generative approach versus thediscriminative approach:

Generative approaches:  Correspond to the widely used Bayesian perspective, accoimg to
which p(x;y) = p(xjy)p(y), where p(xjy) is the likelihood density, accounting for the image
features given the label con guration andp(y) is the a priori label con guration density. Correct

modeling of these two densities is a serious challenge, comlfing model simpli cations such as



the conditional independence, which assumes thap(xjy) has a factorized form. This problem
worsens in high dimensional feature spaces, where, usuallg(xjy) depends on large number of

parameters.

Discriminative approaches: In a discriminative framework, the class densitiesp(yjx) are
modeled directly, thus avoiding the learning of the likelihood densitiesp(xjy). The underlying
rationale is that learning the class posteriorp(yjx) is equivalent to learn the boundaries among
the classi cation regions, what is expected to be simpler ad more exible than learning the
likelihood densities p(xjy). Examples of discriminative learning in classi cation include logistic
regression, neural networks, the Gaussian process, and gaalized additive models. Examples of
recent frameworks aimed at discriminative data segmentatin are the conditional random elds
(CRFs) [83], the discriminative random elds (DRFs) [82], and the Gaussian process [2].

In the past, both discriminative and generative models havebeen used for hyperspectral
image interpretation [6, 25, 27, 28, 30, 34, 37, 38, 53, 90, 9132]. We refer to [107] for a
seminal view on recent advances in techniques for hyperspteal image processing. However, and
mainly because of the special di culties that arise in hyperspectral data interpretation (including
high dimensionality, limited availability of training inf ormation, presence of mixed pixels, large
datasets, etc.) discriminative models are often preferredgince they are widely regarded as less
complex than generative models. As a result, discriminatie approaches can mitigate the curse
of dimensionality introduced by the Hughes e ect, because tley demand smaller training sets
than generative models [13, 102, 134]. Data interpretationbased on the use of discriminant
functions, which basically encode the boundaries betweerasses in the feature space, is another
e ective way of handling very high dimensional data sets [13] In the following, we provide a brief
literature review of state-of-the-art discriminant classi cation approaches which only consider
the spectral information. A more detailed introduction of t echniques combining both spatial

and spectral information will be provided in subsequent setions of this chapter.

I. Discriminant analysis

Linear Discriminant Analysis (LDA), which is based on optimizing the so-called Fisher's score,
has been successfully used in many practical remote sensiotassi cation applications aimed at

generating thematic maps in di erent contexts. For instance, in [122] an investigation based
on the use of linear discriminant and pro le analyses for aiborne thematic mapper data was
conducted. In [61], classical LDA was used for recognition fodi erent conifer species using

hyperspectral data. In [39], LDA has been used for classi chon of tropical rain forest tree



species using hyperspectral data at di erent scales. In [94}he canonical LDA has been used for
identifying land cover units in ecology. In [46], a linear castrained distance-based discriminant
analysis (LCDA) was introduced which not only maximizes the ratio of inter-distance between
classes to intra-distance within classes but also imposes@nstraint that all class centers must
be aligned along predetermined directions, with practicaluse in several di erent applications. In
[47], a constrained linear discriminant analysis (CLDA) approach was proposed for hyperspectral
image detection and classi cation as well as its real-timerinplementation. In [6], the regularized
LDA (RLDA) [139] was introduced for hyperspectral hyperspectral classi cation problems where
in comparison with LDA-based classi ers, i.e., standard LDA, penalized LDA [66], orthogonal
LDA [140], and uncorrelated LDA [74] are also discussed. In111], a new kernel discriminant
analysis-based projection approach was proposed. In [734 novel approach based on Fisher
discriminant null space was proposed for decomposition of imed pixels in hyperspectral imagery.
Some of these approaches will be used in this thesis as comptive frameworks for evaluating

our newly proposed techniques.

[l. Support vector machines

Perhaps the most popular discriminative classi er in the remotely sensed hyperspectral image
community is the support vector machine (SVM) [21, 121], whth is characterized by its abil-
ity to e ectively deal with large input spaces (and to produce sparse solutions) using limited
training samples. This classi er has been successfully udein the context of supervised and
semi-supervised hyperspectral classi cation problems [, 64, 65, 67, 98]. In [28], a framework
for kernel-based methods in the context of hyperspectral imge classi cation applications was
presented. Speci cally, standard SVMs, regularized radidbasis function neural networks (Reg-
RBFNN), kernel Fisher discriminant (KFD) analysis, and regularized AdaBoost (Reg-AB) were
analyzed and inter-compared. The KFD is in fact another e ective discriminative method for
hypespectral image classi cation [50, 99] which bene ts fom the concept of kernels used in SVMs
to obtain nonlinear solutions. In [25], a novel transductive SVMs (TSVMs) was introduced for
semi-supervised classi cation exploiting the unlabeledmformation based on a weighting strategy.
In [30], a framework based on composite kernel machines fomkanced classi cation of hyper-
spectral images was proposed which exploits the propertiesf Mercer's kernels to construct a
family of composite kernels that easily combine spatial andspectral information. In [27], a
new graph-based semi-supervised algorithm was proposedrfoyperspectral image classi cation
problems which e ciently alleviates the curse of dimensiorality by exploiting the wealth of un-

labeled information through a graph-based methodology. In[60], a Laplacian SVM (LapSVM)



was presented for semi-supervised image classi cation bad on kernel machines where SVMs
is regularized with the unnormalized graph Laplacian. In [132], a semi-supervised support vec-
tor machine with cluster kernel was presented. As mentionedn some of the aforementioned
references, an important observation is that the good clasgsation performance demonstrated
by SVMs can be complemented by taking advantage of semi-supé@sed learning and contex-
tual information. However, the integration of spatial and spectral information is generally done
through the combination of dedicated kernels to spectral ad contextual information [30]. The
desired integration can also be accomplished at the featurextraction level, i.e., by reducing the
dimensionality of the input data to a proper subspace in a waythat both spatial and spectral
information is considered [105]. On the other hand, in semsupervised learning the wealth of
unlabeled data that can be obtained from hyperspectral imags is exploited. These novel SVM
formulations represent signi cant developments in which gatial and spectral information can
be easily integrated and analyzed by using proper kernel furtions. The capability of semi-
supervised SVMs to capture the intrinsic information present in the unlabeled data can further
mitigate the Hughes phenomenon, and the problems related tahe non-stationary behavior of

the spectral signatures of classes in the spatial domain [25

I1l. Multinomial logistic regression

One of our main contributions in this work is the use of multinomial logistic regression (MLR)
discriminative classi ers [16], which exhibit some advantges (under certain circumstances) with
regards to previously discussed methods. One of them is thebdity to learn the class distri-
butions themselves, which has recently resulted in the su@ssful application of this kind of
discriminative classi er to hyperspectral image classi cation problems [20, 90, 91]. Sparse MLR
(SMLR) [80] adopts a Laplacian prior enforcing sparsity andtherefore controlling the machine
generalization capabilities. Fast sparse MLR (FSMLR) implements an iterative procedure to
calculate the MLR regressors that isO(K 2) faster than the original SMLR algorithm in [80]
(where K is the number of classes). In [12], the logistic regressionias splitting and augmented
Lagrangian (LORSAL) algorithm [90] opened the door to processing of hyperspectral images
with a very large number of classes. In [20], a Je reys prior [I] is adopted to avoid the high
computational complexity invovled in estimating the Laplacian regularization parameters. In
[90, 91] we showed that very good performance can be obtaindgy setting (in suboptimal sense)
the Laplacian regularization parameter. Therefore, no cra@s-validation is performed in our work.
This has the advantage of reducing the computational cost. ®@erall, one of the main purposes

of this thesis work is to illustrate the advantages that MLR can o er in hyperspectral image



classi cation and segmentation. These aspects will be em@sized in subsequent sections of this

document.

1.2.2 Hyperspectral image segmentation

In order to improve the accuracies obtained by hyperspectrhimage classi cation, a recent trend
is to integrate the spectral and spatial information in the data interpretation. As shown in the
previous section, many hyperspectral image classi cationtechniques are focused on analyzing
the data without incorporating information on the spatiall y adjacent data, i.e., hyperspectral
data are usually not treated as images, but as unordered lishgs of spectral measurements with
no particular spatial arrangement. However, the importance of analyzing spatial and spectral
patterns simultaneously has been identi ed as a desired gddy many scientists devoted to mul-
tidimensional data analysis [107]. This type of processingpas been approached in the past from
various points of view. For instance, several possibilitis are discussed in [85] for the re nement
of results obtained by spectral-based techniques in multigectral imaging through a second step
based on spatial context. Such contextual classi cation, &tended also to hyperspectral images
[72], accounts for the tendency of certain ground cover clags to occur more frequently in some
contexts than in others. In certain applications, however,the integration of spatial and spectral
information is mandatory to achieve su ciently accurate ma pping and/or detection results. For
instance, urban area mapping requires su cient spatial relution to distinguish small spectral

classes, such as trees in a park, or cars on a street [7, 42]. i$tposes two main challenges:

1. We need to manage very high-dimensional data volumes in wth the spatial correlation
between spectral responses of neighboring pixels can be gaotially high. As a result, there
is a need to incorporate the spatial arrangement of the datan the development of robust

analysis techniques.

2. Processing algorithms need to become more knowledge-leals With ner spatial resolu-
tions, subtle details which can greatly improve scene intepretation may also be misleading
in certain applications. This suggests thata priori knowledge may be used to improve the

characterization of single elements, as well as the whole sge.

At this point, we should recall again that our terminology in this document will be to
address hyperspectral image segmentation when we are cominig both spatial and spectral
information in the analysis of the hyperspectral data. In the following subsections we briey
review recent advances in this area, including some of the afementioned techniques for spatial-

spectral integration as well as mathematical morphology-lased approaches and their extension



to hyperspectral image processing [17, 20, 33, 72, 90, 91,7230, 135]

I. Extended morphological pro les

Mathematical morphology is a theory for the analysis of spatal structures in image data which
has been successfully applied to remotely sensed images§L0To analyze the structures of an
image in a systematic way, the morphological pro le was rst constructed based on the granu-
lometry principle [106]. Such pro les were then adapted to lyperspectral images by means of
extended morphological pro les (EMP) [7], which is built on the morphological pro les (MP) [8]
by applying morphological operators of erosion and dilatio (and their shape-preserving coun-
terparts: opening and closing by reconstruction) on the corponents obtained after performing
a dimensionality reduction on the original hyperspectral mage. EMPs provide an intuitive idea
of both the spectral characterization of the pixel vectors n the data and the spatial distribution
of such pixels in the scene. In [42], a new method based on thembination of spatial reclassi -
cation and mathematical morphology concepts was implemerd to process hyperspectral data
collected over urban environments. In [53], a joint spectr&spatial classi cation algorithm was
developed for hyperspectral data by using SVMs and morpholgical pro les. This approach is in
fact an extension of the seminal work in [7, 106]. Additionale orts on the integration of spatial

and spectral information using mathematical morphology cacepts can be found in [127{130].

1. Markov random elds

Another widely used strategy in the literature to integrate spatial information in hyperspectral
image classi cation is through the use of Markov random elds (MRFs), which model the piece-
wise statistical continuity among neighboring pixels that is expected in real-world scenarios [42].
In this regard, MRFs exploit the continuity, in probability sense, of neighboring labels. MRF is
a powerful tool for spatial analysis. Its basic assumption $ that, in a hyperspectral image, it is
very likely that two neighboring pixels will have the same class label. This simple concept has
been explored in [70], in which an adaptive Bayesian contexial classi cation procedure that
utilizes both spectral and spatial inter-pixel dependences was proposed, where the joint prior
probabilities of the classes of each pixel and its spatial righbors are modeled by an MRF. In
[85], spatial characterization and post-processing is péormed to the discriminant analysis fea-
ture extraction (DAFE) method by modeling the spatial neighborhood of a pixel as a spatially
distributed random process. Then, a spatial regularization is performed via the minimization of
an energy functional. In [52], amaximum a posteriori (MAP)-based framework was proposed in

which the class conditional probabilities were learnt by the SVM algorithm and the class prior
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probabilities were modeled by MRFs. In [20, 90, 91], an MRF miti-level logistic (MLL) prior
[58] is adopted in the Bayesian framework where the MAP estimate is e ciently computed by
the -expansion min-cut-based integer optimization algorithm [23]. This is a crucial step since
the MRF is characterized by its computational complexity. In fact, one of the main contribu-
tions of this thesis is the integration of MRFs with discriminative classi ers for computationally

e cient spatial-spectral segmentation of hyperspectral images.

1.2.3 Semi-supervised and active learning

As mentioned in previous sections of this chapter, in supernged hyperspectral image classi cation
and segmentation we often have to deal with the limited avaibility of training samples. This
is because, normally, labeled samples are often very di cul, expensive or time consuming to
collect. With a limited training set, classi cation accura cy tends to decrease as the number
of features increases. In this section, we discuss severgimoaches to deal with this problem,
including semi-supervised learning and active learning, Wwich have become very active research

areas in hyperspectral image classi cation/segmentation

I. Semi-supervised learning

The performance of hyperspectral image classi cation and egmentation techniques can be fur-
ther increased by taking advantage of semi-supervised leaing, in which the learning is generally
conducted using very few labeled samples (availabla priori ) and a larger amount of so-called
unlabeledtraining samples which are automatically generated duringthe process and with no ex-
tra cost. Recently, several semi-supervised methods havesbome widely popular, including those
based on models [5, 15, 56, 103], self-learning strategidd p, 117, 138], co-training [15, 100], mul-
tiview learning [24, 119, 126], transductive SVMs [75, 134]and graph-based methods [14, 145].
We refer to [144] for a detailed survey on semi-supervised rtteods. It should be noted that most
available semi-supervised learning algorithms use some e of regularization which encourages
that \similar" features are associated to the same class. Tl e ect of this regularization is to
push the boundaries between classes towards regions withwodata density [32], where a rather
usual way of building such regularizers is to associate theertices of a graph to the complete set
of samples and then apply the regularizer to the variables deed on the vertices. This trend
has been successfully adopted in several remote sensing @iees [25, 27, 91, 107, 132, 143]. Some

of the methods developed in this thesis are based on this stregy.
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[l. Active learning

In order to reduce the cost of acquiring large labeled trainmg sets, another strategy in the
literature has been active learning. Active learning is a méod of online learning, where a
learner strategically selects new training examples that povide maximal information about the
unlabeled dataset, resulting in higher classi cation accuacy for a given training set size as
compared to using randomly selected examples. Active leaing is most useful when there are
su cient a number of unlabeled samples but it is expensive toobtain class labels. This strategy
have been successfully applied in several di erent classiation and segmentation problems. In
[96], a mutual information (MI)-based technique for active sampling was proposed for data
query selection, which maximizes the the entropy of labelsdl]. In [95], an algorithm called
breaking ties (BT) was proposed for multi-class SVMs using he one-vs-one approach with a
probability approximation which tends to minimize the dist ance between the rst two most
probable classes. In [101], another active sampling appreoh for SVM classi ers was proposed
based on the distance of the unlabeled data points from the asting hyperplane. In [113], an
active sampling approach which maximizes the Kullback-Lebler divergence of the new label and
the training set was developed. In [133], a survey of activeanpling approaches was presented in
the context of remote sensing classi cation problems, inalding: (a) the margin sampling (MS)
[26, 120] strategy, which samples the candidates lying witim the margin of the current SVM
by computing their distance to the dividing hyperplane [101]; (b) the class of active learning
methods which relies on the estimation of the posterior prolbility distribution functions of
the classes; (c) the last class of active methods which is bed on the query-by-committee
paradigm [41, 55, 124]. Among these active learning algotitms, most of them naively select the
data point with maximum label entropy, least con dence, or maximum disagreement between
multiple learners. In this work, we exploit active learning principles to increase the accuracy of
methods for hyperspectral image classi cation/segmentaton at no cost, and further develop a
new sampling method which overcomes some of the limitationsf the aforementioned techniques

for the same purpose.

1.2.4 Thesis contributions

This section summarizes the main topics addressed in the tists and its main contributions.
As indicated in Fig. 1.2, which graphically represents the nain contributions in this work and
their relationship, we particularly focus on the problem of supervised and semi-supervised hy-
perspectral image segmentation (i.e., how to partition an mage into spatially consistent regions

associated to di erent land-cover classes starting from som {limited{ reference information
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Discriminant Hyperspectral Segmentation:
MLR spectral model
MLL spatial prior

(Supervise (Semi-superviseq

Chapter 3: _ Chapter 2:
LORSAL { Ch;féir :ée ced MLR] GEM algorithm
Active learning: MI, BT and MBT P Active learning

Figure 1.2: Scheme summarizing the thesis organization.

available a priori ). For this purpose, we introduce several new Bayesian disgninative ap-
proaches based on the MLR discriminative model (much less coplex compared with generative
models since it has much less parameters to learn). In this wk, we focus on discriminative

approaches based on MLR classi ers for several reasons:

1. First and foremost, MLR classi ers are able to learn diredly the posterior class distri-
butions and deal with the high dimensionality of hyperspectal data in a very e ective

way.

2. Second, we adopt a sparsity inducing prior on the regresss in order to obtain sparse
estimates. As a result, most of the components of the regresss are zero. This allows us

to control the complexity of our proposed techniques and th@ generalization capacity.

3. Finally, the MLR provides the class posterior probability. This plays a crucial role in the

complete posterior probability which includes spectral ard spatial information.

These aspects allowed us to introduce signi cant innovatims in the context of supervised
and semi-supervised hyperspectral image segmentation, clu as the use of prior probability
distribution based on the MRF which promotes piecewise segentation results with smooth

transitions between neighboring class labels. Our probatistic discriminative framework has
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two main advantages. First, it provides a probabilistic interpretation of each label con guration,
thus opening the door to compute risk-based segmentationssuch as the MAP. Second, the
probabilistic setup provides suitable tools to infer modelparameters. In our spatial prior, we
encourage piecewise smooth segmentations and thus promagelutions in which adjacent pixels
are likely to belong to the same class. In the past, the MAP sementation was very complex
to compute. However, with the advent of graph-cut tools [22,23, 79], we can now compute the
MAP estimate e ciently via e cient min-cut based integer op timization techniques.

Another important contribution of the thesis is based on the observation that training sam-
ples are limited, expensive and dicult to obtain in real analysis scenarios. To address this
common situation, we enhance our proposed supervised teclyues (based on labeled train-
ing samples) with semi-supervised learning capabilitiesthus exploiting unlabeled samples by
means of an active learning paradigm. In this regard, the thsis introduces new active sampling
strategies based on labeled query selection which are thaughly discussed and compared with
previous developments in the same eld. Finally, we also deslop innovative strategies to cope
with one of the most important problems in hyperspectral image analysis: the presence of mixed
pixels (with possibly many participating constituents at a sub-pixel level) due to limited spatial
resolution, mixing phenomena happening at di erent scalesgetc. To address this issue we resort
to subspace-based techniques that can better discriminatéand-cover classes in the presence of
heavily mixed pixels.

The remainder of the document has been organized so that thepgci ¢ contributions listed
above and summarized in Fig. 1.2 are presented in di erent chpters. The chapters are organized

according to the following arrangement:

Chapter 2 presents a new semi-supervised segmentation akifbm, where the posterior
class distributions are modeled by the MLR and learnt by a newsemi-supervised gener-
ative expectation minimization (GEM) algorithm, and the sp atial contextual information
is modeled by a Markov random eld multi-level logistic (MLL ) prior, which enforces

segmentation results in which neighboring labels belongsotthe same class.

Chapter 3 introduces a new supervised Bayesian approach toyperspectral image seg-
mentation with active learning, where the posterior class dstributions are modeled by
the MLR model and learnt by the a recently introduced logistic regression via splitting
and augmented Lagrangian (LORSAL) algorithm. Another contribution of this work is
the introduction of the modi ed breaking ties (MBT) active s ampling scheme, which is
an improvement over the breaking ties (BT) sampling method hut with the capacity to

provide unbiased samplings.
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Chapter 4 presents a new supervised segmentation algorithrfor remotely sensed hyper-
spectral images which integrates the spectral and spatialiformation in a Bayesian frame-
work. A multinomial logistic regression (MLR) algorithm is rst used to learn the posterior

probability distributions in spectral sense, using a subspce projection method to better

cope with noise and mixed pixels.

The e ectiveness of the proposed innovative techniques is lilstrated by comparing their
performance with state-of-the-art methods for supervisedand semi-supervised hyperspectral
image segmentation. The comparison is carried out using batsimulated and real hyperspectral
data sets. The experiments with simulated images are intendd to test the newly proposed
techniques in controlled analysis scenarios, in which rel@ant aspects such as the sensitivity of
methods to parameter settings or noise can be quantitativgl assessed. The experiments with
real images have been conducted using widely standardizedath sets in the remote sensing
community, with the ultimate goal to provide detailed and ri gorous comparisons of our newly
developed techniques with other widely used strategies fohyperspectral image segmentation.
Combined, these topics intend to illustrate the signi cant advantages that can be obtained
by the proposed techniques, which e ectively integrate spaial and spectral information for
hyperspectral image segmentation. To conclude this chapte we present the list of publications
that have supported the contributions that will be described in the following chapters of this

document.

1.2.5 List of publications

1. J. Li, J. Bioucas-Dias and A. Plaza. Spectral-spatial hyperspectral image segmentation
using subspace multinomial logistic regression and Markovandom elds. IEEE Transac-

tions on Geoscience and Remote Sensingubmitted, 2010.

2. J. Li, J. Bioucas-Dias and A. Plaza. Hyperspectral image sgmentation using a new
Bayesian approach with active learning. IEEE Transactions on Geoscience and Remote

Sensing accepted, 2010.

3. J. Li, J. Bioucas-Dias and A. Plaza. Semi-supervised hypspectral image segmentation us-
ing multinomial logistic regression with active learning. IEEE Transactions on Geoscience

and Remote Sensingvolume 48, pages 40854098, 2010.

4. J. Li, J. Bioucas-Dias, and Antonio Plaza. Supervised hygrspectral image segmentation
using active learning. In IEEE 2nd GRSS Workshop on Hyperspectral Image and Signal

Processing: Evolution in Remote Sensingpages 1 4, 2010.
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. J. Li, J. Bioucas-Dias and A. Plaza. Exploiting spatial information in semi-supervised
hyperspectral image segmentation. INEEE 2nd GRSS Workshop on Hyperspectral Image

and Signal Processing: Evolution in Remote Sensingpages 1 4, 2010.

