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Marta.

I would like to thank my friend and lab mate João for a lot of remarkable moments.

I also thank many other friends, namely: Vasco, Filipa, Nuno, Lena, Padre João, Fechi,

João, Paulo, Isabel and many more.

To my parents, my brothers, and my parents-in-law I would like to thank for all the

unconditional support.

Finally my greatest thanks goes to my family: Mónica, Mariana, and Francisco, you’ve

made this a beautiful adventure.

This work was supported in part by Fundação para a Ciência e Tecnologia (FCT)

through a PhD scholarship, and by Instituto de Telecomunicações through a scholarship

in the last stage of the PhD studies.

i





Abstract

Phase imaging technologies such as interferometric synthetic aperture radar (InSAR),

magnetic resonance imaging (MRI), or optical interferometry, are nowadays widespread

and with an increasing usage. The so-called phase unwrapping, which consists in the in-

ference of the absolute phase from the modulo-2π phase, is a critical step in many of their

processing chains, yet still one of its most challenging problems. We introduce an en-

ergy minimization based approach to 2D phase unwrapping. In this approach we address

the problem by adopting a Bayesian point of view and a Markov random field (MRF)

to model the phase. The maximum a posteriori estimation of the absolute phase gives

rise to an integer optimization problem, for which we introduce a family of efficient algo-

rithms based on existing graph cuts techniques. We term our approach and algorithms

PUMA, for Phase Unwrapping MAx flow. As long as the prior potential of the MRF

is convex, PUMA guarantees an exact global solution. In particular it solves exactly all

the minimum Lp norm (p ≥ 1) phase unwrapping problems, unifying in that sense, a set

of existing independent algorithms. For non convex potentials we introduce a version of

PUMA that, while yielding only approximate solutions, gives very useful phase unwrap-

ping results. The main characteristic of the introduced solutions is the ability to blindly

preserve discontinuities. Extending the previous versions of PUMA, we tackle denoising by

exploiting a multi-precision idea, which allows us to use the same rationale both for phase

unwrapping and denoising. Finally, the last presented version of PUMA uses a frequency

diversity concept to unwrap phase images having large phase rates. A representative set

of experiences illustrates the performance of PUMA.

Keywords: phase unwrapping; Markov random fields; energy minimization; graph cuts;

image processing; computer vision.
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Resumo

Tecnologias de imagem de fase, tais como, interferometria com radar de abertura sintética,

imagem de ressonância magnética, ou interferometria óptica, estão, hoje em dia, popu-

larizadas. O desenrolamento de fase, que consiste na inferência da fase absoluta a partir

da fase modulo-2π, é um passo cŕıtico em muitas das suas cadeias de processamento e,

no entanto, constitui ainda um dos seus problemas mais dif́ıceis. Nesta tese introduzimos

uma abordagem ao problema do desenrolamento de fase 2D, com base em minimização de

energia. Abordamos este problema adoptando um ponto de vista bayesiano e um campo

aleatório de Markov para modelar a fase. A estimativa maximum a posteriori da fase

absoluta dá origem a um problema de optimização inteira, para o qual introduzimos uma

famı́lia de algoritmos eficientes com base em técnicas de cortes em grafos. À abordagem

e algoritmos introduzidos damos colectivamente o nome de PUMA (Phase Unwrapping

MAx flow). Desde que o potencial do campo de Markov seja convexo, o PUMA garante

uma solução global exacta. Em particular resolve exactamente todos os problemas de de-

senrolamento de fase da famı́lia mı́nima norma Lp ((p ≥ 1)). Para potenciais não convexos

introduzimos uma versão do PUMA que, embora fornecendo um algoritmo aproximado,

produz bons resultados de desenrolamento de fase. A caracteŕıstica principal das soluções

introduzidas é a capacidade de preservar descontinuidades de forma cega. Outra extensão

introduzida no PUMA reside no atacar do problema da filtragem de rúıdo, recorrendo

a uma ideia de multi-precisão. Esta permite-nos utilizar o racional desenvolvido para o

desenrolmento de fase na filtragem de rúıdo. Finalmente, a última variante apresentada

do PUMA emprega o conceito de diversidade na frequência, o qual garante a possibilidade

de desenrolar imagens de fase contendo gradientes elevados. Um conjunto representativo

de experiências ilustra o desempenho do PUMA em cada uma das suas variantes.