. J. Li, J. Bioucas-Dias, and Antonio Plaza. Semi-supervisd hyperspectral image segmen-
tation. In IEEE 1st GRSS Workshop on Hyperspectral Image and Signal Prossing pages
1 4, 20009.

. J. Li, J. Bioucas-Dias, and Antonio Plaza. Semi-supervied hyperspectral classi cation
and segmentation with discriminative learning. In SPIE Europe Remote Sensingvolume

7477, 20009.

. J. Li, J. Bioucas-Dias, and Antonio Plaza. Semi-supervied hyperpsectral image classi -
cation based on a Markov random eld and sparse multinomial bgistic regression. INEEE
International Geoscience and Remote sensing Symposiumolume 3, pages Il 817 1l 820,

2009.

. J. Li, J. Bioucas-Dias, and Antonio Plaza. Hyperspectralimage classi cation based on
a fast Bregman sparse multinomial logistic regression algighm. In 6th EARSeL SIG IS

Workshop, Tel- Aviv, Israel, 2009.

. J. Li, J. Bioucas-Dias. Minimum volume simplex analysis a fast algorithm to unmix
hyperspectral data. In IEEE International Geoscience and Remote sensing Symposium

IGARSS, volume 3, pages Ill 250 Il 253, 2008.
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Chapter 2

Semi-Supervised Hyperspectral
Image Segmentation Using
Multinomial Logistic Regression
with Active Learning

Abstract { This chapter presents a new semi-supervised segmentationgarithm, suited to
high dimensional data, of which remotely sensed hyperspegil image data sets are an exampfe
The algorithm implements two main steps: (i) semi-supervied learning of the posterior class
distributions, followed by (ii) segmentation, which infers an image of class labels from a posterior
distribution built on the learnt class distributions, and o n a Markov random eld (MRF). The
posterior class distributions are modeled using multinomal logistic regression (MLR), where
the regressors are learnt using both labeled and, through argph-based technique, unlabeled
samples. Such unlabeled samples are actively selected bds® the entropy of the corresponding
class label. The prior on the image of labels is a multi-levelogistic (MLL) model, which enforces
segmentation results in which neighboring labels belongsat the same class. The maximum a
posteriori (MAP) segmentation is computed by the -Expansion min-cut based integer opti-
mization algorithm. Our experimental results, conducted using synthetic and real hyperspectral
image data sets collected by the Airborne Visible Infra-Redimaging Spectrometer (AVIRIS)
system of NASA Jet Propulsion Laboratory over the regions ofindian Pines, Indiana, and Sali-
nas Valley, California, reveal that the proposed approach an provide classi cation accuracies
which are similar or higher than those achieved by other supevised methods for the considered
scenes. Our results also indicate that the use of a spatial r can greatly improve the nal
results with respect to a case in which only the learnt class énsities are considered, con rming
the importance of jointly considering spatial and spectral information in hyperspectral image

segmentation.

LA preliminary much shorter version of this work appeared in [ 87].
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Index Terms { Hyperspectral image classi cation, semi-supervised leaning, multinomial

logistic regression (MLR), Markov random eld (MRF), multi -level logistic (MLL) model.

2.1 Introduction

In recent years, several important research e orts have beerdevoted to remotely sensed hy-
perspectral image segmentation and classi cation [85]. Hgerspectral image classi cation and

segmentation are related problems. In order to de ne these pblems in mathematical terms,

let S f 1, ;ngdenote a set of integers indexing then pixels of a hyperspectral image. Let
L f 1; ;K g be a set ofK class labels, and letx  (Xq; i Xn) 2 RY M denote an image
in which the pixels are d-dimensional feature vectors. Finally, lety  (y1;  ;yn) 2L " denote

an image of class labels. The goal of hyperspectral image ski cation is, for every image pixel
i 2'S, to infer the class labelsy; 2 L from the feature vectorsx; 2 RY (referred to hereinafter as
spectral vectory. On the other hand, the goal of hyperspectral image segmeation is to parti-
tion the set of image pixelsS into a collection of setsR; S , fori =1;:::;K, sometimes called
regions, such that the image pixels in each seR; be closein some sense Nevertheless, in this
chapter, we use the term classi cation when there is no spatl information and segmentation
when the spatial prior is being considered.

Supervised classi cation (and segmentation) of high dimesional datasets such as hyper-
spectral images is a di cult endeavor. Obstacles, such as tk Hughes phenomenon, arise as the
data dimensionality increases, thus fostering the develoment of advanced data interpretation
methods which are able to deal with high dimensional data set and limited training samples
[107].

In the past, both discriminative and generative models havebeen used for hyperspectral im-
age interpretation. More speci cally, techniques based ondiscriminative models learn directly
the posterior class distributions, which are usually far less complex than the class-conditional
densities in which generative models are supported. As a cgequence, discriminative approaches
mitigate the curse of dimensionality because they demand saller training sets than the gener-
ative ones [13, 102, 134]. Data interpretation based on these of discriminant functions, which
basically encode the boundaries between classes in the faat space, is another e ective way of
handling very high dimensional data sets [13].

Support vector machines (SVMs) [121] and MLR [16] rely, respctively, on discriminant

functions and posterior class distributions, based on whiec many state-of-the-art classi cation

2We recall that a partition of a set S is a collection of setsR; S ,fori =1;:::, where[i-1 Ri = S and
Ri\ Rj =5, i 6 ]
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methods are built. Due to their ability to e ectively deal wit h large input spaces (and to produce
sparse solutions), SVMs have been successfully used for supised classi cation of hyperspectral
image data [28, 53, 107, 109]. In turn, MLR-based techniquelave the advantage of being able to
model the posterior class distributions, thus supplying (h addition to the boundaries between the
classes) a degree of plausibility for such classes. E ectiveparse MLR methods are available [80].
These ideas have been recently applied to hyperspectral inga& classi cation and segmentation,
obtaining promising results [19].

In order to improve the accuracies obtained by SVMs or MLR-ba&ed techniques, some e orts
have been directed towards the integration of spatial (conéxtual) information with spectral in-
formation in hyperspectral data interpretation [19, 53, 107]. However, due to the supervised
nature of these methods, their performance is conditioned Y the fact that the acquisition of
labeled training data is very costly (in terms of time and nance) in remote sensing applications.
In contrast, unlabeled training samples can be obtained eadly. This observation has fostered
active research on the area of semi-supervised learning, which classi cation techniques are
trained with both labeled and unlabeled training samples [2, 81]. This trend has been success-
fully adopted in remote sensing studies [25, 27, 107, 132, 34 Most semi-supervised learning
algorithms use some type of regularization which encouragethat \similar" features belong to
the same class. The e ect of this regularization is to push theboundaries between classes to-
wards regions of low data density [32], where a rather usual &y of building such regularizer is
to associate the vertices of a graph to the complete set of sgmtes and then build the regularizer
depending on variables de ned on the vertices.

In this chapter, we introduce a new semi-supervised learnig algorithm which exploits both
the spatial contextual information and the spectral information in the interpretation of remotely
sensed hyperspectral data. The algorithm implements two men steps: (i) semi-supervised learn-
ing of the posterior class distributions, implemented by ane cient version of semi-supervised
learning algorithm in [81], followed by (ii) segmentation, which infers an image of class labels
from a posterior distribution built on the learnt class dist ributions, and on an MLL prior on the
image of labels. The posterior class distributions are moded using MLR, where the regressors
are learnt using both labeled and (through a graph-based tdmique) unlabeled training samples.
For step (i), we use a block Gauss-Seidel iterative method wibh allows dealing with data sets
that, owing to their large size (in terms of labeled samples,unlabeled samples, and number
of classes) are beyond the reach of the algorithms introduckin [81]. The spatial contextual
information is modeled by means of a MLL prior. The nal output of the algorithm is based

on an MAP segmentation process which is computed via a very ecient min-cut based integer
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optimization technique.

The remainder of the chapter is organized as follows. Sectin2.2 formulates the problem and
describes the proposed approach. Section 2.3 describes thgtimation of the multinomial logistic
regressors, including a generalized expectation algorith to compute their MAP estimate, and
a fast algorithm based on the Gauss-Seidel iterative procade. Section 2.4 gives details about
the MLL prior. Section 2.5 addresses the MAP computation of he segmentation via integer
optimization techniques based on cuts on graphs. An active mthod for selecting unlabeled
training samples is also introduced. Section 2.6 reports péormance results for the proposed
algorithm on synthetic and real hyperspectral datasets, ad compares such results with those
provided by state-of-the-art competitors reported in the literature. The two real hyperspectral
scenes considered in our experiments were obtained by the ARIS over the regions of Indian
Pines, Indiana, and Salinas Valley, California. These scess have been widely used in the
literature and have high-quality ground-truth measurements associated to them, thus allowing
a detailed quantitative and comparative evaluation of our proposed algorithm. Finally, Section

2.7 concludes with some remarks and hints at plausible futu research avenues.

2.2 Problem formulation and proposed approach

With the notation introduced in Section 2.1 in mind, let us de ne an image region asRy f i 2

Sjyi = kg, i.e., Rk is the set of image pixelsi 2 S with class labelsy; = k 2 L. We note that

which we term labelings, and partitions of S, which we term segmentations, is one-to-one. We
will, thus, refer interchangeably to labelings and segmerdtions.

The goal of both image classi cation (and segmentation) is b estimate y having observed
X, a hyperspectral image made up ofl-dimensional pixel vectors. In a Bayesian framework, the
estimation y having observedx is often carried out by maximizing the posterior distributi on®
p(yjx) /I p(xjy)p(y), where p(xjy) is the likelihood function (i.e., the probability of the features
image x given the labeling y) and p(y) is the prior on the labeling y. Assuming conditional
independency of the features given the class labelse, p(xjy) = Q :zl” p(xijyi), then the posterior

p(yjx), as a function of y, may be written as

L oxiy)py)

" o @)
o(x) p(yini)().

. P) ’

plyjx) =

3To keep the notation simple, we use p() to denote both continuous densities and discrete distribu tions of
random variables. The meaning should be clear from the context.

20



Qi:n

where c(x) i-1 P(xi)=p(x) is a factor not depending ony. The MAP segmentation is then
given by
(o | )
b =arg max (log p(yijxi) logp(yi)) +log p(y) : (2.2)
=1

i
In the present approach, the densitie(y;jx;) are modeled with the MLR, which corresponds
to discriminative model of the discriminative-generative pair for p(x;jy;) Gaussian and p(y;)
multinomial [97], [118]. Notice that p(y;) can be any distribution, as long as the marginal of
p(y) is compatible with such distribution. The estimation of vector of regressors parameterizing
the MLR is formulated as in [81], following a semi-supervisd approach. To compute the MAP
estimate of the regressors, we apply a new Block Gauss-Seidterative algorithm. The prior
p(y) on the labelings, y, is an MLL Markov random eld, which encourages neighboring pixels
to have the same label. The MAP labeling/segmentation¥ is computed via the -Expansion
algorithm [23], a min-cut based tool to e ciently solve inte ger optimization problems. All these

issues are detailed in the next section.

2.3 Estimation of the logistic regressors

The MLR model is formally given by [16],

exp( “h(xi))

p(Yi xi;!) E:l exp( ®h(x))) (2.3)
where h(x) [h1(x); hi(x)]" is a vector of | xed functions of the input, often termed
features; ! () is the set of logistic regressors for clask, and! [ @"; ;1 (K DT Given

the fact that the density (2.3) does not depend on translatims on the regressord (), we set
1 (K) = 0.

Note that the function h may be linear, i.e., h(xi) = [1;Xi:1;  ;Xia]", Where x;; is the
j-th component of x; or nonlinear. Kernels [121],i.e., h(xi) = [1;Kx:x,; ;Kx:x]", where
Kxix; = K(Xi;xj) and K(; ) is some symmetric kernel function, are a relevant example fo
the nonlinear case. Kernels have been largely used becaudeey tend to improve the data
separability in the transformed space. In this paper, we usex Gaussian Radial Basis Function
(RBF) kernel, K(x;z) exp(k x zk?=(2 2)), which is widely used in hyperspectral image
classi cation [28]. From now on, d denotes the dimension of(x).

In the present problem, learning the class densities amoustto estimating the logistic regres-
sors! . Since we are assuming a semi-supervised scenario, thisigstion is based on a small

set of labeled samplesD, f (y1;x1); ;(YL;XL)g, and a larger set of unlabeled samples,
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Xu f Xp+1; ;XL+u@. Given that our approach is Bayesian, we need to build the parior

density

p(! YL XL Xu) 1opCYLiXe; Xus P )p(t jXL; Xy) (2.4)
= p(YLiXe: P )p(t jXL+u); (2.5)
whereY, f yi; ;YL g denotes the set of labels inD, X, f Xj; ;XL g denotes the set

of feature vectors inD_, and X, .+y stands for fX |_; Xyg. Here, we have used the conditional
independence assumption in the right hand side of (2.5).

The MAP estimate of ! is then given by

b =argmax fI(! )+log p(! XL+u)g; (2.6)
where
- * -
I(M) logp(YLjXL;!) log  p(yijxi;!)
@ 0 w 1 @.7)
@xT1 ) Jog  exp(x]! U)A
i=1 j=1

is the log-likelihood function of ! given the labeled sampleD, and p(! jX|+y) acts as prior on

I . Following the rationale introduced in [81], we adopt the Gaussian prior

PO ) e 1T 1 2.8)

where the precision matrix = (Xp+uy) is builtin such a way that the density p(! j ) promotes
vectors! leaving \close" labeled and unlabeled featured(x), for x 2 X +y, in the same class.
The distance between features is de ned in terms of a weightk graph G = (V; E; B), where V
is the set of vertices corresponding to labeled and unlabededata, E is a set of edges de ned
onV V , and B is a set of weights de ned onE. With these de nitions in place, the precision

matrix writes as

()= (A+ 1)

where symbol denotes the Kronecker product, > 0 is a regularization parameter, and

diag( 1;  « 1)
A XX T
X [h(x4); ;h(XL+U)]

Laplacian of the graph G:

22



Notice that () is a block diagonal matrix, i.e.,

()=diag( 1(A+ 1) « A+ 1),

In the above de nitions, and 1; ; (k 1) are non-negative scale factors.

With the de nitions above, we have

1T () = PO AT () k2
k=1
The quadratic term k! Kk? acts as a quadratic regularizer, ensuring that the estimamn of !
is not ill-posed. At the same time, in order to ensure that this quadratic regularizer does not
modify the role of matrix A, the value of should be much smaller than the largest eigenvalue
of A. In order to interpret the role of the quadratic terms ! WTAT® etV f 1 U+ Lg
andB f § 0 (i;j) 2 Egdenote, respectively, the set of vertices and weights ob. Having

in mind the meaning of the Laplacian of a graph, we have

FRTAT K = 1 0TxTx 1K

p i
e i) h(x) "

Therefore, the lower values oft ®)" A1 (9, corresponding to the most probable regressors (9,
occur when both featuresx; and x; are in the same side of the separating hyperplane de ned by
I (). In this way, the prior acts as a regularizers on! (), promoting those solutions for which
the features connected with higher values of weights jj are given the same label. This implies
that the boundaries among the classes tend to be pushed to theegions of low density, with
respect to the underlying graph G. In accordance with this rationale, we set in this work

= gk h(x) h(x)k2. (2.9)

ij

and should be integrated out. We assume that they are distriluted according to Gamma den-
sities, which are conjugate priors for the inverse of a variaces of Gaussian densities [9]. More

precisely, we assume they are independent and that

i Gam(; ) i=1;::;K 1 (2.10)
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where Gam(; ) stands for a Gamma distribution with shape parameter and inverse scale
parameter . Notingthat ,i=1;:::;K 1 are scaling parameters, we set to very small
values, thus obtaining a density close to that of Je reys priar. We note that the Je reys prior,
which is non-informative for scale parameters, is obtainedy setting to zero the shape and the

inverse scale parameters of a Gamma density.

2.3.1 Computing the MAP estimate of the regressors

To compute the MAP estimate of ! , we use an expectation-maximization (EM) algorithm [43],
where the scale factors j, fori =1 :::;K 1, are the missing variables. The EM algorithm is
an iterative procedure that computes, in each iteration, a ®-called E-step (for mean value) and

the M-step (for maximization). More speci cally, at iterat ion t, these steps are formally given

by

E-step:
Q(*jt+) Eflogp(!; jD)j! ] (2.11)

M-step:
I 41 2 arg n?axQ(! it ) (2.12)

In (2.11), D fD | ;Xyg denotes the set of labeled and unlabeled samples. The mostlegant
property of the EM algorithm is that the sequence p(! {jD), for t = 1;2;:::, is non-decreasing
and, under mild assumptions, converges to local optima of te density p(! jD).

2.3.2 E-step

From expressions (2.5) and (2.8), we have

p(' ; jD) = p(YLiXL;!)p(tj ( )p( )c®; (2.13)
where c® does not depend on and and p( ) QiKzllp( i). We have then
Q('j') = Eflogp(YLjXL;!) (1=!'T () +Cjl 4]

log p(YuiXe;!)  (1=2)! TE[ ( )j! ¢! + C°

Ity @=2)! 7 ¢ +ce (2.14)
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wherel(! ) is the log-likelihood function given by (2.7), (!:) E[ ( )j! ¢], and C and C°do
not depend on! . Since ( )islinearon ,then (') = (E[ j'].
Owing to the use of conjugate Gamma hyper-priors, the expedtions E[ ij! ] have well-

known closed forms [9]. For the present setting, we have
« ElW']1=@ +d2 +(b*)T(Aa+ npl L
fork=1; Ko 1.

2.3.3 M-step

Given the matrix  (b), the M-step amounts to maximize the objective function (2.14), which is
a logistic regression problem with a quadratic regularizer Hereinafter, we adopt the generalized
expectation maximization (GEM) [43] approach, which conssts in replacing, in the M-step, the
objective function Q( j ) with another one which is simpler to optimize. A necessary ondition for
GEM still generating a non-decreasing sequencp(! {jD), for t =1;2;:::, is that Q(! t+1]j! )
Q( ¢j! ¢), for t =1;2;::: In order to build a simpler objective function, we resort to bound
optimization techniques [86], which aim, precisely, at refacing a di cult optimization problem
with a series of simpler ones.

Let g(! ) be the gradient of I(! ) given by

NS
9(!)=_ (ey, pi) h(xp);

i=1
where ey is the kth column of the identity matrix of size K and
pi Ip(y = Ljxis! )sp(y = 2jxi5! )5 ply = Kijxiz!)]™: (2.15)
Let us de ne the non-positive de nite matrix as

117 S
K 1

B % | h(xi)h(xi)"; (2.16)

i=1

where 1 denotes a column vector of 1s and.T is the transpose of such column vector. We now
de ne the following quadratic majorizer for function Q resulting from the E-step stated in Eq.
(2.14)

Qe('jb) I(B)+(! b)Tgb)+[(! bH)TBI b) I (b)]=2
Let H(! ) be the Hessian ofl(! ). Matrix H B is semi-positive de nite [16],i.e., H(! ) B
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for any ! . Itis then easy to show that

Q(tjb) Qs(!jb)

with equality if and only if ! = b. Thus, Qg (! jb) is a valid surrogate function for Q(! jb).
That is, by replacing Q with Qg in (2.11), the inequality Q(! t+1j! ¢) Q! ¢j! ¢)fort=1;2;:::
still holds, which implies p(! {jD) p(! ¢jD), fort=1;2;:::

The maximizer of Qg (! j! {) with respectto ! is

l't+1 = (B (D) YB e gty

which amounts to solving a linear system withd(K 1) unknowns, thus with O((d(K  1))%)

complexity. This complexity may be unbearable, even for midile-sized data sets. To tackle this
di culty, a sequential approach in which the algorithm only maximizes Qg with respect to one
element of! at a time is proposed in [81]. Here, the complexity of a complke scanning of all
elements of! is O(Kd(L + d)), much lighter than O((d(K  1))3). What we have found out,

however, is that the convergence rate of this algorithm is t@ small, a factor that rules out its

application in realistic hyperspectral imaging applications.

In order to increase the convergence rate and to handle systes of reasonable size, we im-
plement a Block Gauss-Seidel iterative procedure in whichhe blocks are the regressors of each
class. Thus, in each iteration, we solveK 1 systems of dimensiond. Furthermore, we have
observed that just one iteration before recomputing the preision matrix  is nearly the best
choice. Notice that, even with just one Gauss-Seidel iteraon, the algorithm is still a GEM.
The improvement in complexity with respect to the exact solution is given by O((K  1)?),
which makes a di erence when there are many class labels, as it indeed the case in most
hyperspectral imaging applications.

The pseudo-code for the GEM algorithm to compute the MAP estmate of ! is shown in
Algorithm 2.1, where GEMiters denotes the maximum number of GEM iterations and BSGiters
denotes the number of Block Gauss-Seidel iterations. The nation ( )(K) stands for the block

column vectors corresponding to regressors (K

2.4 The Multi-Level logistic spatial prior

In segmenting real world images, it is very likely that neigtboring pixels belong to the same
class. The exploitation of this (seemingly naive) contextwal information improves, in some

cases dramatically, the classi cation performance. In ths work, we integrate the contextual
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Algorithm 2.1  GEM algorithm to estimate the MLR regressors!
Require: ! o, D, Xy, , , , GEMiters, BSGiters
Ensureij Uk:| [l 117 =K l)]k;|
R 1 headh()T, X [h(xp)i  sh(x )]
B := B(X)( build the graph weights according to (2.9) )
( B)( isthe Laplacian of graph G )
i=1
A=X XT
while i  GEMiter or stopping criterion is not satis ed do
=@ +d2 +(TAa+ M k=100k 1
z=B!i1 9('i 1)
Cki=ugR ((A+ 1)
for j := 1 to BSGiters do
for k:=1to K 1do =
1 &) = solution fCi! 0 =200 T K 1 Cgt Pg
end for
end for
end while

information with spectral information by using an isotropi ¢ MLL prior to model the image
of class labelsy. This prior, which belongs to the MRF class, encourages pieavise smooth
segmentations and thus promotes solutions in which adjacenpixels are likely to belong the
same class. The MLL prior is a generalization of the Ising moedl [58] and has been widely used
in image segmentation problems [92].
According to the Hammersly-Cli ord theorem [10], the density associated with a MRF is a
Gibbs's distribution [58]. Therefore, the prior model for segmentation has the following structure
!
X
Ve(y)
Py)= e € : (2.17)

where Z is a normalizing constant for the density, the sum in the expment is over the so-called

prior potentials V¢(y) for the set of cliquest C over the image, and

Ve(y) =

8
% ,:  if jd = 1 (single clique)
E ¢ ifjg > 1and8ijacyi = Y (2.18)

o ifjg > 1and9;acyi 6 Y,

where . is a non-negative constant.
The potential function in (2.18) encourages neighbors to hee the same label. By varying

the set of cliqgues and the parameters y, and ., the MLL prior o ers a great deal of exibility.

4A clique is a single term or either a set of pixels that are neighbors of one another.
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For example, the model generates texture-like regions if . depends onc and blob-like regions

otherwise [93]. By taking .= % > 0, the Eqg. (2.17) can be rewritten as

X X
1 yi * i V)
p(y) = 5 €% (i1)2¢ (2.19)

where (y) is the unit impulse function®. This choice gives no preference to any direction. The

unary cliques y, are de ned by the marginal p(y;) in the following sense:

X
p(yi) = P(y;):
j=1;n; 6i

Herein, we assumep(y;) = 1=K, i.e., equiprobable classes. In this case, a simple computation
leads to , = c*®. Notice that the pairwise interaction terms (y; y;) attach higher probability
to equal neighboring labels than the other way around. In this way, the MLL prior promotes
piecewise smooth segmentations. The level of smoothnessdentrolled by parameter

In this paper, we consider only rst and second order neighbchoods;i.e., considering that
pixels are arranged in a square grid where the distance betwa horizontal or vertical neighbors
is de ned to be 1, the cliques corresponding to rst and secod order neighborhoods are, re-
spectively, f(i;j) 2 Cjd(i;j) 1, i;j 2Sgandf(i;j) 2 Cjd(i;j) P 2;i;j 2 Sg, whered(i;j)

is the distance between pixeld;j 2 S.

2.5 Computing the MAP estimate via graph-cuts

Based on the posterior class densitieg(y;jx;) and on the MLL prior p(y), assuming equiprobable
classes and according to (2.2), the MAP segmentation is ndy given by
X X

b = arg yrgiLnn o log p(yijb) - i ¥p); (2.20)
wherep(yijb)  p(yijxi;! ), computed at b. Minimization of expression (2.20) is a combinatorial
optimization problem, involving unary and pairwise interaction terms. The exact solution for
K = 2 was introduced in [63] by mapping the problem into the computation of a min-cut
on a suitable graph. This line of attack was reintroduced in te beginning of this century,
and has been intensely researched since then (see, e.g, [2, 23, 79]). As a result of this

research, the number integer optimization problems that ca now be solved exactly (or with

a very good approximation) has increased substantially. A ky element in graph-cut based

Sie., (0O)=1and (y)=0,for y&0
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approaches to integer optimization is the so-called sub-mdularity of the pairwise terms: a
pairwise termV (yi; y; ) is said to be submodular (or graph-representable) it/ (yi; yi)+ V (yj;Y;)

V(yi,yj) + V(yj,;yi), forany yi;y; 2 L. This is the case of our binary term (i y) In
this case, the -Expansion algorithm [23] can be applied. It yields very god approximations to
the MAP segmentation problem and is e cient from a computati onal point of view, being its

practical computational complexity O(n).

2.5.1 Semi-supervised algorithm

Let X;z7 f Xu+1: 1 Xng denote the unlabeled set inx. The pseudo-code for the proposed
semi-supervised segmentation algorithm with discriminatve class learning MLL prior is shown

in Algorithm 2.2.

Algorithm 2.2  Semi-supervised segmentation algorithm

Require: Dy, Xy, XL+u, X;3g, GEMiters, BSGiters, , , , m

1: while stopping criterion is not satis ed do

22 b:=GEM(Dy;Xuy;; , ,GEMiters, BSGiters)

3z Pi= p(xi;b), Xi 2 X7

4. ( P collects the MLR probabilities (2.15) for all feature vectors in X;w )
5. Xnpew = (b;m)

6 (' (b;m) selectsm unlabeled samples fromX—. See explanation )

70 Xe+u = Xe+u + Xnew

8  Xi3w = Xizu X new

9: end while
10: P = p(x;;b),i2S
11: 9 = -Expansion(b; ; neighborhood)

Lines 2, 10, and 11 of Algorithm 2.2 embody the core of our propsed algorithm. Speci -
cally, line 2 implements the semi-supervised learning of ta MLR regressors through the GEM
procedure described in Algorithm 2.1. It uses both the labetd and unlabeled samples. Line 10
computes the multinomial probabilities for the complete hyperspectral image. Line 11 computes
the MAP segmentation e ciently by applying the  -Expansion graph-cut based algorithm. The
neighborhood parameter for the -Expansion determines the strength of the spatial prior. Fao
illustrative purposes, Figure 2.1 sketches the most relevat components of the proposed segmen-

tation algorithm in a ow chart.

2.5.2 Active selection of unlabeled samples

Lines 3-8 in Algorithm 2.2 implement the procedure for active selection of unlabeled training
samples. The objective is to select sets of unlabeled samplébased on the actual results provided

by the classi er, that hopefully lead to the best performance gains for the classi er. Contrarily
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Figure 2.1: Block scheme of Algorithm 2.2.

to active selection of labeled samples [44, 96, 133], the setion on unlabeled samples has not
been studied in detail in the literature. These samples areriexpensive and, thus, the question of
how many unlabeled samples should be used in hyperspectrahth classi cation arises. In the
context of the proposed methodology, however, the complegi of the learning process increases
signi cantly with the incorporation of unlabeled samples, leading to cubic complexity when all
samples (labeled and unlabeled) are used for classi catianin turn, active selection of a limited
number of unlabeled samples allows us to reduce computati@h complexity signi cantly and to
achieve overall performances that, otherwise, would be oglreached with a much larger number
of samples.

In this work, we have considered two strategies for the seléion criterion implemented by

function ' shown in line 5 of Algorithm 2.2, namely, the following:
(i) randomly: in step 5, these m unlabeled samples are randomly selected froX; -

(i) maximum entropy: in step 5, these m unlabeled samples have the maximum entropy

boundaries.

In the literature, active selection studies for the labeledsamples give evidence that, maximum
entropy vyields very good performance [81, 133]. However, ouesearch is di erent as we use
active selection for the set of unlabeled samples. Nevertlhess, we still consider this criterion for
our approach. In the next section, we will justify the good bénhavior of this criterion in the case

of active selection of unlabeled samples.

2.5.3 Overall complexity

The complexity of Algorithm 2.2 is dominated by the semi-supervised learning stage of the MLR
regressors implemented through the GEM process in Algoritm 2.1, which has computational
complexity O(d3(K 1)) as described in Section 2.3.1, and also by the-Expansion algorithm
used to determine the MAP segmentation, which has practicalcomplexity O(n) as described in
Section 2.5. Since in most applicationsd®(K 1) > n, the overall complexity is dominated by

that of the GEM process in Algorithm 2.1, which is used to lean the MLR regressors.

30



As already referred, compared with the semi-supervised atgithm presented in [81], the
proposed semi-supervised algorithm is  1)? faster. For a problem with 500 labeled pixels,
224 bands, and 10 classes on a 2.31GHz PC, with only the rst 2@terations, the proposed
algorithm took 10.53 seconds, whereas the algorithm in [81fpok 106.77 seconds.

2.6 Experimental results

In this section, we evaluate the performance of the proposedlgorithm using both simulated and
real hyperspectral data sets. The main objective in runningexperiments with simulated data is
the assessment and characterization of the algorithm in a adrolled environment, whereas the
main objective in running experiments with real data sets iscomparing its performance with
that reported for state-of-the-art competitors with the same scenes.

This section is organized as follows. Section 2.6.1 reporexperiments with simulated data,
and contains the following experiments. In Subsection 2.4..1, we conduct an evaluation of the
impact of the spatial prior on the analysis of simulated datasets. Subsection 2.6.1.11 performs
an evaluation of the impact of incorporating unlabeled samges to the analysis. Finally, Subsec-
tion 2.6.1.111 conducts an experimental evaluation of the increase in classi cation results after
including the active selection methodology. On the other had, Section 2.6.2 evaluates the per-
formance of the proposed algorithm using two real hyperspétal scenes collected by AVIRIS
over agricultural elds located at Indian Pines, Indiana [85], and the Valley of Salinas, California
[85]. In this section, the algorithm is compared with state-of-the-art competitors.

It should be noted that, in all experiments other than those related with the evaluation
of the impact of the spatial prior, we use RBF KernelsK (x;z) = exp( k x  zk?=(2 2)) to
normalize data®. The scale parameter of the RBF Kernel is set to = 0:6. In our experiments,
we use all of the available spectral bands without applying ay feature selection strategy. Since
we use RBF kernels, the overall complexity only depends on th total number of labeled and
unlabeled samples. Thus, the application of feature selein techniques makes no signi cant
di erences in this particular scenario. Although this setting is not optimal for all experiments,
we have observed that it yields very good results in all expeéments. In all cases, the reported
values of the overall accuracy (OA) are obtained as the meanalues after 10 Monte Carlo
runs, with respect to the labeled samplesD,, except for the results over the AVIRIS Salinas
dataset, which are obtained with 5 Monte Carlo runs. The labded samples for each Monte

Carlo simulation are obtained by resampling a much larger seof labeled samples. Finally,

5The normalization is x; := E|;>—,a-xk'=k2) for i =1;:::;n, where x; is a spectral vector and x is the collection
Xj

of all image spectral vectors.
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it is important to emphasize that in this section we will frequently refer to classi cation and
segmentation results, respectively, when addressing theesults provided by the MLR (spectral-
based classi cation) and the complete algorithm (which introduces contextual information to

provide a nal segmentation).

2.6.1 Experiments with simulated data

In this section, a simulated hyperspectral scene is used tovaluate the proposed semi-supervised
algorithm, mainly to analyse the impact of the smoothness paameter . For this purpose, we
generate images of labelsy 2 L ", sampled from a 128 128 MLL distribution with  =2. The

feature vectors are simulated according to:
Xy; = My, +ny; 12S; yi2L" (2.21)

where xy, denotes the spectral vectormy, denotes a known vector, andny, denotes zero-mean
Gaussian noise with covariance 21, i.e., ny, N (0; 2I).

In Subsection 2.6.1.1, we address a binary classi cation pblem, i.e., K =2, with xy, 2 R,
my, = i ,k k=1,and ;= 1. The image of class labely is shown in Figure 2.2(a), where

labelsy; = 1;2 corresponds to ; = 1;+1, respectively. In this problem, the theoretical OA,

given by OAgpt  100(1  Pe)% and corresponding to the minimal probability of error [49] is
+
Pe = %erfc }pz—o po + :—2Lerfc iLpé—o P1; (2.22)

where ¢ =( 2=2)In(po=p.) and po and p; are the a priori class labels.
In Subsection 2.6.1.1I, the images of class labels are gemged with K =10 and my, = sy,
fori 2 S, wheresy, for k 2 L, are spectral signatures obtained from the U.S. Geologicaburvey
(USGS) digital spectral library 7. For a multi-class classi cation problem, because the prolbility

of error is di cult to compute, we use the error bound
K 1o distmn

P. ——erfc

; 2.23
- oo (2.23)

where distnin denotes the minimum distance between any point of mean vects, i.e., distyin, =
minigjkmy,  my, Kk, for any yi;y; 2 L. This is the so-called union bound [13], which is widely
used in multi-class classi cation problems.

Finally, in Subsection 2.6.1.111 we use the same experime setting as in Subsection 2.6.1.1

except for the number of spectral band, which is set to 200i.e., xy, 2 R?%.

"The USGS library of spectral signatures is available online: http://speclab.cr.usgs.gov
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(@) (b) (c)

Figure 2.2: Classi cation and segmentation results obtaired after applying the proposed method
on a simulated hyperspectral scene representing a binary a$si cation problem. (a) Ground-
truth class labels. (b) Classi cation result (OA=66.94%, with OA o5t = 75:95%). (c) Segmenta-
tion result(OA=96.41%).

I. Impact of including a spatial prior

In this example, we use a linear kernel in the characterizatn of the simulated hyperspectral
scene because it yields the correct discriminative densitfor the Gaussian observations with
equal covariance matrix. The number of unlabeled samples iset to zero in this experiment,
mainly because our focus is to analyze the e ect of the spatiaprior independently of other
considerations. Figure 2.3 (a) illustrates the OA results & a function of the smoothness pa-
rameter . It should be noted that the segmentation performance is almost insensitive to
with 1 for the considered problem. In the following experimentswe empirically set = 1.
Again, although this setting might not be optimal, it leads t 0 good and stable results in our
experiments.

On the other hand, Figure 2.3(b-d) presents the OA results wih 5, 50 and 500 labeled
samples per class, respectively, as a function of the noiseaadard deviation . As shown in the
plots, it can be observed that the classi cation OA approactes the optimal value OAq; as the
number of labeled samples is increased, but it is also cleah&t the number of labeled samples
needs to be relatively high in order to obtain classi cation accuracies which are close to optimal.
In turn, it can also be observed in Figure 2.3 that the inclusbn of the spatial prior provides
much higher segmentation accuracies than those reported fdhe classi cation stage (superior in
all cases to the values of Ogyt). Further, the sensitivity of these results to the amount of noise
in the simulated hyperspectral image can be compensated bywcreasing the number of labeled
samples, but accurate values of segmentation OA can be obtaéd using very few labeled samples,
in particular, when the amount of simulated noise is not very high. This experiment con rms

our introspection that the inclusion of a spatial prior can signi cantly improve the classi cation
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Figure 2.3: (a), OA results as a function of the spatial prior parameter
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Figure 2.4: OA results as a function of the number of unlabeld samples. (a) Analysis scenario
based on a xed number ofL = 400 (40 labeled training samples per class) and = 0:4. (b)

Analysis scenario based on a xed number oL = 500 (50 labeled training samples per class)
and = 0:45. Solid and dash-dot lines represent random selection antiaximum entropy-based

active selection, respectively.

results provided by using only spectral information. For illustrative purposes, Figs. 2.2(b) and
2.2(c) show the classi cation and segmentation maps respéieely obtained with 2 = 2 and
L =100. In this example, the increase in OA introduced by incoiporating the spatial prior with
regards to the optimal classi cation that can be achieved (QAqpt = 75:95%) is clearly noticeable

(about 20:46%), thus revealing the importance of including the spatid prior after classi cation.

Il. Impact of incorporating unlabeled samples

In this subsection, we analyze the impact of including unlaleled samples via an active selection
strategy in the analysis of simulated hyperspectral data. $eci cally, we consider two selection
strategies for unlabeled samples: (i) random, and (ii) maxinum entropy-based. The latter
corresponds to selecting unlabeled samples close to the bularies between regions in feature
space. Figure 2.4 shows the OA results obtained for the prom®d algorithm as a function of the
number of unlabeled samples for two di erent analysis scenaos: (a) xed number of labeled
training samples, L = 400 (40 per class) and noise standard deviation = 0:4, and (b) xed
L =500 (50 per class) and = 0:45. The theoretical OA, termed as OAyy  100(1 Pe)%,
where P denotes the union bound in this problem, is also plotted. Afer analyzing the results

reported in Figure 2.4, the following general observationan be made:

The inclusion of a spatial prior improves the classi cation OA.

The inclusion of unlabeled samples improves the segmentath OA by roughly 15% in

Figure 2.4(a) and in approximately 10% in Figure 2.4 (b). This e ect is observed for all
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Table 2.1: OA (%) as a function of the number of unlabeled samfes in the toy example illustrated
in Figure 2.5(b).

U 0 50 100 150 200 250 300 350 400 450
OA | 55.78 86.19 89.29 87.30 88.17 87.73 89.45 90.13 90.45 91.05

considered numbers of unlabeled samples.

Finally, it is clear from Figure 2.4 that maximum entropy-ba sed active selection performs

uniformly better than random selection in terms of OAs.

I1l. Impact of the considered active selection approach

The main objective of this subsection is to provide an informal justi cation about why the
proposed method for maximum entropy-based active selectio of unlabeled samples performs
accurately in experiments. Figure 2.5, with 20 labeled samigs (10 per class), illustrates the
improvements in the separation boundaries established byur proposed classi er as the number
of unlabeled samples increases using a toy example. In Figai2.5(a), in which the noise standard
deviation is set to = 0:1, red circles denote the labeled samples. The red line is thdassi er
boundary de ned without unlabeled samples. An OA of 79.32% vas obtained in this case. The
yellow plus signs (a total of U = 50) represent the unlabeled samples. Since we have seledte
the unlabeled samples with maximum entropy, and the entropyof a sample increases as it
approaches the boundary, the selected unlabeled sampleseapver the contour and located in
the area of higher density. The inclusion of these samples ka pushed the contour outwards,
thus ensuring that all of them stay in the same classi cation region. Of course, the movement
of the boundary in the opposite direction would have also lgfall the unlabeled samples in the
same side of the boundary but would have decreased too much ¢hlikelihood term associated
with the labeled samples. In this example, the nal OA after including unlabeled samples is
98.6%. A similar phenomenon is observed in Figure 2.5(b), invhich = 0:3 is considered. For
illustrative purposes, Table 2.1 shows the OA results as a faction of the number of unlabeled
samples for the example reported in Figure 2.5(b). Each colmn of Table 2.1 corresponds to a
di erent type of color/thickness in 2.5(b), from the thin red line to the thick red line. It is clear
that, as the number of unlabeled samples increases, the deition of the separating boundary

improves along with the overall performance of the classi e.
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Figure 2.5: Changes in the boundary by the proposed classirin a binary classi cation problem
as the number of unlabeled samples (selected using a maximumntropy-based criterion) is
increased.

2.6.2 Experiments with real hyperspectral data

In order to further evaluate and compare the proposed algothm with other state-of-the-art
techniques for classi cation and segmentation, in this setion we use two real hyperspectral data

sets collected by the AVIRIS instrument operated by NASA/JP L.

The rst data set used in experiments was collected over the ¥lley of Salinas, in Southern
California, in 1998. It contains 217 512 pixels and 224 spectral bands from 0.4 to 2.5
m, with nominal spectral resolution of 10 nm. It was taken at low altitude with a
pixel size of 3.7 meters. The data includes vegetables, basmils and vineyard elds. The
upper-leftmost part of Figure 2.6 shows the entire scene (v overlaid ground-truth areas)
and a sub-scene of the dataset (called hereinafter Salinas)Aoutlined by a red rectangle.
The Salinas A sub-scene comprises 83 86 pixels and is known to represent a di cult
classi cation scenario with highly mixed pixels [108], in which the lettuce elds can be
found at di erent weeks since planting. The upper-rightmost part of Figure 2.6 shows
the available ground-truth regions for the scene, and the btiom part of Figure 2.6 shows
some photographs taken in the eld for the di erent agricultu ral elds at the time of data

collection.

The second data set used in experiments is the well-known ARIS Indian Pines scene,
collected over Northwestern Indiana in June of 1992 [85]. TIs scene, with a size of
145 145 pixels, was acquired over a mixed agricultural/forest aea, early in the growing

season. The scene comprises 224 spectral channels in the alength range from 0.4 to

2.5 m, nominal spectral resolution of 10 nm, and spatial resolubn of 20 meters by
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Figure 2.6: AVIRIS Salinas data set along with the classi caion maps by using L = 128,
U = 256. Upper part: (a), right: original image at 488 nm wavelength with a red rectangle
indicating a sub-scene called Salinas A, left, ground truthmap containing 16 mutually exclusive
land-cover classes. (b) Classication map (OA = 82.55%). (¢ Segmentation map (OA =
91.14%). Bottom part: Photographs taken at the site during data collection.

pixel. For illustrative purposes, Figure 2.7(a) shows the gound-truth map available for
the scene, displayed in the form of a class assignment for dadabeled pixel, with 16
mutually exclusive ground-truth classes. These data, inalding ground-truth information,

are available onliné, a fact which has made this scene a widely used benchmark foesting

the accuracy of hyperspectral data classi cation and segnmation algorithms.

I. Experiments with the full AVIRIS Salinas data set

Table 2.2 reports the segmentation and classi cation scorg achieved for the proposed method
with the full AVIRIS Salinas data set, in which the accuracy results are displayed for di erent
numbers of labeled samples (ranging from 5 to 15 per class) dnconsidering also unlabeled

samples in a range fromU = 0 (no unlabeled samples) toU =2 L. As shown in Table 2.2,

8http://cobweb.ecn.purdue.edu/ biehl/MultiSpec/
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Figure 2.7: AVIRIS Indian Pines scene along with the classication and segmentation maps by
using L = 160, U = 288. (a) Ground truth-map containing 16 mutually exclusiv e land-cover
classes. (b) Classi cation map (OA = 62.98%). (c) Segmentaion map (OA = 74.98%).
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Table 2.2: Classi cation (in the parentheses) and segment@on OAs [%] achieved after applying
the proposed algorithm to the full AVIRIS Salinas data set usng di erent numbers of labeled
training samples (L). The number of unlabeled samplesU is settoU =0;L and 2 L. Each

value of OA reported in the table was obtained with 5 Monte Caro runs.

Number of total labeled samples for all classesL()

80

128

160

192

240

2L

86.74 (80.75)
87.20 (80.98)
87.21 (81.14)

88.94 (81.97)
89.54 (82.39)
89.61 (82.40)

91.30 (84.47)
92.31 (84.85)
92.93 (85.07)

92.22 (84.63)
92.42 (84.81)
92.85 (84.84)

93.87 (85.85)
94.70 (86.21)
95.13 (86.49)

the proposed algorithm obtains very good OAs with limited training samples. Speci cally, with
only 240 labeled pixels (15 per class), the OA obtained is 987% (U = 0), 94.70% (U = L)
and 95.13% (U =2 L), which are better than the best result reported in [109] fora set of
SVM-based classi ers applied to the same scene with a compatively much higher number of
training samples. Speci cally, the SVM classi er in [109] was trained with 2% of the available
ground-truth pixels, which means a total of around 1040 labéed samples (about 65 per class).
The results reported in this work are only slightly lower than those reported in [108] using a
multi-layer perceptron (MLP) neural network classi er, tr ained with 2% of the available ground-
truth pixels, and with multi-dimensional morphological fe ature extraction prior to classi cation
(the maximum OA reported in [108] for the full AVIRIS Salinas scene was 95.27%, but this
result again used a comparatively much higher number of traling samples).

On the other hand, it can also be seen from Table 2.2 that the iolusion of a spatial prior
signi cantly improves the results obtained by using the spectral information only (approximately
in the order of 6% increase in OA). Furthermore, the inclusion of unlabeled samples in the
proposed approach increases the OA in approximately 1% or 2%ith regards to the case in
which only labeled samples are used. The above results comr our introspection (already
reported in the simulated data experiments) that the proposed approach can greatly benet
from the inclusion of a spatial prior and unlabeled samplesn order to increase the already good
classi cation accuracies obtained using the spectral infomation only. Figure 2.6 (b) and (c)

plot the classi cation and segmentation maps. E ective resuts can be seen in these maps.

[I. Experiments with the AVIRIS Salinas A Sub-Scene

In this experiment, we use a sub-scene of Salinas dataset, wh comprises 83 86 pixels and
6 classes. As mentioned above, this sub-scene is known to repent a challenging classi cation

scenario due to the similarity of the di erent lettuce classes comprised by the sub-scene, which

40



Table 2.3: Segmentation OAs [%)] achieved after applying thg@roposed algorithm to the AVIRIS

Salinas A sub-scene using di erent numbers of labeled traimig samples ). The number of

unlabeled samplesU is set in a range betweerlJ =0 and U =5 L. The classi cation results

obtained by the proposed method without the spatial prior are also reported. Each value of OA
reported in the table was obtained with 10 Monte Carlo runs.

L
18 | 30 | 48 | 60

0 93.64| 97.76| 98.00 | 99.68

2L 95.71| 98.45 | 98.76 | 99.68

3L 95.52 | 98.71| 99.40 | 99.58

4L 96.70 | 99.28 | 99.70 | 99.52

5L 96.74 | 99.66 | 99.62 | 99.70
Class.(U=5L) | 90.86 | 95.01| 96.74 | 97.47

are at di erent weeks since planting and hence have similar sectral features only distinguished
by the fraction of lettuce covering the soil in each of the 37 meter pixels of the scene. Table 2.3
reports the segmentation (with spatial prior) scores achiged for the proposed method with the
AVIRIS Salinas A sub-scene, in which the accuracy results a displayed for di erent numbers
of labeled samples (ranging from 3 to 10 per class) and consdng also unlabeled samples in
a range fromU =0 (no unlabeled samples) toU =5 L. The classi cation results (obtained
without using the spatial prior and for U = 5L) are also displayed in Table 2.3. As shown in
Table 2.3, the proposed algorithm achieved a segmentation ® of up to 99.28% forU =4 L
and only 5 labeled samples per class (30 labeled samples intdat). This represents an increase
of approximately 4.27% OA with respect to the same con guraion for the classi er but without
using the spatial prior. These results are superior to thosereported in [109] and [108] for
the classes included in the AVIRIS Salinas A sub-scene usingn SVM-based classi er and an

MLP-based classi er with multi-dimensional morphological feature extraction, respectively.

[1l. Experiments with the AVIRIS Indian Pines data set

Table 2.4 reports the segmentation and classi cation scorg achieved for the proposed method
with the AVIRIS Indian Pines data set, in which the accuracy results are displayed for di erent
numbers of labeled samples ( ranging from 5 to 15 per class) dnconsidering also unlabeled
samples in a range fromU = 0 (no unlabeled samples) toU =32 k, with k=0;1; ;9. Asin
previous experiments, the number of labeled samples in Tabl 2.4 represents the total number

of samples selected across the di erent classes, with apprisrately the same amount of labeled
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samples selected for each class. After a detailed analysi$ the experimental results reported
on Table 2.4, it is clear that the proposed segmentation metbd (with spatial prior) provides

competitive results for a limited number of labeled samples outperforming the same classi er
without spatial prior in all cases by a signi cant increase in OA (the increase is always in the
order of 10% or higher).

Further, the use of unlabeled samples signi cantly increass the OA scores reported for the
proposed segmentation algorithm. Just as an example, if wessume that 8 labeled samples
are used per class, increasing the number of unlabeled sameglfrom 0 to 288 results in an OA
increase of approximately 5%, indicating that the proposedapproach can greatly benet not
only from the inclusion of a spatial prior, but also from the incorporation of an active learning
strategy in order to provide results which are competitive with other results reported in the
literature with the same scene. For instance, the proposed lgorithm yields better results in
terms of OA than the semi-supervised cluster SVMs introducd in [132]. Speci cally, when 128
labeled samples (8 samples per class) are used by our propdseethod, the OA of the proposed
approach is 69.79% |y = 288, obtained by active selection), which is comparable tothe best
result 69.82% reported in [132] (using 519 labeled samples)For illustrative purposes, Figs.
2.7(b) and 2.7(c) show the classi cation and segmentation raps, respectively. These gures
indicate e ective results without severe block artifacts. Notice that the results plotted in Figure
2.6 and Figure 2.7 are obtained with just 8 and 10 samples perlass, respectively. To give an
idea of the quality of this result, we note that the recent sem-supervised technique [132] takes,
approximately, 2 times more training samples to achieve a amparable performance, if we take
into account only classi cation results, and 4 times more, f we use spatial information (see Table
2.4).

At this point, we want to call attention for the \good" perfor mance of the proposed algorithm,
including the active selection procedure, in the four smallsize classes, namely \Alfalfa (54
samples)”, \Grass/pasture-mowed (26 samples)”, \Oats (20samples)", and \Stone-steel towers
(95 samples)". Without going into deep details, this performance is essentially a consequence of
having decent estimates for the regressors given by (2.6), condition without which the active

selection would fail to provide good results [96].

2.7 Conclusions and future lines

In this paper, we have introduced a new semi-supervised clascation/segmentation approach
for remotely sensed hyperspectral data interpretation. Urabeled training samples (selected

by means of an active selection strategy based on the entropgpf the samples) are used to
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Table 2.4: Classi cation (in parentheses) and segmentatio OAs [%] achieved after applying the
proposed algorithm to the full AVIRIS Indian Pines data set using di erent numbers of labeled
training samples (L). The number of unlabeled sampledJ is set in a range betweerlJ = 0 and
U=32 k,with k=0;1, ;9. The classi cation results obtained by the proposed methal
without the spatial prior are also reported. Each value of OAreported in the table was obtained

with 10 Monte Carlo runs.

Number of total labeled samples for all classesL()

80

128

160

192

240

32
64
96
128
160
192
224
256
288

59.09 (52.94)
61.32 (53.07)
59.32 (53.02)
60.37 (52.85)
61.47 (52.87)
60.71 (52.78)
60.40 (52.77)
61.11 (52.72)
61.59 (52.74)
60.71 (52.65)

64.92 (58.65)
65.34 (58.60)
67.47 (58.32)
67.05 (58.25)
67.26 (57.98)
72.14 (57.98)
69.85 (57.96)
67.18 (57.93)
71.33 (57.85)
69.79 (57.94)

70.85 (63.19)
75.60 (63.44)
72.48 (63.33)
74.43 (63.27)
73.92 (63.11)
73.37 (63.01)
73.53 (62.91)
72.14 (62.91)
74.42 (62.82)
73.02 (62.82)

73.88 (66.51)
79.78 (66.44)
75.79 (66.31)
79.11 (66.23)
76.01 (66.15)
78.27 (66.06)
76.83 (65.96)
77.48 (65.99)
73.92 (65.94)
77.16 (65.84)

78.92 (69.09)
76.52 (68.83)
77.47 (68.51)
79.85 (68.42)
75.63 (68.30)
79.10 (68.32)
79.10 (68.22)
78.01 (68.16)
78.15 (68.08)
79.90 (68.04)

improve the estimation of the class distributions. By adopting a spatial multi-level logistic

prior and computing the maximum a posteriori segmentation wth the -expansion graph-cut
based algorithm, it has been observed that the overall segnmgation accuracy achieved by our
proposed method in the analysis of simulated and real hypegectral scenes collected by the
AVIRIS imaging spectrometer improves signi cantly with re spect to the classi cation results

proposed by the same algorithm using only the learnt class diributions in spectral space.
This demonstrates the importance of considering not only spctral but also spatial information

in remotely sensed hyperspectral data interpretation. Theobtained results also suggest the
robustness of the method to analysis scenarios in which lined labeled training samples are
available a priori. In this case, the proposed method resorts to intelligent mehanisms for
automatic selection of unlabeled training samples, thus tiing advantage of an active learning
strategy in order to enhance the segmentation results. A comarison of the proposed method
with other state-of-the-art classiers in the considered (highly representative) hyperspectral
scenes indicates that the proposed method is very competite in terms of the (good) overall
accuracies obtained, and the (limited) number of training samples (both labeled and unlabeled)
required to achieve such accuracies. Further work will be diected towards testing the proposed
segmentation approach in di erent analysis scenarios domiated by the limited availability of

training samples a priori.
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Chapter 3

Hyperspectral Image Segmentation
Using a New Bayesian Approach
with Active Learning

Abstract { This paper introduces a new supervised Bayesian approach tayperspectral image
segmentation with active learning, which consists of two min steps. First, we use a multinomial
logistic regression (MLR) model to learn the class posterio probability distributions. This is
done by using a recently introduced logistic regression viaplitting and augmented Lagrangian
(LORSAL) algorithm. Second, we use the information acquire in the previous step to segment
the hyperspectral image using a multi-level logistic priorthat encodes the spatial information.
In order to reduce the cost of acquiring large training sets,active learning is performed based
on the MLR posterior probabilities. Another contribution o f this work is the introduction
of a new active sampling approach, called modi ed breaking ies (MBT), which provides an
unbiased sampling. Further, we have implemented our propasd method in an e cient way. For
instance, in order to obtain the time-consuming maximuma posteriori segmentation, we use the

-Expansion min-cut based integer optimization algorithm. The state-of-the-art performance
of the proposed approach is illustrated using both simulatd and real hyperspectral data sets in
a number of experimental comparisons with recently introdwced hyperspectral image analysis
methods.

Index Terms { Hyperspectral image segmentation, sparse multinomial loigtic regression,

ill-posed problems, graph cuts, integer optimization, muual information, active learning.

3.1 Introduction

With the recent developments in remote sensing instruments hyperspectral images are now
widely used in di erent application domains [107]. The specal characteristics of hyperspectral

data sets bring di cult processing problems. Obstacles, sih as the Hughes phenomenon [68],
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come out as the data dimensionality increases. These di culies have fostered the development
of new classi cation methods, which are able to deal with illposed classi cation problems. For
instance, several machine learning techniques are applietd extract relevant information from
hyperspectral data sets [19, 30, 36]. However, although mancontributions have been made to
this area, the di culty in learning high dimensional densit ies from a limited number of training
samples (an ill-posed problem) is still an active area of resarch.

Discriminative approaches, which learn the class distribtions in high dimensional spaces
by inferring the boundaries between classes in feature spac[13, 102, 134], tackle e ectively
the above mentioned di culties. Speci cally, support vect or machines (SVMs) [121] are among
the state-of-the-art discriminative techniques that can be applied to solve ill-posed classi cation
problems. Due to their ability to deal with large input spaces e ciently and to produce sparse
solutions, SVMs have been used successfully for supervisadd semi-supervised classi cation of
hyperspectral data using limited training samples [25, 28,34{37, 53, 107]. On the other hand,
multinomial logistic regression (MLR) [16] is an alternative approach to deal with ill-posed
problems, which has the advantage of learning the class prability distributions themselves.
This is crucial in the image segmentation step. As a discrimiative classier, MLR models
directly the posterior densities instead of the joint probability distributions. The distinguishing
features of discriminative classi ers have been reportedr the literature before [13, 102, 118]. For
instance, e ective sparse MLR (SMLR) methods are available n the literature [80]. These ideas
have been applied to hyperspectral image classi cation [1819, 91] yielding good performance.

Another well-known di culty in supervised hyperspectral i mage classi cation is the limited
availability of training data, which are dicult to obtain i n practice as a matter of cost and
time. In order to e ectively work with limited training sampl es, several methodologies have been
proposed, including feature extraction methods such as pricipal component analysis (PCA),
linear discriminant analysis (LDA), discriminant analysi s feature extraction (DAFE), multiple
classi ers and decision fusion [112], among many others [I] Active learning, which is another
active research topic, has been widely studied in the literture [40, 44, 76, 81, 96, 113, 133].
These studies are based on dierent principles, such as the aluation of the disagreement
between a committee of classi ers [133], the use of hierardatal classi cation frameworks [76, 113],
unbiased query by bagging [40], or the exploitation of a lochproximity-based data regularization
framework [44].

In this work, we use active learning to construct small training sets with high training utility,
with the ultimate goal of systematically achieving noticeable improvements in classi cation

results with regards to those found by randomly selected trining sets of the same size. Since
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active learning is intrinsically biased sampling, an issudo be investigated in our experiments is
whether the considered classi er (in this work, the MLR) would be able to cope with the class
imbalance problem that might be inferred during the active learning strategy. Another trend
to improve classi cation accuracy is to integrate spatial contextual information with spectral
information for hyperspectral data interpretation [19, 53, 107, 130]. These methods exploit, in
a way or another, the continuity (in probability sense) of neighboring labels. In other words, it
is very likely that, in a hyperspectral image, two neighboring pixels have the same label.

In this chapter, we introduce a new supervised Bayesian segemtation approach which ex-
ploits both the spectral and spatial information in the inte rpretation of remotely sensed hyper-
spectral data sets. The algorithm implements two main steps (a) learning stage, using the
multinomial logistic regression via variable splitting and augmented Lagrangian (LORSAL)[12]
algorithm to infer the class distributions; (b) segmentation stage, which infers the labels from a
posterior distribution built on the learnt class distribut ions and on a multi-level logistic (MLL)
prior [93]. The computation of the maximum a posteriori (MAP) segmentation amounts at
maximizing the posterior distribution of class labels. This is a hard integer optimization prob-
lem, which we solve by using the powerful graph-cut based -Expansion algorithm [22]. It yields
exact solutions in the binary case and very good approximatins when there are more than two
classes. Furthermore, we aim at signi cantly exploiting the e ciency of the labeled samples
by means of active learning, thus reducing the size of the ragred training set and taking full
advantage of the MLR posterior probabilities. In this work, di erent strategies are used to im-
plement active learning in addition to random sampling (RS): (a) the mutual information (Ml)
between the MLR regressors and the class labels[81, 96]; (B)criterion called breaking ties (BT)
[95]; and (c) our proposed version called modi ed breaking ies (MBT), which is also intended
to guarantee unbiased samplings among the classes.

The remainder of the chapter is organized as follows. Sectin 3.2 formulates the hyper-
spectral image segmentation problem. Section 3.3 describeéhe proposed approach. Section 3.4
presents the active learning algorithms considered in thisvork. Section 3.5 reports segmentation
results based on both simulated and real hyperspectral datsets in several ill-posed scenarios.
Comparisons with state-of-the-art algorithms are also induded and thoroughly described in this
section. Finally, Section 4.5 concludes with a few remarksrad hints at plausible future research

lines.
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3.2 problem formulation

available labeled samples. With the above de nitions in place, the goal of classi cation is to
assign a labely; 2 L to each pixeli 2 S, based on the vectorx;, resulting in an image of class
labelsy. We call this assignment alabeling On the other hand, the goal of segmentation is to
compute, based on the observed image, a partition S = [ ;S; of the setS such that the pixels in
each element of the partition share some common properties.é., they represent the same type
of land cover). Notice that, given a labelingy, the collection Sy = fi 2Sjy; = kgfork 2L ,isa
partition of S. Also, given the segmentationS for k 2 L, the imagefy;jy; = k if i 2 Si; i 2 Sg
is a labeling. Therefore, we can assume that there is a one-tane relationship between labelings
and segmentations. Nevertheless, in this paper we will refdo the term classi cation when there
is no spatial information involved in the processing stagewhile we will refer to segmentation
when the spatial prior is being considered.

In a Bayesian framework, inference is often carried out by maimizing the posterior distri-

bution:

p(yix) /' p(xjy)p(y); (3.1)

wherep(xjy) is the likelihood function (i.e., the probability of the feature image given the labels)
and p(y) is the prior over the labels iny. Assuming conditional independency of the features
given the labels,i.e., p(xjy) = Q:iln p(Xxijyi), the posterior p(yjx) may be written as a function

of y as follows:

: 1 :
X) = —p(x
p(yix) p(x)p( iy)p(y) .
N oeyix: :
p(YijXi)
= X ’
( )i=l o(y) p(y)
where (x) Q:iln p(x;)=p(x) is a factor not depending ony. The MAP segmentation is then
given by:
(s | )
b=arg max (log p(yijxi) logp(yi)) +log p(y) : (3.3)

i=1
In the present approach, the densitiesp(yijx;j) are modeled as MLRs [16], whose regressors

are learnt via the LORSAL algorithm [12]. As prior p(y) on the labelings, y, we adopt an

MLL Markov random eld (MRF) [93], which encourages neighboring pixels to have the same

label. The MAP labeling/segmentation ¥ is computed via the -Expansion algorithm [23], a
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min-cut based tool to e ciently solve a class of integer optimization problems of which the MAP

segmentation in Eq. (3.3) is an example.

3.3 Proposed approach

As mentioned in the previous section, in this work we model tle posterior densitiesp(yijx;)

using a MLR, which is formally given by [16]:

_ exp( h(x;)
" K exp(t Oh(x))’

p(yi = Kjxi;!) (3.4)
whereh(x)  [h1(x);:::h(X)]T is a vector ofl xed functions of the input, often termed features
and! ! @7; 1 GOTT denotes the logistic regressors. Since the density in Eq. @ does
not depend on translations of the regressors (X), we take! (K) = 0 and remove it from! , i.e.,

Lo @y (K DT

It should be noted that function h may be linear, i.e., h(xj) = [1; Xi.1; :::;xi;d]T, where Xi;

is the j-th component of x;. Alternatively, h can also be nonlinear. For the nonlinear case,
kernels are a relevant example and can be expressed Iy(xi) = [1;Ky, x5 Ky, x,]T, where
Kxix;  K(Xi;xj)and K(; ) is some symmetric kernel function. Kernels have been largg used
in this context because they tend to improve the data separablity in the transformed space. In
this paper, we present results only for the Gaussian Radial Bsis Function (RBF) kernel, given
by K(x;z) = exp( kK x zk?®=2 2)). The RBF kernel has been widely used in hyperspectral
image classi cation [28]. If we denote by the dimension ofh(x), then we have = d+1 for
the linear case and = L +1 for the RBF kernel (recall that L is the number of samples in the
training set D). In addition to the Gaussian RBF kernel, we have consideredther alternative
kernels such as the polynomial one. However, we have experantally tested that the results
obtained are very similar in both cases. Hence, in the follomg we adopt the Gaussian RBF

kernel as a baseline for simplicity.

3.3.1 LORSAL

In our context, learning the class densities amounts to esthating the logistic regressors! .
Following the principles of the SMLR algorithm [80], the estimation of | amounts to computing

the MAP estimate:
b =argmax (! )+log p(! ); (3.5

49



where " (! ) is the log-likelihood function given by:

() log  p(yijxi:! ); (3.6)

and
p(! )/ exp( k! kq) (3.7)

is a Laplacian prior promoting the sparsity on! (k! k; denotes thel; norm of ! ) with  acting
as a regularization parameter. The priorp(! ) forces many components ol to be zero. Thus,
the Laplacian prior selects just a few kernel functions. Thesparseness imposed on the regression
vector controls the MLR classi er complexity and, consequetly, enhances its generalization
capacity.

Solving the convex problem in Eqg. (3.5) is di cult because the term (! ) is non-quadratic
and the term logp(! ) is non-smooth. A majorization-minimization framework[69] has recently
been used in [80, 81, 89, 91] to decompose the problem in Eq..53into a sequence of quadratic
problems. The computational cost of the SMLR algorithm used for solving each quadratic
problem is O(( K )3), which is prohibitive when dealing with datasets with a large number of
features, with a large number of classes, or both. The fast gyse multinomial logistic regression
(FSMLR) [18] estimates the sparse regressors in an e cient \@y by implementing a block-based
Gauss-Seidel iterative procedure to calculaté . This procedure is on the order ofK 2 faster than
the original SMLR algorithm. Thus, the FSMLR algorithm exte nds the capability of SMLR to
handle data sets with a large number of classes. However, witan overall complexity of O( 3K),
the complexity of FSMLR is still unbearable in many cases, inparticular, for hyperspectral data
sets with high-dimensional features.

In this paper, we resort to the recently introduced LORSAL algorithm [12] to learn the MLR
regressors given by Eq. (3.5). By replacing the log(! ) in Eqg. (3.5) with log p( ), approximating
(! ) with a quadratic majorizer, and introducing the constraint ! = , the LORSAL algorithm
replaces a di cult non-smooth convex problem with a sequene of quadratic plus diagonall;-1;
problems which are easier to solve. For additional detailsee the Appendix located at the end of
this paper. In practice, the total cost of the LORSAL algorit hm is O( 2K ) per iteration, which
contrasts with the O(( K )3) and O( 3K ) complexities of SMLR and FSMLR, respectively. As

a result, the reduction of computational complexity is on the order of K 2 and , respectively.
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3.3.2 The multi-level logistic (MLL) spatial prior

In order to encourage piecewise smooth segmentations andgmote solutions in which adjacent
pixels are likely to belong to the same class, we include spiat-contextual information in our
proposed method by adopting an isotropic MLL prior to model the image of class labely. This
prior, which belongs to the MRF class, is a generalization othe Ising model [58] and has been
widely used in image segmentation problems (see.g., [19, 89, 91, 92)).

According to the Hammersly-Cli ord theorem [10], the density associated with an MRF is
a Gibbs' distribution [58]. Thus, the prior model has the structure:

I

1 Ve(y)
ply) = - € c2C ; (3.8)

X

where Z is a normalizing constant for the density, the sum in the expment is over the so-called

prior potentials V¢(y) for the set of cliquesC over the image, and:

yi» if jg =1 (single clique)

Ve(Y)= _ o ifjg> 1 and8ij2qyi = Y (3.9)

VWAV AW 00

o ifjg>1and9acyi 6 Y;;

where . is a hon-negative constant.

The potential function in Eg. (3.9) encourages neighbors tohave the same class label. The
considered MLL prior o ers great exibility in this task by va rying the set of cliques and the
parameters y, and .. For example, the model generates texture-like regions if . depends onc
and blob-like regions otherwise [93]. The single clique ten , determines the marginalsp(y;),
i.e., the prior class distributions. In this work, we assume equprobable classes and this implies
that , is constant. We note, however, that any other distribution can be modeled by a suitable
choice of the term y,. Then Eq. (3.8) can be rewritten as:

X
1 i )
p(y)= e "9 ; (3.10)

where (y) is the unit impulse function. This choice gives no preferege to any direction. Notice
that the pairwise interaction terms (y; y;) attach higher probability to equal neighboring
labels than the other way around. In this way, the MLL prior pr omotes piecewise smooth

segmentations, where controls the degree of smoothness.
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3.3.3 Computing the MAP estimate via graph-cuts

Using the LORSAL algorithm to learn p(yijx;) and the MLL prior p(y), and according to Eq.
(3.3), the MAP segmentation is nally given by:
8 9
<X X =
b = argmin logp(yijb) Vi ¥). (3.11)
Y2L" - igs ij 2C ’
where p(y;jb)  p(yijxi;! ), computed at b. Minimization of Eq. (3.11) is a combinatorial
optimization problem involving unary and pairwise interaction terms, which is very di cult to
compute. Recently developed energy minimization algoritins like graph-cuts [22, 23, 79], loopy
belief propagation [141, 142], and tree-reweighed messapgassing [78] are e cient tools to tackle
this class of optimization problems. In this work, we use the -Expansion algorithm [23] to solve
our integer optimization problem [4]. This algorithm yield s very good approximations to the
MAP segmentation and is quite e cient from a computational p oint of view, being the practical
computational complexity of this algorithm O(n). The pseudo-code for the proposed supervised

segmentation algorithm with discriminative class learning and MLL prior is shown in Algorithm

3.1.

Algorithm 3.1  Supervised segmentation algorithm (LORSAL-MLL)
Require: D, ,

1: b :=LORSAL(D.;; )

2P = p(xi;bh),i2S

3 p= -Expansion(b; )

3.3.4 Overall complexity

The overall complexity of our proposed approach is dominatd by the supervised learning of the
MLR regressors through the LORSAL algorithm, shown in Algorithm 3.4 (see Appendix), which
has a complexity of O( ?K), and by the -Expansion algorithm used to determine the MAP
segmentation, which has a practical complexity ofO(n). In conclusion, if 2K n (e.g., h(x)
are kernels and the number of classes is large), then the algdhm's complexity is dominated by
the computation of the MLR regressors, whereas if 2K n, then the algorithm's complexity

is dominated by the = Expansion algorithm.

3.4 Active learning

In this work, we use active learning to reduce the need for lage amounts of labeled samples.

The basic idea of active learning is to iteratively enlarge he training set by requesting an expert
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to label new samples from the unlabeled seftx;;i 2 Sygin each iteration, where Sy is the set of
unlabeled feature vectors,.e., spectral vectors in the observed context. The relevant qustion is,
of course, what vectors inSy are most informative and should be chosen as new samples. lhis
paper, we take advantage of the MLR model, which provides theexact posterior probabilities.
Therefore, three di erent sampling schemes, based on the sgtral information (more speci cally,
on the MLR posterior probabilities just provided by the LORS AL algorithm) are implemented:
(a) Ml-based criterion [81, 96]; (b) BT algorithm [95]; and (c) our proposed MBT scheme.

3.4.1 Ml-based active learning

The rst active learning scheme considered is an Ml-based dterion [81, 96] that maximizes the
mutual information between the MLR regressors and the clasdabels. Let I(! ;y;jX;) denote
the Ml between the MLR regressors and the class labe};. Following [96], the new vectorx; is
selected according to:

M =arg m

1 "v.ix: )"
Xi;géu 1Y yiixi); (3.12)

where (see [96] for more details)
I(! 5 yijxi) = (1=2)log(HM j=H): (3.13)
Here, H is the posterior precision matrix, i.e., the Hessian of minus the log-posterior [131]
H r 2( logp(bjDL));

and HM! is the posterior precision matrix after including the new sanple x;. In the proposed
approach, we use a Laplacian approximation of the posterioto model p(! jD.), such that
p(! iDL) "N (! jb;H 1), which assumes that the MAP estimate b remains unchanged after
including the new sample. If the size of the initial training sample is \small", this assumption
may not hold at the beginning of the active learning procedue. Nevertheless, it has been
empirically observed that it leads to a very good approximaion [81, 88]. Under this assumption,

we can computeHM' as follows:
HM = H + diag(pi(b)) pi(b)pi(b)T  h(x)h(xi)T; (3.14)

wherepi(b)  [pis::npik 1T, Pk P(Yi = Kjxi;b) for k=1;:::;K, and is the Kronecker
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Figure 3.1: Graphical illustration of the MI, BT and MBT acti ve learning approaches using a
toy example.

product. Therefore, Eq. (3.13) turns to:

I(! yijxi) = (1=2)log 1+ Y Pk X{H i (3.15)
k=1
According to Eq. (3.15), the function in Eq. (3.12) is maximized forp;x 1=K, i.e., for samples
near the boundaries among classes and corresponding to pralility vectors p; with maximum
entropy. This situation is graphically illustrated in Figu re 3.1, in which a toy example with four
simulated regions is used for demonstration purposes. As skvn by Figure 3.1, the MI focuses

on the most complex area (boundary between the four regions)

3.4.2 BT active learning
The BT active learning algorithm [95] was proposed to achiee diversity in the sampling, thus
alleviating the bias in the MI-based sampling. The decisioncriterion is:

BT — i = Kix = Kix - :
k™ =arg min - maxplyi = kixi; b) - max, PO = kixi; b) (3.16)

wherek™ = arg max p(y; = kjxj; b) is the most probable class for sample;.
Other than the MI-based criterion, which focuses on the mostcomplex regions (i.e, regions
with the largest number of boundaries), the BT criterion focuses on the boundary region between

two classes, with the goal of obtaining more diversity in thecomposition of the training set. In
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spite of the better performance generally expected from theBT criterion with respect to the
Ml-based one, it may still produce biased sampling, namelywhen there are many samples
located close to a boundary. This can be seen in Figure 3.1, vidh illustrates how the BT
criterion generally focuses on the boundaries comprising emy samples, possibly disregarding
boundaries with fewer samples but which may be crucial for tle learning procedure needed to
train discriminative classi ers. In the following subsection, we propose a new modi ed scheme

(called MBT) which promotes even more diversity in the samping process.

3.4.3 MBT active learning

Foragivenb ands2L, let Sy, S y be the set of pixels such thatp(y; = sjxi; b) p(yi =

kjxi; b), for i 2 Sy, and k 8 s. Then, the MBT criterion simply works as follows:

do
S = next class

select Sy, (3.17)

MBT — . = kix: .
b' arg Xi; izsri?)k(ZLnf sg p(yl kJXI ’ b)1

while stop rule

where the \next class" is chosen by scanning the index set in a cyclic fashion. We highlight
the following two characteristics of the MBT criterion in Eq . (3.17), both intended to promote

diversity in the selection process as compared with the BT dterion:

By cyclically selecting subsets ofSy containing the pixels with the same MAP label, it is

assured that the MBT criterion does not get trapped in any class.

The step max. n sgP(Yi = KjXi; b) tends to select new samples away from complex areas.
As shown by Figure 3.1, the main advantage of the proposed MBTwith regards to other
active learning approaches such as Ml or BT is that the formemethod takes into account
all the class boundaries which are crucial to the learning pocedure when conducting the
sampling, whereas MI mainly focuses on the most complex areand BT may get trapped

in a single boundary.

After having presented the three sampling methods considexd in this work: MI, BT and
MBT, it is now important to emphasize that Egs. (3.12), (3.16) and (3.17) assume that only
one sample is labeled at each iteration. However, in practie we consideru > 1, i.e., we label
more than one sample per iteration. LetDy, f (X1;y1);:::;(Xu;Yu)g be the new labeled set.

For the MBT sampling, we adopt a two-step scheme. First, rourd(u=K) + 1 new samples per
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class are selected according to Eq. (3.17), where functioround() simply rounds toward the
nearest integer value. Second, we run Eq. (3.16) to select &u most informative samples for the
recently obtained set. For binary classi cation problems, the MI, BT and MBT strategies can
be considered equivalent since they lead to exactly the sameew labeling for any u. However,
for multi-class problems the three considered strategies ay lead to di erent labelings. In turn,
when u is very small the performance of BT and MBT becomes similar.

To conclude this section, Algorithm 3.2 shows the pseudo-ate of the LORSAL algorithm
using active learning (called LORSAL-AL), where 0 is the augmented Lagrangian LORSAL
parameter (see Appendix). Finally, the supervised segmeition algorithm with active learning

(called LORSAL-MLL-AL) is shown in Algorithm 3.3.

Algorithm 3.2  LORSAL using active learning (LORSAL-AL)
Require: b, D, Sy, u, ,

1: repeat

2. Dy = AL( b; Sy) (function AL( ) is one of the sampling methods: RS, MI, BT and
MBT.)

3 DL =D+ Dy

4 Sy:=Sy f L1:::;ug

5 b:=LORSAL(D.;; )

6: until some stopping criterion is met

Algorithm 3.3  Supervised segmentation algorithm using active learningl(ORSAL-AL-MLL)
Require: b, Sy, D., u, ,

1: repeat

2. Dy:=AL(b; Su)

3: DL =D+ Dy

4 Sy:=Sy f L:::;ug

5 b :=LORSAL(D.;; )

6: until some stopping criterion is met
7: 9= -Expansion(P; )

3.5 Experimental results

In this section, we evaluate the performance of the proposedlgorithm using both simulated
and real hyperspectral data sets. The main objective of the xperimental validation with sim-
ulated data sets is the assessment and characterization ohé algorithm in a fully controlled
environment, whereas the main objective of the experimentavalidation with real data sets is
to compare the performance of the proposed method with that eported for state-of-the-art
competitors in the literature.

It should be noted that, in all of our experiments, we apply the Gaussian RBF kernel

56



to a normalized version of the input hyperspectral data. Alternative experiments have been
conducted with other kernels, such as the polynomial one, dhining very similar results. The
scale parameter is set to a xed value = 0:6, as we have empirically proved that this setting
leads to good characterization results. Another reason ishtat we have not observed signi cant
improvements for small variations of . In the following, we assume thatD; denotes the initial
labeled set, which is a subset of the available training setand that L; denotes the number of
samples (recall that L denotes the total number of labeled samples). In practice, & assume
that the initial training samples for each class are uniformly distributed. Concerning the smaller
classes, if the total labeled samples of cladsin the ground truth image, say L, is smaller than
L=K , we take L (=2 as the initial number of labeled samples. In this case, largy classes have more
samples. In all cases, the reported gures of overall accuy (OA) are obtained by averaging
the results obtained after conducting 10 independent MonteCarlo runs with respect to Dy ;.

The remainder of the section is organized as follows. Secti03.5.1 reports experiments with
simulated data, with Subsection 3.5.1.1 conducting an evalation of the LORSAL algorithm,
Subsection 3.5.1.11 evaluating the impact of the spatial pior, and Subsection 3.5.1.111 evaluating
the impact of the active learning approaches. Section 3.5.2valuates the performance of the
proposed algorithm using four real hyperspectral scenes tiected by the Airborne Visible Infra-
Red Imaging Spectrometer (AVIRIS), operated by NASA Jet Propulsion Laboratory, and by the
Re ective Optics Imaging Spectrometer System (ROSIS), opeated by the German Aerospace
Agency (DLR).

3.5.1 Experiments with simulated data

In our simulated data experiments, we generate images of labds denoted byy 2 L ", sampled

from a 128 128 MLL distribution with = 2. The feature vectors are simulated according to:
Xi=my +nj; 12S; Yy 2L, (3.18)

where x; 2 RY denotes the spectral vector observed at pixel, my, denotes a set ofK known
vectors, and n; denotes zero-mean Gaussian noise with covariancél, i.e., nj N (0; 2I). In
Subsections 3.5.1.1 and 3.5.1.11 we will not consider the diwve learning procedure (.e., L = L;)
because our focus in these two subsections will be on analyg the competitiveness of the
LORSAL algorithm and on evaluating the role of the spatial prior independently of the active
learning mechanism, respectively. In both cases, the traimg set D, is a subset of the ground-
truth image, whereas the remaining samples are consideredsahe test set. Finally, Subsection

3.5.1.1ll analyzes the impact of including the active learring mechanism in the proposed method.
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We would like to state that, in these experiments, the initial labeled setD_ ; is randomly selected
from the ground-truth image, whereas the remaining samplesare considered as the validation
set. At each iteration of the active sampling procedure, thenew setD,, is actively selected from
the test set. This is a sub-optimal procedure for the evaluaion of the accuracies. However, in
these experiments, the maximum training set used is made upfB0 samples, which represents
only 0.49% of the whole image. According to this, we believehat the active learning process
would not be harmful to the evaluation of the accuracy in our proposed setting. Therefore, we
do not separate the training and test sets, which also guaraees that the test set remains as
large as possible. In the real image experiments, we comphdy separate the training and test

sets.

|. Evaluation of the LORSAL algorithm

In this subsection, we generate the simulated hyperspecttalata according to the model in Eq.

Geological Survey (USGS) digital spectral library with d =224, K =10; L =1000, and =1.

In our rst experiment, we illustrate the computational e ¢ iency of the LORSAL algorithm.
Figure 3.2 represents the log-posterior (! ) k! ki as a function of the computation time for
LORSAL, FSMLR, and SMLR algorithms (implemented in Matlab) . As it can be seen in Figure
3.2, LORSAL is by far the fastest algorithm. For a similar log-posterior, the LORSAL algorithm
took about 2 seconds in a desktop PC with Intel Core 2 Duo CPU at2.40 GHz and 4 GB of
RAM memory, while the FSMLR and SMLR algorithms took, respedively, around 48 and 880
seconds in the same computing environment.

As already mentioned, the regularization parameter in Eq. (3.7) controls the sparseness of
the regressors, which is essential to the generalization pacity. However, an inappropriate value
of may lead to over tting or under tting scenarios. In practic e, we estimate by using cross-
validation sampling [77] over the initial training set. Nevertheless, in our second experiment we
conduct an analysis of the impact of on the achieved performance. Let =100 nn'_o% where
n; and n,, denote the number of components and zeros it , respectively. Figure 3.3 shows
the OA and as a function of , for 10 ? 30. The impact of on the sparsity of ! is
clear. The higher values of OA are obtained for 2 [2;10] corresponding to levels of sparsity

2 [50; 60]%.
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Figure 3.2: Evaluation of the log-posterior in Eq. (3.5) as afunction of the computing time
(measured in a desktop PC with Intel Core 2 Duo CPU at 2.40 GHz ad 4 GB of RAM memory)
for LORSAL, FSMLR, and SMLR algorithms.
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the regularization parameter: |

Figure 3.3: Evaluation of the impact of the regularization parameter, , on the overall accuracy,
OA, and on the level of sparsity, .
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(a) Ground-truth (b) Classi cation map (c) Segmentation map

Figure 3.4: Classi cation and segmentation results obtaired with the proposed algorithm. The
simulated data set was generated according to Eq. (3.18) witd = 500 and =1:5, =2.
(a) Simulated binary map; (b) Classi cation map produced by the LORSAL algorithm using
L =100 labeled samples without active learning (OA=60.13%, with OA ¢ = 71:91%, see text),
(c) Same as (b) but using the MLL spatial prior (OA=92.48%).

Il. Impact of the spatial prior

In this experiment, we analyze the impact of the spatial priac on the segmentation accuracy

in a binary problem, i.e., with K = 2. The feature vector is settom; = ; , wherek k=1
and ; = 1. Animage of class labelsy generated according to the MLL prior in Eq. (3.18)
is shown in Figure 3.4(a), where the labelsy; = 1;2 correspond to ; = 1;+1, respectively.

In this problem, the theoretical OA, given by OAqy,  100(1 Pe)% and corresponding to the

minimal probability of error [49] is:
Pe = %erfc }p% Po + %erfc }pz—o P1; (3.19)

where erfc is the complementary error function, ¢ = ( 2=2)In(po=p1) and po and p; are the
a priori class label probabilities. Usually, model parameters are stimated by cross-validation.
However, in this work we concluded empirically that 2 [2;6] yields almost optimal results.
In order to reduce computational e ciency, we have not applied cross-validation to derive the
optimal value of this parameter. The aforementioned obseration is illustrated in Figure 3.5

where we studied he impact of the spatial prior. Here, Figure3.5(a) illustrates the OA results
as a function of . For the considered problem, with 2 6, the LORSAL-ALL algorithm

obtained good segmentation results. It should be noted thatlO independent Monte Carlo runs
were conducted in these experiments and we report only the naen scores obtained. The following

conclusions may be drawn from Figure 3.5:

The best overall results are obtained by the proposed segmation algorithm (in all cases,
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the classi cation accuracies and the values of Ogy are higher). This con rms our intro-
spection that the inclusion of a spatial prior can signi cantly improve the classi cation
results provided by using only spectral information, even ér very noisy scenarios [see

Figure 3.5(b)].

The classi cation OA approaches the optimal value OAqp; as the number of labeled samples
increases [see Figure 3.5(c)]. However, the number of laleel samples needs to be relatively

high in order to obtain classi cation accuracies which are tose to optimal.

For a xed number of training samples, the classi cation accuracy of our proposed method
decreases as the number of bands increases [see Figure 3p(d his is not surprising in
light of the Huges phenomenon. On the contrary, after includng the spatial prior our
supervised segmentation algorithm performs very well evemwith small training sets and a

large number of bands.

To give a broad picture of the good performance of the proposk algorithm, we nally
illustrate the LORSAL classi cation and LORSAL-MLL segmen tation maps in Figs. 3.4(b) and
(c) for a problem with  =1:5 andd =500 using L =100 and = 2. Clearly, the inclusion of

the spatial prior yields, as expected, much better results.

I1l. Impact of the active learning approach

In this subsection we analyze the impact of the considered sapling strategies on our proposed
approach. To do so, a new simulated hyperspectral data set igenerated according to the model
in Eq. (3.18), with K =4, = 0:8, and vectorsmy, obtained from the USGS library with

d = 224. Figure 3.6 reports the learning results over 100 indepndent Monte Carlo runs, where
we consider three di erent experiments: (a) OA results as a function of L by usingL; = u= L=2;
(b) OA results as a function of L; by usingL =60 and u= L L;; and (c) OA results as a
function of u by using L = 60 and L; = 20 (5 samples per class). Several conclusions can be

obtained from the results reported in Figure 3.6:

First of all, the active learning procedure improves the segentation results as expected.

In general, the MBT strategy achieves the best performance.

Second, as already discussed in Section 3.4, with a smallboth MBT and BT lead to very

similar results.

Furthermore, the results obtained by the Ml sampling are highly dependent on the size of

u. For a small size ofu (such asu <L ;) good results are obtained,e.g. see Figure 3.6(c).
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Figure 3.5: OA results obtained by the proposed algorithm: &) As a function of the spatial
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However, for a large value ofu, the Ml sampling leads to results which are even worse
than random selection. This is because the Ml sampling focles on the most complex area.
Thus, with a large value of u the new predictions are concentrated in a most complex area

which leads to poor generalization ability of the regressas.

Finally, the improvements in performance due to active leaning are less relevant as the size
of the training set increases.e.g. see Figure 3.6(a). This is expected, since the uncertainty

in the determination of classi er boundaries decreases ashe training set size increases.

3.5.2 Experiments with real data sets

In this section, four real hyperspectral data sets are usedd evaluate our algorithm. The rst
one is the well-known AVIRIS Indian Pines scene, collected v@r Northwestern Indiana in June
1992 [85]. The scene is available onlifeand contains 145 145 pixels and 224 spectral bands
between 04 and 25 microns. A total of 20 spectral bands were removed prior to xperiments due
to noise and water absorption in those channels. The groundruth image displayed in Figure
3.7(a), contains 16 mutually exclusive classes, 7 of which eve discarded for their small size
which resulted in insu cient training samples. The remaini ng 9 classes were used to randomly
generate a set of 4757 training samples, with the remaininganples (4588) used for testing
purposes.

In addition to the AVIRIS Indian Pines scene, we have also useé three ROSIS hyperspectral
data sets collected over the town of Pavia, Italy. The data sés consist of 115 spectral bands
between 04 and 1:0 microns. Three di erent subsets of the full data set are conglered in our

experiments:

Subset #1, with 492 1096 pixels in size, collected over Pavia city center. The risy
bands were removed yielding a dataset with 102 spectral barsd The ground truth image

contains 9 ground-truth classes, 5536 training samples, ah103539 test samples.

Subset #2, with size of 610 340 pixels, centered at the University of Pavia in Italy. The
noisy bands were removed yielding 103 spectral bands. The gund truth image in Figure

3.8(a), contains 9 ground-truth classes, 3921 training saples, and 42776 test samples.

Subset #3 includes a dense residential area, with 715 1096 pixels. The ground-truth

image contains 9 ground-truth classes, 7456 training sampbk and 148152 test samples.

Lhttps://fengineering.purdue.edu/  biehl/MultiSpec/
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Figure 3.6: Segmentation results obtained by using activedarning approaches.
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Figure 3.7: Classi cation maps by usingL = 475; L; = 235; u = 60. (a) Ground truth. (b)
LORSAL-AL (RS), OA = 84.24%. (c) LORSAL-AL (MBT), OA = 86.38% . (d) LDA-AL (RS),
OA = 69.35%. (e) LDA-AL (MBT), OA=70.83%. (f) SVM (RS), OA=80 .43%. (g) PCA+SVM
(RS), OA=76.32%.
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Figure 3.8: Classi cation and segmentation maps obtaineddr the ROSIS subset #2 by using the
whole training set (L=3921). (a) Ground truth. (b) LORSAL, O A=80.24%. (c) LORSAL-MLL,
OA=86.72%. (d) LDA, OA=73.45%. (e) LDA-MLL, OA=80.67%.
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Table 3.1: Algorithms tested with each considered hyperspetral data set, where classi cation
algorithms only use the spectral information and segmentabn algorithms integrate both spectral
and spatial information. The number of features extracted pior to classi cation are given in
the parentheses.

Algorithm Feature extraction Indian Pines | Subset #1 | Subset #2 | Subset #3
LORSAL-AL No Yes Yes Yes Yes
LDA-AL HySi Yes (12 Y Yes (7 N

Classi cation ySime es (12) es (5) es (7) °

SVM No Yes Yes No No

PCA+SVM PCA Yes (31) Yes (30) No No

. LORSAL-AL-MLL No No No Yes Yes
Segmentation .

LDA-AL-MLL HySime No No Yes (7) No

Table 3.2: Parameter settings in our experiments with real lyperspectral data sets. For Subset

#1, we only run classi cation experiments therefore no is used.
Dataset | Indian Pines | Subset #1 | Subset #2 | Subset #3
0.001 0.001 0.001 0.001
4 - 2 1

In our experiments, we compare our proposed approach with LB [13] and SVMs [28], using
feature extraction based on PCA [49] and hyperspectral sigal identi cation by minimum error
(HySime) [11]. This is because LDA requires that the number blabeled samples be larger than
the dimensionality of the input features. In the case of SVM,we use PCA for feature extraction,
as it is common practice in other studies; whereas in the casaf LDA, we use HySime as di erent
feature extraction strategy which e ciently estimates the subspace. In summary, Table 3.1 shows
the di erent classi cation and segmentation algorithms considered in our real data experiments,
where LDA-AL and LDA-AL-MLL integrate the standard LDA clas si er and MLL spatial prior
with the proposed active learning approaches. We would alstike to emphasize that, in the real
image experiments, no cross-validation is performed. Tal@l 3.2 shows the parameter used for
each data set. Although these parameter settings may be subptimal, we have experimentally
tested that they lead to good results for each classi er as iwill be shown in experiments. Finally,
it is also worth noting that, in all experiments, all considered algorithms use exactly the same
training sets when there is no active sampling strategy appéd. Also, they all share the same

initial training sets when active sampling is considered.
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Figure 3.9: OA results as a function of the number of labeled amples for the AVIRIS Indian
Pines data set.

Experiment 1: AVIRIS Indian Pines Data Set

Our rst experiment with the AVIRIS Indian Pines data set is i ntended to illustrate the con-
tribution of the spatial prior. For this purpose, Figure 3.9 plots the obtained OA results as a
function of the number of labeled samples after 10 Monte Cad runs (without active sampling).
Here, the training samples are randomly selected from the dginal training set. From the results
reported in Figure 3.9 we can observe that, by including the patial prior, the LORSAL-MLL
algorithm greatly improves the classi cation results obtained by the LORSAL algorithm which
only uses the spectral information.

In a second experiment, we evaluate the performance of the pposed MLR-based classi ca-
tion algorithms by using training sets made up of 5% (237 samies), 10% (475 samples) and 25%
(1189 samples) of the original training data. Table 3.3 show the classi cation results obtained
after 10 Monte Carlo runs, along with those provided by SVMs aad LDA. From Table 3.3, it
can be observed that the proposed MLR-based algorithms obia good results when compared
to other methods. As expected, the proposed active learningprocedure improves the learning
results. For illustrative purposes, the e ectiveness of theproposed method with the AVIRIS
Indian Pines scene is further illustrated in Figure 3.7 in whch classi cation maps obtained are

displayed along with their associated OA scores.
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Table 3.3: OA [%] and

statistic (in the parentheses) obtained with the proposed dgorithm
(using di erent sampling schemes) as a function of the numbenpf labeled samples for the AVIRIS

Indian Pines data set. For comparative purposes, results vthh LDA and SVMs (with and without
PCA-based feature extraction) are also included.

Training set LORSAL-AL LDA-AL SVMs | PCA+SVM
L L u RS Ml BT MBT RS M BT MBT RS RS
037 | 117 | 30 | 8065 | 8156 | 8260 | 8280 | 64.88 | 66.34 | 66.14 | 66.22 | 74.42 71.30
©.77) | (0.78) | (0.80) | (0.79) | (0.59) | (0.61) | (0.60) | (0.59) | (0.70) (0.67)
75 | 235 | o | 8456 | 87-28 | 87.54 | 87.35 | 69.63 | 7197 | 71.68 | 70.65 | 80.06 78.36
(0.82) | (0.85) | (0.85) | (0.84) | (0.65) | (0.67) | (0.67) | (0.64) | (0.77) (0.74)
1189 | 597 | 14g | 8845 | 9131 | 9137 | 90.56 | 73.20 | 75.43 | 76.05 | 76.01 | 86.96 84.62
0.87) | (0.90) | (0.90) | (0.89) | (0.69) | (0.71) | (0.72) | (0.69) | (0.85) (0.81)

Table 3.4: OA [%] and

denotes the number of labeled samples per class.

statistic (in the parentheses) for the ROSIS subset #1, whee L)

L) 10 20 40 60 80 100

Training set L; 45 90 180 270 360 450

per class u 9 18 36 54 72 90
LORSALAL RS | 95.13 (0.92) | 96.29 (0.94) | 96.91 (0.95) | 97.07 (0.95) | 97.37 (0.95) | 97.49 (0.96)
MBT | 96.14 (0.93) | 96.74 (0.94) | 97.34 (0.95) | 97.67 (0.96) | 97.87 (0.96) | 97.95 (0.96)
LDAAL RS | 93.55 (0.89) | 95.59 (0.92) | 96.20 (0.93) | 96.35 (0.94) | 96.33 (0.94) | 96.29 (0.94)
MBT | 95.10 (0.92) | 96.34 (0.94) | 96.76 (0.94) | 97.02 (0.95) | 96.97 (0.95) | 97.03 (0.95)
SVM RS | 93.34 (0.89) | 94.45 (0.91) | 94.68 (0.91) | 94.93 (0.91) | 95.35 (0.92) | 96.19 (0.94)
PCA+SVM RS | 85.57 (0.76) | 91.20 (0.85) | 94.79 (0.91) | 95.68 (0.93) | 96.30 (0.94) | 96.37 (0.94)

Experiment 2: ROSIS Pavia Data Sets

In this section, the three considered subsets of the ROSIS Ré& data are used to evaluate the pro-
posed approach. The rst experiment uses the ROSIS Pavia Da subset #1. In this experiment,
we use small training sets,.e., L(K) = f10; 20; 40; 60; 80; 100y samples per class. Concerning the
active learning approach, we focus on the MBT method as it preides the exibility of selecting
a given number of new samples per class at each iteration. Téb 3.4 summarizes the results
obtained after 10 Monte Carlo runs by the considered classication algorithms in comparison
with the same standard methods used for reference in the préaus subsection. We emphasize
the good classi cation performance achieved by the propogseLORSAL and LORSAL-AL algo-
rithms. Moreover, Table 3.4 reveals that the MBT sampling procedure further improves the OA
results and the statistic.

In our second experiment, we use subset #2 of the Pavia ROSISata to evaluate the proposed
segmentation algorithm. Table 3.5 illustrates the OA resuts obtained after 10 Monte Carlo

runs, by using the entire training set. Notice the good perfemances achieved by the proposed
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Table 3.5: OA [%] and statistic (in the parentheses) obtained for the ROSIS Paviasubset #2.

L LORSAL LORSAL-MLL LDA LDA-MLL
3921 | 80.24 (0.76)| 86.72 (0.82) | 73.45 (0.67)| 80.67 (0.76)
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Figure 3.10: OA [%] results as a function of the number of labled samples for the ROSIS subset
#2.

LORSAL and LORSAL-MLL algorithms (see Table 3.5), where the segmentation result obtained
by the LORSAL-MLL algorithm is comparable to that reported i n previous work for an SVM
classi er using extended morphological proles as input fatures in [107]. Although a more
exhaustive comparison between these approaches should benducted using the same training
and test sets, we believe that the fact that our method provides comparable results to a highly
consolidated technique that integrates the spatial and thespectral information is remarkable.

Furthermore, we also evaluate the sensitivity of the proposd AL-based approaches to the size
of the considered training set by using subsets of the origial training set. Figure 3.10 shows the
OA results as a function ofL, with L;j =450 and u = 20. From Figure 3.10, it can be observed
that the LORSAL-AL and LORSAL-AL-MLL algorithms achieve si gni cant improvements as
compared with the standard RS strategy. Finally, it is also worth noting that the integration of
spatial and spectral information signi cantly improves th e classi cation results obtained using
spectral information only.

In our nal experiment, we consider subset #3 of the Pavia ROSS data to evaluate the
proposed LORSAL-AL and LORSAL-AL-MLL algorithms by using L; = 8 (only 1 sample per
class) andu = 1. In this experiment, we do not consider the LDA-AL and LDA- AL-MLL

algorithms because the LDA model requires a number of traimg samples which is larger than
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Figure 3.11: OA results as a function of the number of labeledsamples for the ROSIS subset
#3.

the dimensionality of the feature space. Figure 3.11 illustates the OA results (as a function ofL )
in this challenging scenario. The good performance achiedeby the proposed LORSAL-AL and
LORSAL-AL-MLL algorithms in this analysis scenario is remarkable where, as expected, the
BT and MBT methods lead to similar estimates for the consideed problem. Furthermore, the
contribution of the spatial prior is less relevant as the valie of L increases. As shown by Figure
3.11, the AL further improves the learning results and, evetually, Ml, BT and MBT converge
to very similar OA results. For illustrative purposes, Figure 3.8 displays the classi cation and
segmentation maps obtained by the considered algorithm cogurations (in comparison with

other methods) using the ROSIS Pavia University data set.

3.6 Conclusions

In this paper, we have developed a new (supervised) Bayesiagegmentation approach aimed
at addressing ill-posed hyperspectral classi cation and egmentation problems. The proposed
algorithm models the posterior class probability distributions using the concept of multinomial
logistic regression (MLR), where the MLR regressors are lgat by the logistic regression via
splitting and augmented Lagrangian (LORSAL) algorithm. Th e algorithm adopts a multi-
level logistic (MLL) prior to model the spatial information present the class label images. The
maximum a posteriori (MAP) segmentation is e ciently computed by the -Expansion graph-
cut based algorithm. The resulting segmentation algorithm (LORSAL-MLL) greatly improves
the overall accuracies with respect to the classi cation rsults just based on the learnt class

distribution. Another contribution of this work is the inco rporation of active learning strategies
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in order to cope with training sets containing a very limited number of samples. Three di erent
sampling approaches, namely: a mutual information (MI)-based criterion, a breaking ties (BT)
strategy, and a newly developed method called modi ed breaing ties (MBT) are integrated in
the developed classi cation (LORSAL) and segmentation (LORSAL-MLL) methods, resulting
in two new methods with active learning respectively calledLORSAL-AL and LORSAL-MLL-
AL. The e ectiveness of the proposed algorithms is illustrated in this work using both simulated
and real hyperspectral datasets. A comparison with state-bthe-art methods indicates that
the proposed approaches yield comparable or superior perimance using fewer labeled samples.
Moreover, our experimental results reveal that the proposd MBT approach leads to an unbiased
sampling as opposed to the Ml and BT strategies. Further workwill be directed towards testing
the proposed approach in other di erent analysis scenarios dminated by the limited availability

of training samples.

Appendix

The problem described in Eq. (3.5) is equivalent to:

(b;b) = arg [n_in M)+ Kk kg (3.20)

subjectto: ! =

By applying the alternating direction method of multiplier s (ADMM) [51] (see also [1] and
references therein) to solve the problem in Eqg. (3.20), we gethe iterative Algorithm 3.4.
In this algorithm, 0 sets the augmented Lagrangian weight. Under mild conditias, the

sequenceb!, for t =0;1;2::: converges to a minimizer of Eq. (3.20), for any 0 [51].

Algorithm 3.4 Logistic regression via variable splitting and augmented lagrangian (LORSAL)

Require: ! @, (@ pO

1:.t:=0

2: repeat

3 b®™D 2 argmin (1) + Sk ®  pOK2 (3.21)
4 b 2 argmin  k ky+ 5K (t+1) bV k? (3.22)
5: p(t+l) = p) p (t+1) 4 (t+1)

6: t=t+1

7. until some stopping criterion is met

It should be noted that the solution of the optimization problem in Eq. (3.21) (line 3 of
Algorithm 3.4) is still a di cult problem because (! ), although strictly convex and smooth, is

non-quadratic and often very large. We tackle this di culty by replacing (! ) with a quadratic
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lower bound given by [16]:
) Oy+ 1 O)Tga Oy 4 %(! tYTg 1Oy, (3.23)

whereB 1=2)1 117=K] P :‘:1 h(xi)h(xi)T (symbol 1 denotes a vector column of ones)
and g(! M) is the gradient of > at ! (V. Since the system matrix involved in the optimization of
Eq. (3.23), with (! ) replaced with the quadratic bound given in Eq. (3.23) is xed, its inverse
can be pre-computed, provided that {the dimension of h(x;){ is below, say, a few thousands.
Under mild conditions, the convergence of Algorithm 3.4 wih the aforementioned modi cation
still holds [1, 51].

On the other hand, the solution of the optimization problem in Eqg. (3.22) (line 4 of Algorithm
3.4) is simply the soft-threshold rule [45] given byb(“l) = maxf0;abs(u)gsignal(u), where
u (™D p®) = and the involved functions are to be understood component-ise.
As a nal note, we reiterate that the complexity of each iteration of the LORSAL algorithm is
O( 2K), which is must faster than O(( K )3) for the SMLR algorithm [80], and O( 3K) for the
FSMLR algorithm [18].
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Chapter 4

Spectral-Spatial Hyperspectral

Image Segmentation Using Subspace
Multinomial Logistic Regression and
Markov Random Fields

Abstract { This paper introduces a new spectral-spatial supervised Bgsian segmentation
algorithm for highly mixed hyperspectral images which expbits the contributions of both of the
spectral and spatial information. The posterior probability distributions are learnt by using a
multinomial logistic regression model (MLR), which uses the subspace method to circumvent
the mixture of spectral signatures, thus to exploit the weath of the spectral information. The
contexture spatial information is modeled by a Markov randan eld (MRF) multi-level logistic
(MLL) Markov-Gibbs prior. Finally, the maximum a posterior i segmentation (MAP) is e ciently
computed by the -Expansion min-cut based integer optimization algorithm. State-of-the-art
performance of the proposed approach is illustrated using @th simulated and real hyperspectral
data sets in a number of experimental comparisons with recdly introduced hyperspectral image
classi cation methods.

Index Terms { Hyperspectral, Subspace Method, Segmentation, MRF

4.1 Introduction

Supervised classi cation (and segmentation) of high dimesional datasets such as remotely
sensed hyperspectral images is a di cult endeavor [85]. Ohscles, such as the Hughes phe-
nomenon [68], appear as the data dimensionality increasesThis is because the number of
training samples used for the learning stage of the classikis generally very limited compared

to the number of available spectral bands. In order to overcme this di culty, several feature

selection [123] and extraction [114] methods have been coinled with machine learning tech-

75



nigues able to perform accurately in the presence of limitedraining sets, including support
vector machines (SVMs) [28, 121] or multinomial logistic rgression (MLR) classi ers [16, 91].

Due to sensor design considerations, the wealth of spectraiformation in hyperspectral data
is often not complemented by extremely ne spatial resolution. This leads to the presence of
mixed pixels, which represent a challenge for accurate hygspectral image classi cation [107]. In
order to address this issue, subspace projection methods3a] have been shown to be a powerful
class of statistical pattern classi cation algorithms [104]. These methods can handle the high
dimensionality of an input data set by bringing it to the righ t subspace without losing the original
information that allows for the separation of classes. In sme cases, these methods can also
reduce noise and, subsequently, they can reduce the impacf mixed pixels in the classi cation
process. This is because noise can lead to confusion betwespectrally similar classes resulting
from a predominance of mixed pixels, as it is indeed the casa isome of the most widely used
data sets in the hyperspectral image classi cation commurty such as the famous Indian Pines
image [85], collected by NASA Jet Propulsion Laboratory's Arborne Visible Infra-Red Imaging
Spectrometer (AVIRIS) [62]. In this scene, pixels in di erent classes exhibit spectrally similar
signatures due to the early growth cycle of the agriculturalfeatures, which barely cover the soil
in a proportion of 5% or less. Since the spatial resolution irthis case is 20 meters per pixel, the
scene is dominated by mixed pixels made up of di erent agriculral features and soil. However,
the reference ground-truth widely used in the hyperspectraclassi cation community associates
image pixels with hard, mutually exclusive class labels. Inthis context, subspace projection
methods can provide competitive advantages by separatinglasses which are very similar in
spectral sense, thus addressing the limitations due to higly mixed pixels.

The idea of applying subspace projection methods to improvelassi cation relies on the basic
assumption that the samples within each class can mostly lién a lower dimensional subspace.
Thus, each class may be represented by a subspace spanned bged of basis vectors, while the
classi cation criterion for a new input sample would be the distance from the class subspace
[57, 102, 134]. Recently, several subspace projection mettis have been speci cally designed for
improving hyperspectral data characterization [3, 31, 123 137], obtaining successful results. A
more recent trend towards increasing classi cation accuraies in hyperspectral image analysis is
to make combined use of spectral and spatial-contextual irdrmation [19, 53, 90, 91, 107, 129]. In
some of these works, Markov random elds (MRF) have obtainedgreat success in characterizing
spatial information in hyperspectral data sets. MRFs expldt the continuity, in probability sense,
of neighboring labels. The basic assumption is that, in a hyprspectral image, it is very likely that

two neighboring pixels will have the class same label. Desfd the fact that spatial information
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plays a very important role in hyperspectral image classi ation and segmentation, to the best
of our knowledge no previous work has proposed a technique & simultaneously combines the
advantages that can be provided by subspace projection-basl classi ers (in spectral sense) and
spatial-contextual information.

In this work, we propose a new Bayesian approach to hypersp&al image segmentation
which combines spectral and spatial information. The algoithm implements two main steps:
(i) Learning, where the posterior probability distributio ns are modeled by an MLR combined
with a subspace projection method, and (ii) Segmentation, vhich infers an image of class labels
from a posterior distribution built on the learnt subspace classi er, and on a multi-level logistic
(MLL) prior on the image of labels. The nal output of the algo rithm is based on a maximum a
posteriori (MAP) segmentation process which is computed vé& an e cient min-cut based integer
optimization technique. The main novelty of our proposed wak is the integration of a subspace
projection method with the MLR and further combined with spatial-contextual information,
which provides a better characterization of the hyperspedtal image content in both the spectral
and the spatial domains. As will be shown by our experimentalresults, the accuracies achieved
by our approach are competitive or superior to those providd by many other state-of-the-art
supervised classi ers for hyperspectral image analysis.

The remainder of the paper is organized as follows. Section.2 formulates the problem.
Section 4.3 describes the proposed approach. Section 4.4pmgts segmentation results based
on simulated and real hyperspectral datasets in comparisomwith other state-of-the-art super-
vised classi ers. Finally, Section 4.5 concludes with someemarks and hints at plausible future

research lines.

4.2 Problem formulation

Before describing our proposed approach, let us rst de ne sme of the notations that will be

used throughout the paper:

S f 1::::ng Set of integers indexing then pixels of an image;
K f 1,:::;Kg Set of K classes;
X =(X1;:1::Xp) 2RI D Image in which the pixels ared-dimensional vectors;
y =(y1;::i;yn)2L" Image of labels;
Dl((kk)) f(yux1):: (Vw:Xw)g  Set of labeled samples for clask with size 15);
xl((kk)) f X100 X009 Set of feature vectors inDI((kk));
D, D W..ss D) Set of labeled samples with sizé = K., 109:
I j@ s |(K)g p k=1 .
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With the above de nitions in place, the goal of classi cation is to assign a labely; 2 K to
each pixel vectorx;, with i 2 S. This process results in an image of class labels, and we call
this assignment alabeling In turn, the goal of segmentation is to partition the set S such that
the pixels in each subsetSy, with S = [ Sk, share some common propertye.g. they represent
the same type of land cover. Notice that, given a labelingy, the collection Sy = fi 2Sjy; = kg
for k 2 K is a partition of S. On the other hand, given the segmentationS, for k 2 K, the
imagefyijy; = k; ifi 2 Sg; i 2 Sg is a labeling. As a result, there is a one-to-one relationsipi
between labelings and segmentations. Without loss of genality, in this paper we use the term
classi cation when the spatial information in the original scene is not usd in the labeling
process. Similarly, we use the termsegmentation when the spatial information in the original
scene is used for such labeling.

In a Bayesian framework, the labeling process is usually catucted by maximizing the pos-

terior distribution as follows:

p(yjx) /' p(xjy)p(y); (4.1)

wherep(xjy) is the likelihood function (i.e., the probability of the feature image given the labels)
and p(y) is the prior over the image of labels. Assuming conditionaindependency of the features
given the labels,i.e, p(xjy) = Q:zl” p(xijyi), then the posterior may be written as a function of

y as follows: .

) p(xjy)p(y)

Nz n

1 .
= m'i:l p(Xijyi)p(y) 4.2)

NN i
_ p(YijXi)
= 9 o

p(yjx)

p(y);

Qi:n

where (x) i-1 P(xi)=p(x) is a factor not depending ony. In the proposed approach, we
assume the classes are equally likely,e., p(y; = k) = 1=K for any k 2 K. However, any
other distribution can be accommodated, as long as the margial of p(y) is compatible with the

assumed distribution. Therefore, the maximum a posteriori(MAP) segmentation is given by:

- )

b =arg max (log p(yijxi) +log p(y) : (4.3)
i=1

Following the Bayesian framework described above, we haveedeloped a new algorithm
which naturally integrates the spectral and the spatial information contained in the original
hyperspectral image data. In our proposed algorithm, the spctral information is represented

by class densitiesp(yijxi), which are learnt by a subspace projection-based MLR algathm.
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On the other hand, the spatial prior p(y) is given by an MRF-based MLL which encourages
neighboring pixels to have the same label. The MAP segmentaon § is computed via the -
Expansion algorithm [23], a min-cut based tool to e ciently solve integer optimization problems.

Additional details are given in the following section.

4.3 Proposed approach

Under the linear mixture model assumption, for anyi 2 S we have:
Xj = i T nj; (4.4)

wherem  [m®:;:::;:m{®)] denotes a mixing matrix composed by the spectral endmembser

n; denotes the noise, and ; = [ i(l);:::; i(K)

] denotes the fractional abundances of the end-
members in the mixed pixelx;. Since the distributions p(m) and p( ;) are unknown, it is very
di cult to compute p(Xjjy; = k) using a generative model. It happens, however, that the liear
term m ; in (4.4) lives in class dependent subspaces. This is consegce of the linearity of this
term and of the fact the set of materials corresponding to anytwo di erent classes are very likely
to be dierent. With this simple fact in mind, we may then write the observation mechanism
for classk as

x = y oz 4 p®, (4.5)

()

9]

where n{*) is the noise of class and UM = fu{;:::;u%) g is a set of r9-dimensional or-

thonormal basis vectors for the subspace associated with assk, and zi(k) is, apart from the
(k) (k)

with respect to the basisU ().
(k)

noisen; ’ the coordinates ofx

k) are Gaussian dis-

We assume that the class independent random vectors;™’ and zi(
tributed with zero mean and diagonal covariance matricesj.e., n® N (0; ®?1), and z*

N (0; ®)). We are aware that these assumptions are very strong and thathey rarely hold
in real data. However, and shown below, they allow to preser the subspace structure of our
model and yield a robust discriminative model. Based on the bove assumptions, we have the

following generative model:

pxijyi = k) N (0; CUOU®T 4+ (9%): (4.6)

79



Under the present setup, the generative model in Eq. (4.6) ca be computed as follows:

n 0
POl = K) 1 exp 3 ( UOUET L W) iy, L)
L !
_ 1,7 | u Uy u’
= exp 2Xi (k)2 [GEEENG) ()2 ()2
n o 4.7
— 1,T | RITIGH
- expn 2% o2 (k>+ (k)zU( )U(O) Xi
_ 1X/X 1 T1)(K) L2
= exp 70zt 30 (k)zkx U Kk
(k) 1 (k) 1 ) k (k) y (k) T T
Let ! ] 97 2 d o ' P and @ (KO

With these de nitions in mind, we can compute the posterior class densityp(yijx;) as follows:

o p(xijyi = k; 1)plyi = k)

=1 Pxijyi = ki 1)p(yi = K)
_exp(t O Oxi)plyi = k)
T exp(l 7 O0))p(y = k)

plyi = kjxi; ') =
(4.8)

where ®(x;) = [kx;k?; kxJU®K2T. Assuming equiprobable classes,e., p(y; = k) = 1=K,
the problem in Eq. (4.8) turns to
exp(! ® ®(x))

plyi = kixi; 1) = P K expll © ®(x)’ (4.9)

which is exactly an MLR [16].

4.3.1 Learning the class independent subspace

Let RK) = h(l((kk)) |((kk)) i denote the sample correlation matrix associated with clask, computed

from the training set. By computing the eigendecompositionof R®), we have

RKW = gl Kg®. (4.10)
whereE® = fel9;:::; (k)g is the eigenvector matrix and = diag( ;:::; (k)) is the eigen-
value matrix with decreasing magnitudei.e., (1k) ék). Moreover, fori 2 S, vector X;

can be represented as a sum of two mutually orthogonal vectaerx; = R; + %j; where k; is the

projection of vector x; on the rK)-dimensional subspace spanned by the rstr(k) eigenvalues,

ie., (1k); i E‘((Z) and x; is projection on the orthogonal subspace spanned by the reniging
eigenvalues.
We take U('(‘z) feld:::e “((k))g as an estimate of the class independent;(¥)-dimensional
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subspace withr ) <d and:

X xd
r® = min fr® : i(k) i(k) g; (4.11)
ro i=1 i=1
where 0 1 is a threshold parameter controlling the loss of spectral riformation after

projecting the data into the subspace.

4.3.2 Learning the MLR regressors

In order to cope with di culties in learning the regression v ector ! associated with bad or ill

conditioning of the underlying inverse problem, we adopt a giadratic prior on ! , so that:
1)/ e T K, (4.12)

where 0 is a regularization parameter controlling weight of the piior.
In the present problem, learning the class densities amousstto estimating the logistic re-
gressors! . Inspired by previous work [16, 19, 80, 90, 91], we can compet! by calculating the

MAP estimate:
b =argmax (! )+log p(! ); (4.13)

where (! ) is the log-likelihood function given by:

() log  plyijxi;!): (4.14)

The optimization problem in Eq. (4.13) is convex, although the term “(! ) is non-quadratic.
This term can be approximated by a quadratic lower bound given by [16]; for any k 2 K, we

have:
. <, (k K K 1 K k
O e ® T e S @ 1 E)TBOE® 1) @1y

with:
BYO  (1=2)I 117K +1)] Wiy @)t (4.16)
i=1
where 1 denotes a column vector of ones ang(! §k)) is the gradient of () at ! Ek). Based on
the lower bound (4.15), we implement a instance of the minodation maximization algorithm

[69], which consists in replacing, in each iteration, the opective function “(! ) with the lower
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bound (4.15) and then maximizing it. This procedure leads to
1
bl = agmax 1t ©T(gb{?) BB+ ST BN 1y (4.17)

Now the optimization problem in Eq. (4.17) is quadratic and easy to solve, leading to the

following update function:
bl = 1B® 1) 1BWLK gbM)); for k2K: (4.18)

The system matrix in Eq. (4.18) is xed, thus the term (B®) 1) 1 can be pre-computed. With
this in mind, it is now possible to perform an exact MAP-basedMLR under a quadratic prior.

The pseudo-code for the subspace projection-based MLR algthm, referred to hereinafter as
MLR sub, is shown in Algorithm 4.1. In the algorithm description, iters denotes the maximum
number of iterations. The overall complexity of Algorithm 4.1 is dominated by the computation
of the correlation matrix, which has complexity O(Id?) (recall that | is the number of labeled

samples andd is the dimensionality of the feature vectors).

Algorithm 4.1  MLR sub
Input: ! o, Dy, , ,iters
Output: !, U f UD;::::ukg
for k=1to K do
Ul u (X|(<|8; ) (U computes the subspace according to Eq. (4.10))
Bk B (UK:; D)) ( B computes the system matrixB according to Eq. (4.16) )
end for
t=1
while t iters or stopping criterion is not satis ed do
for k:=1to K do
g (%) 1 ()
1 () = solution fB®); gt &); Uk g
end for
end while

4.3.3 MRF-based MLL spatial prior

In order to improve the classi cation performance achievedby using the spectral information
alone, in this work we integrate the contextual information with spectral information by using
an isotropic MLL prior to model the image of class labelsy. This approach exploits the fact
that, in segmenting real-world images, it is very likely that spatially neighboring pixels belong
to the same class. This prior, which belongs to the MRF classencourages piecewise smooth

segmentations and promotes solutions in which adjacent piels are likely to belong the same

82



class. The MLL prior constitutes a generalization of the Isng model [58] and has been widely
used in image segmentation problems [92].

According to the Hammersly-Cli ord theorem [10], the density associated with an MRF
is a Gibbs's distribution [58]. Therefore, the prior model for segmentation has the following
structure: !

X
1 Ve(y)
ply)= > e c2c ; (4.19)

where Z is a normalizing constant for the density, the sum in the expment is over the so-called

prior potentials Vc(y) for the set of cliques: C over the image, and:

Ve(y) =

8
% ,:  if jd = 1 (single clique)
E ¢ ifjg>1and8;acyi = Vi (4.20)

o ifjg > 1and9;jacyi 8 Y,

where . is a non-negative constant. The potential function in Eq. (4.20) encourages neighbors
to have the same label. The introduced MLL prior o ers a great deal of exibility by allowing

variations of the set of cliqgues and the parametersy, and . For example, the model generates
texture-like regions if . depends onc, and blob-like regions otherwise [93]. In this work we take

yy =c®and = % > 0. Thus Eqg. (4.19) can be rewritten as follows:

X
1 i )
)= S e (iy)2c ; (4.21)

where (y) is the unit impulse function?. This choice gives no preference to any direction
concerning. A straightforward computation of p(y;), i.e., the marginal of p(y) with respect to i,
leads to p(y;) constant and thus equiprobable, therefore compatible wih the assumption made
in (4.2) and (4.8). Notice that the pairwise interaction terms (y; y;) attach higher probability
to equal neighboring labels than the other way around. In this way, the MLL prior promotes

piecewise smooth segmentations, where parameter controls the level of smoothness.

4.3.4 MAP estimate via graph-cuts

Let us assume that the posterior class densitiep(y;jx;) are estimated using Eq. (4.8). Let us

also assume that the MLL prior p(y) is estimated using Eqg. (4.21). According to Eq. (4.3), the

LA clique is a single term or either a set of pixels that are neighbors of one another.
%ie., (0O)=1and (y)=0,for y&0
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MAP segmentation is nally given by:
8 9
<X _ X =
b = agmin log p(yijxi; b) i v (4.22)
y " i2s i ’
This is a combinatorial optimization problem involving unary and pairwise interaction terms,
which is very di cult to compute. Several new algorithms such as graph-cuts [22, 23, 79], loopy
belief propagation [141, 142], and tree-reweighted messagassing [78] have been proposed in
the literature in order to tackle this optimization problem . In this work, we resort to the -
Expansion graph-cut based algorithm [4, 23]. This method y&lds good approximations to the
MAP segmentation and is quite e cient from a computational v iewpoint, with computational

complexity O(n).

4.3.5 Supervised segmentation algorithm: MLR subMLL

To conclude the description of our proposed method, Algorihm 4.2 provides a pseudo-code for
our newly developed supervised segmentation algorithm basl on a subspace MLR classi er
with MRF-based MLL prior. This algorithm, called MLR subMLL hereinafter, integrates all
the di erent modules described in this section. Speci cally, line 3 in Algorithm 4.2 learns the
logistic regressors using MLRub, which is applied to the full hyperspectral image. Here, the
quadratic regularization parameter 0 is used to tackle ill-conditioned problems. Line 4 in
Algorithm 4.2 computes the probabilities based on the outcone of MLRsub. Line 5 in Algorithm
4.2 e ciently computes the MAP segmentation by applying the -Expansion graph-cut based

algorithm, where the neighborhood parameter determines the strength of the spatial prior.

Algorithm 4.2  MLR subMLL

1 Input: x , Dy, , ,
2: Output: b
3 fb; Ug=MLR subfD,; ; g

4. B := p(x; b; U) (P collects the probabilities in Eq. (4.9) )
5. := -Expansion(P; ; neighborhood)

The overall complexity of the proposed MLRsubMLL algorithm is dominated by the MLR sub
algorithm inferring the regressors, which has computatioml complexity O(Id?), and also by the
-Expansion algorithm used to determine the MAP segmentatiam, which has practical complex-
ity O(n). In conclusion, if 1d?> > n (e.g., the problem is high dimensional, with a large number
of training samples), then the overall complexity is dominged by the subspace-based learning
step. Otherwise, ifld? < n (e.g., the problem is given by a large number of pixels), then the

overall complexity is dominated by the -Expansion algorithm.
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4.4 Experimental results

This section uses both simulated and real hyperspectral da sets to illustrate the e ectiveness
of the proposed MLRsubMLL segmentation algorithm in di erent analysis scenarios. The main
goal of using simulated data sets is to assess the performamof the algorithm in a fully con-
trolled environment, whereas the main goal of using real da sets is to compare the algorithm
with other state-of-the-art analysis techniques using widly used hyperspectral scenes. The re-
mainder of this section is organized as follows. SubsectioA.4.1 rst explains the parameter
settings adopted in our experimental evaluation. Subsectin 4.4.2 then evaluates the proposed
MLR subMLL algorithm by using simulated data sets, whereas Subsedbn 4.4.3 evaluates the

proposed segmentation algorithm using real hyperspectraimages.

4.4.1 Parameter settings

Before describing our results with simulated and real hypespectral data sets, itis rstimportant
to discuss the parameter settings adopted in our experimerst In our tests we assumé®) ' |=K
for k 2 K. For small classes, if the total number of labeled samples peclassk in the ground
truth image, say L®), is smaller than 1=K , we take |(K) = L& =2 In this case, we use more
labeled samples to represent large classes. It should be makthat, in all experiments, the labeled
sets D| are randomly selected from the available labeled samples,nd the remaining samples
are used for validation. Each value of overall accuracy (OA %o]) is obtained after conducting
10 Monte Carlo runs with respect to the labeled sampledD,. The labeled samples for each
Monte Carlo simulation are obtained by resampling the avaibble labeled samples. Prior to the
experiments, we infer the setting of the quadratic paramete . In practice, is relevant to the

condition number of B®) | for k 2 K. In this work, we set = e 10 for all experiments.

4.4.2 Experiments with simulated hyperspectral data

In our experiments we have generated a simulated hyperspaal scene as follows. First, we
generate an image of features using a linear mixture model:
X
xi=  m® Ky, (4.23)
k=1
with K = 10. Here, m®) for k 2 K are spectral signatures obtained from the U.S. Geological
Survey (USGS) digital spectral library2, and x; is a simulated mixed pixel. An MLL distribution

with smoothness parameter =2 is used to generate the spatial information, and the total size

3The USGS library of spectral signatures is available online: http://speclab.cr.usgs.gov.
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(a) Ground truth (b) Classi cation map (c) Segmentation map

Figure 4.1: Classi cation and segmentation maps obtained #ter applying the proposed method
to a simulated hyperspectral scene with =0:8 and =0:7 by using =0:9,1 =288, =2.
(a) Ground truth class labels. (b) Classi cation result (OA =49.09%). (c) Segmentation result
(OA=94.34%).

of the simulated image is of 120 120 pixels. Zero-mean Gaussian noise with covariance?l,
i.e.,n; N (0; 21)is nally added to our simple simulated hyperspectral scere. For illustrative
purposes, the image of class labelg is shown in Figure 4.1(a). Assume thatx; has class label
Vi = kg, then we de ne i(kk) as the abundance of the objective class andi(k) (for k 2 K and

k 6 ky) as the abundance of the remaining signatures which contribte to the mixed pixel,
(k)

.’ are generated according to a simple uniform distribution inthe proposed problem.

P
(kk) — (k) _
o= and okkek i =1

where
In order to simplify notations, we take
We have conducted ve dierent experiments with the simulated hyperspectral image de-
scribed above. These experiments have been carefully des@d in order to analyze several
relevant aspects of our proposed MLRUbMLL segmentation algorithm in a fully controlled

environment:

1. In our rst experiment, we evaluate the impact of the presence of mixed pixels on the

segmentation output.

2. In our second experiment, we analyze the impact of the pamaeter (controlling the amout

of spectral information retained after subspace projectio) on the segmentation output.

3. In our third experiment, we evaluate the impact of the training set size on the segmentation

output.

4. In our fourth experiment, we analyze the impact of the smothness parameter on the

segmentation output.

5. In our fth experiment, we evaluate the impact of noise on the segmentation output.
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In all these experiments we will use the optimal value of clasi cation accuracy (OA opt) as
a reference to evaluate the goodness of our reported OA scareHere, OAype  100(1  Pe)%,
where P is de ned as follows [49]:
X X _
Pe = p(y; = ki j 2Sk; Ki); (4.24)
k=1i2K ; i& k
where K denotes thek-th class. Eg. (424) is minimized when the regionsSy are chosen such
that each x; is assigned to the class for whiclp(y; = k; j 2 Si; Kj) is the smallest. For
a multi-class problem, we use the following error bound as aralternative since Eq. (4.24) is

di cult to compute:

erfc :
2 2

(4.25)

where erfc denotes the complementary error function and dis,j, denotes the minimum distance
between any point of mean vectorsj.e., distmin = minjgjkm; mjk, foranyi;j 2 K. Thisis the

so-called union bound [57], which is widely used in multi-css problems. However, union bound
is not a good measurement to present the di culty because of he mixtures. Nevertheless, it is
worthnothing that, as  decreases, the di culty increases,i.e., OAqy decreases. Thus, in this

work we use the union bound, while =1, to de ne the di culty of our problem.

Experiment 1: Impact of the presence of mixed pixels

In this experiment we rst consider a problem with = 0:8 by using =0:9; =2 and
2 [0:5 LO]. In this context, the optimal value of classi cation accuracy is given by OAgpt

71.04% with =1. It should be noted that the values of parameters and in our simulation
are probably sub-optimal. However, we have decided to X then to the speci ed values because
we have experimentally observed that these settings lead tgood performance in the considered
analysis scenario. Figure 4.2 illustrates the obtained OA esults as a function of (which
determines the degree of spectral purity in the simulated pkels). In order to show the good
capability of the proposed MLRsubMLL in the task of dealing with limited training sets, only
288 labeled samples (2% of the available samples, evenly ttibuted among classes) are used as
the training set. Notice the good performance achieved by te proposed MLRsubMLL algorithm
with the classes dominated by mixed pixels. In those classethe segmentation results provided
by MLR subMLL signi cantly outperform the classi cation results obt ained by the MLRsub
using only the spectral information. For illustrative purp oses, Figure 4.1 (b) and (c) shows

the respective classi cation and segmentation maps obtaiad for the problem with =0:8 and
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Figure 4.2: OA results as a function of the abundance of the ojective class:

Abundance of the objective class:

g

, with  =0:9,

= 2 and | = 288 for a problem with mixed pixels and

= 0:8. Dash-dot lines with circles

denote the segmentation results obtained by the MLRUbMLL algorithm; dashed lines with
asterisks denote the classi cation results obtained by theMLR sub algorithm.

=0:7,using =0:9, =2and]| =288. Moreover, Figure 4.2 indicates that the performance

of both MLR subMLL and MLR subincreases as the abundance of the objective classes increas
This is expected, since the problem is easier to solve as thegsence of mixed pixels is decreased.
In the following experiments, we will consider = 0:7 which leads to a di cult segmentation

problem as shown in Figure 4.2.

Experiment 2: Impact of parameter

In our second experiment, we analyze the impact of the thresbld parameter intended to control
the loss of spectral information after projecting the original hyperspectral data into a subspace.
This parameter is directly related with the number of components retained after the projection,
and with the amount of information comprised by the retained components. To address this
issue, we analyze the performance of the proposed methods i erent values of

=0:8(OAopt  71:04% with = 1) and

in a problem

with =0:7, byusing = 2. Figure 4.3 illustrates the

OAs obtained by the proposed MLRsub and MLR subMLL algorithms as a function of , where
288 labeled samples are again used as the (limited) traininget. Notice the good performance
achieved by the proposed MLRSUbMLL segmentation algorithm, which yielded higher OA results
than OA o in all cases. Furthermore, both classi cation and segmenttion results increase as
increases. This is reasonable since the amount of spectraiformation that is retained after the

projection of the original data into the subspace is increaed as increases. This also indicates
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Figure 4.3: OA results (as a function of ) with =2, for a problem with =0:8and =0:7.

that the proposed methods can perform well in the presence dimited training sets, even after
the dimensionality of the subspace is increased. The robusess of the proposed methods in the

presence of very limited training sets is analyzed in more dail in the following experiment.

Experiment 3: Impact of the training set size

In our third simulated image experiment, we analyze the impat of the training set size on
the segmentation performance. Figure 4.4(a) and (b) respdively report the OA and standard
deviation (std) results obtained by our proposed methods as function of the number of labeled
samples () used in the training process, with =0:9and = 2. Again, these parameter settings
may be sub-optimal but lead to very good results in our expeninents. Notice the quality of
the segmentation results obtained by our proposed MLRubMLL algorithm, which shows high
robustness even with very limited training set sizes. As thenumber of labeled samples increases,
the OA increases and the standard deviation decreases. This expected, since an increase of
the number of labeled samples should decrease in the uncentdy when estimating the right
subspace for each class.

On the other hand, we have experimentally observed that the @ and the standard deviation
results respectively converge to very high and very low valas for a certain number of labeled
samples. In our particular case, the use of 350 labeled sangd resulted in an OA of 97.76% with
std = 0:37. This indicates that robust generalization can be achiegd by the combination of MLR
regressors and spatial-contextual information. From thisexperiment, we can conclude that our

proposed algorithm converges to almost identical resultsioce the classes are well-separated using
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Figure 4.4: Classi cation and segmentation results obtaired for a problem with = 0:8 and

=0:7byusing =0:9; =2. (a) OA results as a function of the number of labeled sampés.
(b) Standard deviation (std) results as a function of the number of labeled samples.

a su cient number of labeled training samples, where the termsu cient in our experiments

means a low percentage of labeled samples. Despite the encaging results obtained thus
far with the conducted simulations, a more detailed investgation of two additional aspects: the
relevance of the smoothness parameter on spatial characterization, and the overall performance
of our proposed approaches in the presence of di erent noisevels, should be conducted. This

will be done in the next two experiments performed with our sinulated hyperspectral scene.

Experiment 4: Impact of parameter

In this experiment we conduct an evaluation of the impact of the smoothness parameter on
the obtained segmentation results. In practice, we use theross-validation sampling method [77]
to estimate by using available training samples. Figure 4.5 plots the otained OA results as a

function of , with =0:9 and| = 288 (2% of the available samples per class, evenly distrikted
among classes). From Figure 4.5, we can conclude that the segntation performance indeed
depends on the setting of . However, even with a sub-optimal parameter setting 15 4,
the proposed MLRsubMLL algorithm leads to good segmentation results for the comsidered
problem. This indicates that the algorithm is not very sensttive to the setting of parameter
since all values of this parameter in a certain range of inteest ultimately lead to high values of
the OA for the considered problem.

It should be noted that, in all experiments conducted thus fa, the noise standard deviation
considered in the simulations was = 0:8 (a reasonable parameter setting according to our

tests). However, a remaining aspect to be analyzed is the sesitivity of the proposed method to
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Figure 4.5: OA results as a function of the smoothness paramer for a problem with =0:8
and =0:7with =0:9andl| =288.

di erent noise levels.

Experiment 5: Impact of noise

In our last experiment with simulated data we evaluate the impact of noise on the proposed
segmentation algorithm by using only| = 288 labeled samples (2% of the available samples per
class, evenly distributed among classes) as in previous eggments. Figure 4.6 plots the OA
results as a function of the noise standard deviation for two di erent problems: (a) =1; and
(b) =0:7. As shown by Figure 4.6, the performance of the proposed MLBUbBMLL algorithm
decreases as increases, but the increase in the OAs obtained with regard¢o the MLR sub
classi cation are always remarkable. From Figure 4.6, we ca also conclude that the results
achieved by our proposed segmentation algorithm are supeat to the OA o result. Speci cally,
for the problem with = 1:5, the MLRsubMLL obtained a segmentation OA of 58.12% with

= 0:7 [see Figure 4.6(b)], which is 15.34% higher than the optimavalue (OAqy  4278%
with = 1) in Figure 4.6(a).

Summarizing, the experimental results conducted with simlated data sets indicate that
the proposed MLRsubMLL algorithm achieves adequate performance in noisy envisnments
and with limited training sets, exhibiting robustness for a wide range of parameter settings that
simplify the choice of such parameters by the end-user. In ¢ter words, although the performance
of the algorithm has been shown to be dependent on the settingf parameters and , sub-
optimal settings of these parameters are easy to obtain andelad to good characterization results

in di erent simulation environments. Although the experime ntal evaluation conducted with
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Figure 4.6: OA results achieved (for two di erent values of ) as a function of the noise standard
deviation with =0:9, =2, and | =288.

simulated data sets provided very encouraging results, fuher analyses with real hyperspectral
scenes and comparisons to other state-of-the-art methodsra highly desirable in order to fully

substantiate the proposed method.

4.4.3 Experiments with real hyperspectral data

In order to evaluate the proposed MLRsubMLL algorithm in real analysis scenarios, we use two
widely used hyperspectral data sets respectively collecteby AVIRIS and the Re ective Optics
System Spectrographic Imaging System (ROSIS) operated byhie German Aerospace Agency
(DLR). For the purpose of comparison, we use other state-ofhe-art supervised classi ers such
as linear discriminant analysis (LDA), quadratic discriminant analysis (QDA), logistic discrim-
inant analysis (LogDA), and SVMs [54, 57, 116], which are welestablished techniques in the
machine learning community [6, 28, 48, 110]. For these methis, we project the original hyper-
spectral datasets into a subspace by using the hyperspectraignal identi cation by minimum
error (HySime) method [11] which was observed to perform beér than standard eigenvector
calculation considered for the other tested methods, wher¢he loss of spectral information after
projecting the data into the subspace is also controlled by prameter as what we consider in our
approach. Furthermore, in order to have a fair comparison wih our segmentation method (which
includes spatial-contextual information), in this work we have also expanded the considered dis-
criminant analysis approaches (LDA, QDA and LogDA) with the MLL spatial prior to obtain
segmentation methods (referred to hereinafter as LDAMLL, (QDAMLL, and LogDAMLL) that
can be compared with our proposed algorithm. In all experimats, we empirically set =0:999

and = 2. Although sub-optimal, we have experimentally tested that these settings lead to good
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characterization results with all the considered data setsa fact that reveals that the proposed
approach can perform accurately using a variety of hypersparal scenes collected by di erent

instruments.

Experiment 1: AVIRIS Indian Pines data set

In our rst experiment, we use the well-known AVIRIS Indian P ines data set to analyze the
performance of the proposed algorithm in comparison with aher methods. The scene contains
145 145 pixels and 202 spectral bands. The ground truth data cordins 16 mutually exclusive
classes, and a total of 10366 labeled pixels. This image is dassical benchmark to validate
the accuracy of hyperspectral image analysis algorithms at constitutes a challenging problem
due to the signi cant presence of mixed pixels in all availalle classes, and also because of the
unbalanced number of available labeled pixels per class.

In order to test the the performance of the proposed algoritims with limited training sets, a
total size of | = 1036 (which represents 10% of the available labeled sampde evenly distributed
among classes) is used for training purposes, where the reinang 90% of the samples were used
for validation. Table 4.1 illustrates the OA, average accuilcy (AA), kappa statistic coe cient
( ), and individual class accuracy [%] results achieved by theproposed algorithms after 10
Monte Carlo runs. By adopting an MLL spatial prior, the segmentation algorithms signi cantly
improved the classi cation results obtained by the consideed classi cation algorithms. For
instance, the MLRsubMLL obtained an OA of 93.66%, 19.51% larger than that obtainel by
the MLL sub algorithm, whereas the QDAMLL obtained an OA of 90.02%, whid is 10.18%
higher than the result obtained by the QDA algorithm. It is re markable that the MLR subMLL
algorithm did not provide the best classi cation results in our experiments (it only outperformed
the classi cation results provided by LDA). However, the inclusion of the MLL prior improved
more signi cantly the results obtained by MLR sub than those obtained by the discriminant
analysis methods. A possible explanation for this result iddue to the inclusion of the subspace
projection method, which leads to reliable posterior probdilities for each class after reducing
the negative e ects caused by noise and mixed pixels.

For illustrative purposes, Figure 4.7 presents the the groad truth and some of the classi-
cation/segmentation results obtained by the di erent test ed methods for the AVIRIS Indian
Pines scene. For each method, we randomly selected one of theaps obtained after conducting
10 Monte Carlo runs. As shown by Figure 4.7, the SVM produced he best classi cation map
while the MLR subMLL produced the best segmentation map. An immediate issue @sulting

from experiments in Figure 4.7 is whether the use of spatiatontextual information could result
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Table 4.1: Overall, average, individual class accuracies¥§] and statistic obtained for the
AVIRIS Indian Pines data set. The best results are highlighted in bold typeface.

Classi cation algorithms Segmentation algorithms
Class # samples
MLR sub LDA QDA LogDA SVM MLR subMLL LDAMLL QDAMLL LogDAMLL

Alfalfa 54 66.94 82.34 55.91 83.50 94.48 94.62 95.38 67.94 97.69
Bldg-grass-tree-drives 1434 59.05 64.97 68.88 64.42 71.34 86.51 76.37 81.95 96.12
Corn 834 54.48 41.43 71.05 60.72 68.00 87.07 51.29 87.27 81.14
Corn-no till 234 73.68 68.76 88.65 77.04 85.23 91.72 78.16 92.42 93.16
Corn-min till 497 57.43 68.89 73.37 67.68 73.19 86.27 82.44 82.38 79.11
Grass/pasture 747 98.90 97.31 96.82 94.77 96.94 99.52 99.76 98.43 99.12
Grass/pasture-mowed 26 91.01 53.88 74.65 68.97 77.77 85.54 71.99 87.40 85.97
Grass/tree 489 71.89 87.00 19.56 76.67 85.89 90.00 92.00 23.67 90.00
Hay-windrowed 20 71.41 48.60 70.42 67.90 73.74 97.88 77.28 89.69 90.23
Oats 968 75.13 67.25 86.82 75.66 86.31 93.16 73.79 95.16 83.01
Soybeans-no till 2468 77.25 66.76 86.58 74.45 87.03 98.35 94.44 97.30 99.12
Soybeans-min till 614 90.47 70.35 89.86 89.22 92.71 96.42 69.44 86.49 94.13
Soybeans-clean till 212 93.85 95.12 93.23 90.33 94.27 99.18 98.75 96.44 98.36
Stone-steel towers 1294 91.64 84.99 91.64 95.37 97.42 98.86 85.58 98.57 98.86
Wheat 380 99.33 99.73 97.71 97.92 99.13 99.67 99.87 98.79 99.73
Woods 95 94.40 84.32 94.68 92.13 90.29 98.43 87.30 95.78 93.68
OA 74.15 65.22 79.84 75.42 80.56 93.66 79.41 90.02 89.23
AA 77.30 73.67 78.73 79.82 77.81 93.95 83.36 86.23 90.46
70.30 60.61 77.02 72.00 85.86 92.69 76.41 88.56 87.66

in an increase in the SVM classi cation results. In order to analyze this issue in more detalil,
in the following experiment we will consider a recently devéoped SVM-based classi er which
combines spatial and spectral information [53]. Further, we will also consider a segmentation
method based on the watershed transform [129]. The resultof these methods were only avail-
able to us in the framework of experiments previously conduted with the ROSIS University of
Pavia data set [107, 129], and hence could not be included irhe AVIRIS Indian Pines image

experiments.

Experiment 2: ROSIS University of Pavia data set

The second real hyperspectral data set that we have consided in experiments was acquired
in 2001 by the ROSIS instrument, own over the city of Pavia, Italy. The image scene, with
size of 610 340 pixels, is centered at the University of Pavia. After renoving 12 bands due to
noise and water absorption, it comprises 103 spectral chargls. Nine ground truth classes, with
a total of 3921 training samples and 42776 test samples weremsidered in experiments. Two
di erent tests were performed with this scene.

In our rst test we used the entire training set available for this scene in order to train
di erent classi ers. Table 4.2 reports the obtained values d OA, AA, and individual accuracies.
In this comparison, we included the same set of classiers &l in the experiments with the
AVIRIS Indian Pines image, along with two additional spectral-spatial classi ers: an SVM-based
classi er trained with extended morphological pro les (designated in the table by EMP/SVM)
[53], and a segmentation method based on the watershed traftgm [129]. The results reported in

the table are respectively taken from [107] and [129], wherexactly the same training and test sets
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Ground truth MLR sub (72.95%) MLRsubMLL (94.17%)

LDA (66.29%) QDA (79.89%) LogDA (76.41%)

LDAMLL (80.53%) QDAMLL (90.65%) LogDAMLL (88.57%)

SVM (82.51%)

Figure 4.7: Classi cation/segmentation maps obtained by the di erent tested methods for the
AVIRIS Indian Pines scene (overall accuracies are reporteih the parentheses).
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Table 4.2: Overall, average, individual class accuracies¥§] and statistic obtained for the
ROSIS University of Pavia data set. The best results are highighted in bold typeface.

Class # samples Classi cation algorithms Segmentation algorithms
Train Test MLR sub LDA QDA LogDA SVM Y MLR subMLL LDAMLL QDAMLL LogDAMLL EMP/SVM [129] *
Asphalt 548 6631 65.63 69.45 67.65 70.89 83.71 93.83 89.56 90.68 86.91 95.36 93.64
Bare soil 540 18649 64.80 46.59 73.49 75.06 92.25 98.43 45.93 98.27 98.57 63.72 97.35
Bitumen 392 2099 81.28 63.31 93.53 83.98 81.58 99.32 62.11 93.38 90.38 98.87 96.23
Bricks 524 3064 59.78 88.29 89.52 87.91 92.59 95.19 99.08 98.45 97.39 95.41 97.92
Gravel 265 1345 66.51 39.11 59.79 55.31 70.32 71.13 26.82 62.17 38.21 87.61 66.12
Meadows 532 5029 64.19 81.92 75.73 76.72 70.25 94.80 85.15 84.73 84.59 80.33 75.09
Metal sheets 375 1330 99.78 99.41 99.93 100 99.41 100 99.70 99.93 100 99.48 99.91
Shadows 514 3682 92.82 99.79 99.26 99.79 96.62 96.20 100 99.79 94.09 97.68 96.98
Trees 231 947 72.19 95.07 96.64 96.38 97.81 92.17 94.09 99.80 94.94 98.37 98.56
OA 67.08 75.59 77.95 78.41 80.99 94.10 80.27 89.48 87.04 85.22 85.42
AA 74.11 75.88 83.95 82.90 88.28 93.45 78.05 91.91 83.32 90.76 91.31
58.53 68.16 71.93 72.47 76.16 92.24 73.90 86.46 87.23 80.86 81.30
Notes:
Y Results are directly taken from [107], which used EMPs for sp ectral-spatial characterization prior to SVM-based class i cation.
2 Results are directly taken from [129], which used a spectral -spatial classi er based on a pixel-wise SVM classi er with majority voting
within the watershed regions to produce the nal segmentati on.

mentioned above were used to produce the reported resultshuis allowing a fair inter-comparison
of methods. By using the entire training set, the proposed MIRsubMLL algorithm obtained an
OA of 94.10% in the considered analysis scenario. For illugative purposes, Figure 4.8 presents
the classi cation and segmentation maps achieved by some dhe considered methods.

In our second test we analyze the sensitivity of the considexd methods to di erent training
sets made up of a limited number of samples. For this purposeye constructed small training
sets by randomly selecting 20, 30, 40, 60, 80, 100 labeled spl®s per class. Figure 4.9 illustrates
the obtained OA results by the di erent methods as a function of the number of labeled samples
per class. By using only 60 labeled samples per clask=% 540 samples, which represents around
14% of the entire training set), the proposed MLRsubMLL obtained an OA of 88.85%. This
result is quite remarkable since, for instance, the OA obtaned by the EMP/SVM algorithm
by using the entire training set was slightly lower. When a sptial prior was adopted, the
segmentation algorithms in Figure 4.9(b) always achieved igni cantly better results than their
classi cation counterparts in Figure 4.9(a), thus indicating the importance of including spatial-
contextual information. In this case, the SVM classi er in Figure 4.9(a) could not improve any
of the segmentation methods in Figure 4.9(b). The gure alsoindicates that the segmentation
performance of the proposed MLRUbMLL can signi cantly increase as the number of labeled
samples increases. However, Figure 4.9(a) indicates thahe classi cation OAs cannot increase
so signi cantly as the size of the training set becomes large This is because more reliable
estimates of the posterior probabilities can be obtained bythe MAP segmentation algorithm
as the number of labeled samples increases. As a result, thegposed segmentation method
can perform well in the presence of limited training samplesand also signi cantly increase its

performance when additional training samples become avaible.
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Ground truth MLR sub (67.08%) MLRsubMLL (94.10%)

LDA (75.59%) QDA (77.95%) LogDA (78.41%)

LDAMLL (80.27%) QDAMLL (89.48%) LogDAMLL (87.04%)

Figure 4.8: Classi cation/segmentation maps obtained by the di erent tested methods for the
ROSIS University of Pavia scene (overall accuracies are repted in the parentheses)
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Figure 4.9: OA results as a function of the number of labeledamples per class for the University
of Pavia data set.

45 Conclusions

In this paper, we have developed a new spectral-spatial segmtation approach which combines
multinomial logistic regression (MLR) with a subspace projection method to better characterize
noise and mixed pixels. It includes contextual information using a multi-level logistic (MLL)
Markov-Gibbs prior. By computing the maximum a posteriori ( MAP) segmentation with an
optimized -expansion graph-cut based algorithm, the proposed segmttion method provides
good accuracies when compared with other methods. It also &ibits robustness to di erent
criteria, such as noise, presence of mixed pixels, and lingd availability of training samples
without the need for ne tuning of input parameters. Althoug h our experimental results are
competitive with those reported for other state-of-the-art spectral and spectral-spatial classi -
cation/segmentation methods, further work should be focugd on conducting additional experi-
ments with real hyperspectral scenes collected by other insuments, such as the new generation
of spaceborne instruments that are currently under develoment. Given the similar spectral and
spatial resolutions of these instruments with regards to tte airborne systems adopted in our real
experiments, we anticipate that the proposed robust segmeation techniques can also perform

accurately with the new generation of satellite instruments.
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Chapter 5

Conclusions and Future Work

This thesis presented new developments for the problems oemotely sensed hyperspectral im-
age classi cation and segmentation, in which the ultimate gal is to accurately interpret the
image data provided by remotely sensed hyperspectral imagg instruments in the context of
Earth observation applications. Our proposed classi cation techniques exploit the rich spec-
tral information available in this kind of data (typically, hundreds of spectral bands), while
the developed segmentation techniques make combined use lodth the spatial and the spectral
information present in the data. Speci cally, we have focugd on the problem of supervised and
semi-supervised hyperspectral image classi cation/segentation, in which some training data is
assumed to be availablea priori, and particularly addressed some of the most relevant chadinges

that can be found in this context. These challenges can be sumarized as follows:

First and foremost, we have addressed the problems relatedithh the imbalance between
the high dimensionality of hyperspectral data in the spectial domain and the limited avail-
ability of training samples in real applications, which poses critical problems for supervised
algorithms, most notably, in order to avoid the well-known Hughes e ect. In order to ad-
dress this challenge, we have adopted strategies based onmnsesupervised learning and
active sampling which allowed us to increase the training sewithout signi cant cost and

e ort.

Second, we have used a particular class of discriminative a$si ers based on the con-
cept of multinomial logistic regression (MLR), which represent an innovation with regards
to previous developments in the hyperspectral imaging liteature. These discriminative
classi ers are able to learn directly the posterior class ditributions and deal with the
high dimensionality of hyperspectral data in a very e ective way. The structure of MLR
classi ers is very open and exible. Compared to other technques, the MLR is based on
computing posterior probabilities, which is a crucial stepfor Bayesian segmentation (based

on the incorporation of spatial information).
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Third, in our developments we have taken advantage of the facthat, in addition to the

very rich spectral information available in the hyperspectal data, hyperspectral images
exhibit piecewise statistical continuity among neighboring pixels. In order to take ad-
vantage from this feature, our proposed techniques have beedesigned to exploit spatial
information in conjunction with spectral information in or der to partition an image into

a set of homogeneous regions (in statistical sense).

Finally, we have also developed innovative strategies to que with one of the most important
problems in hyperspectral image analysis: the presence ofired pixels (with possibly
many participating constituents at a sub-pixel level) due to limited spatial resolution,
mixing phenomena happening at di erent scales, etc. To addrss this issue we resort to
subspace-based techniques that can better discriminate tal-cover classes in the presence

of heavily mixed pixels.

After describing our general contributions, we describe net the speci ¢ contributions in the

three main chapters of this thesis. In each case future resezh lines are identi ed.

In chapter 2, we developed a new supervised Bayesian segmatibn approach, namely
LORSAL-AL-MLL, aimed at addressing ill-posed hyperspectral classi cation problems.
LORSAL-AL-MLL models the posterior class probability dist ributions using the concept
of multinomial logistic regression (MLR), where the MLR regressors are learned by the
logistic regression via splitting and augmented Lagrangia (LORSAL) algorithm. The al-
gorithm adopts a multi-level logistic (MLL) prior to model t he spatial information present
the class label images. The maximuna posteriori (MAP) segmentation is e ciently com-
puted by the -Expansion graph-cut based algorithm. Moreover, active larning based
on maximizing the mutual information between the regressos and the class labels is con-
sidered which can e ectively cope with training sets contairing a very limited number of
samples. The e ectiveness of the proposed algorithm is illusated using both simulated
and real hyperspectral datasets. A comparison with state-bthe-art methods indicates
that the proposed approach yields comparable or superior péormances using fewer la-
beled samples. Further work should be conducted in order todst the proposed method

with additional scenes and analysis scenarios.

In chapter 3, we developed a new (supervised) Bayesian segmation approach aimed at
addressing ill-posed hyperspectral classi cation and segentation problems. The proposed
algorithm models the posterior class probability distributions using the concept of multi-

nomial logistic regression (MLR), where the MLR regressorsare learned by the logistic
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regression via splitting and augmented Lagrangian (LORSAL algorithm. The algorithm
adopts a multi-level logistic (MLL) prior to model the spati al information present the class
label images. The maximum a posteriori (MAP) segmentation & e ciently computed
by the -Expansion graph-cut based algorithm. The resulting segmetation algorithm
(LORSAL-MLL) greatly improves the overall accuracies with respect to the classi cation
results just based on the learned class distribution. Anotter contribution of this work is
the incorporation of active learning strategies in order tocope with training sets containing
a very limited number of samples. Three di erent sampling appoaches, namely: a mutual
information (Ml)-based criterion, a breaking ties (BT) str ategy, and a newly developed
method called modi ed breaking ties (MBT) are integrated in the developed classi cation
(LORSAL) and segmentation (LORSAL-MLL) methods, resultin g in two new methods
with active learning respectively called LORSAL-AL and LORSAL-MLL-AL. The e ec-
tiveness of the proposed algorithms is illustrated in this vork using both simulated and
real hyperspectral datasets. A comparison with state-of-he-art methods indicates that
the proposed approaches yield comparable or superior perfmance using fewer labeled
samples. Moreover, our experimental results reveal that te proposed MBT approach
leads to an unbiased sampling as opposed to the Ml and BT straggies. Further work will
be directed towards testing the proposed approach in other derent analysis scenarios

dominated by the limited availability of training samples.

In chapter 4, we developed a new spectral-spatial segmentan approach which combines
multinomial logistic regression (MLR) with a subspace projction method to better char-
acterize noise and mixed pixels. It includes contextual inbrmation using a multi-level
logistic (MLL) Markov-Gibbs prior. By computing the maximu m a posteriori (MAP) seg-
mentation with an optimized -expansion graph-cut based algorithm, the proposed seg-
mentation method provides good accuracies when compared thi other methods. It also
exhibits robustness to di erent criteria, such as noise, prsence of mixed pixels, and lim-
ited availability of training samples without the need for ne tuning of input parameters.
Although our experimental results are competitive with those reported for other state-
of-the-art spectral and spectral-spatial classi cation/segmentation methods, further work
should be focused on conducting additional experiments wit real hyperspectral scenes
collected by other instruments, such as the new generationfespaceborne instruments that
are currently under development. Given the similar spectrd and spatial resolutions of
these instruments with regards to the airborne systems adojed in our real experiments,

we anticipate that the proposed robust segmentation techrmjues can also perform accu-
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rately with the new generation of satellite instruments. Another important research line
deserving future experimentation focuses on the fusion/agregation of the results obtained
by di erent classi ers, i.e., by merging the results obtained by di erent methods using

pixel-wise majority voting.

Finally, another future direction worth being investigated in all cases is the computational
complexity of the developed methods. Although the proposedalgorithms have been imple-
mented in an e cient way by means of software optimizations, hardware optimizations related
with parallel computing and e cient partitioning for explo itation of high performance computing
architectures are also feasible. This is a highly relevant pblem in the context of hyperspectral
imaging, in which the dimensionality of the hyperspectral data is ever-increasing (instruments
with thousands of spectral bands are currently under develpment) and the time constraints to
process the data are more and more demanding in many applicain domains, in which near
real-time performance of algorithm analysis is required inorder to adequately exploit the data.
With these issues in mind, a future research line that we are @nsidering is related with the com-
putationally e cient implementation of the proposed appro aches in high performance computing
architectures such as clusters of computers, or even more spialized hardware accelerators (sus-
ceptible of being used on-board the sensor platform) incluithg digital signal processors (DSPs),

eld programmable gate arrays (FPGAS), or commodity graphic processing units (GPUS).
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