Palavras chave: desenrolamento de fase; campos aleatórios de Markov; minimização de

energia; cortes em grafos; processamento de imagem; visão por computador.
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Chapter 1

Introduction

This thesis proposes an approach to 2D phase unwrapping (PU), by adopting a Bayesian

modeling, using an energy minimization criterion, and introducing a family of graph cuts

based algorithms.

1.1 Prelude

1.1.1 Phase imaging

Phase images are nowadays used in a myriad of applications and produced by a wide range

of techniques from which the prototype is optical interferometry. In fact, the wave nature

of light was demonstrated by Thomas Young with the famous double slit experiment

held in 1801 [15]. The phase image then produced, by the interference between crests

and troughs, led to a deeper understanding of light. Since then, several coherent remote

sensing devices have been used to solve innumerable scientific and engineering problems:

the basic idea is to measure the coherence between emitted and scattered waves, in order

to get geometrical and physical information about the illuminated scenes.

1.1.2 Portfolio of applications

Next we make a very quick browse through some of the most representative coherent phase

imaging techniques and applications.

1



2 CHAPTER 1. INTRODUCTION

Figure 1.1: Arteriography of the brain. Image courtesy of GE Medical Systems.

Magnetic resonance imaging (MRI)

Clinicians use MRI phase images with several goals: e.g., to make real time thermometry

which is crucial in tumor thermo-ablation to mitigate the death of healthy tissues [33];

to make venography [85] or arteriography (see Figure 1.1); to make water/fat separation

[90]: this allows quantitative imaging of fat which is useful, e.g., in obesity studies.

Interferometric Synthetic Aperture Radar (InSAR)

InSAR imaging comprises an ensemble of techniques that provide measurements on ground

surface topography and deformation. Regarding topography, InSAR generated digital

elevation models (DEM) are these days widely employed, the most famous of which is the

one obtained by SRTM [(Space) Shuttle Radar Topography Mission]. In February of 2000,

during ten days only, SRTM covered most of the Earth surface, yielding a global DEM

with 30 m spatial sampling, and 16 m vertical and 20 m horizontal absolute accuracy

(90%)1. Airborne techniques achieve far more detailed DEMs (however for far smaller

areas) with standard commercial available sub-meter accuracy and few meters spacing

[75]. Regarding deformation mapping, more recent techniques like (spaceborne based)

Permanent Scatterers InSAR (PSInSAR) [39] are able to detect deformations with rates

of the order of 1 mm/year. See Figure 1.2.

1For accuracy definitions see, e.g., [25].
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Figure 1.2: Permanent scatterers near Lisbon, Portugal. Color, from red to green, encodes

the deformation rate (−10 to 10 millimeters per year, respectively). Image courtesy of

Tele-Rilevamento Europa.

Other

Phase imaging is at the core of many other applications and techniques, namely, diffraction

tomography, adaptive optics, surface profiling, deformation and vibration measurements,

non destructive testing of components and optical quadrature microscopy [35, 82, 87].

1.2 Who cares about phase unwrapping?

The vast majority of the above mentioned methods, most of the time, do not measure

the phase but only its modulo-2π value (2π by considering that the phase is measured in

radians). In other words, these phase imaging techniques only measure the remainder of

the division of the phase by 2π, the so-called wrapped phase. Yet, the physical meaning

is attached to the absolute phase (we use the term absolute phase to distinguish from

wrapped phase). The inference of the absolute phase images from the wrapped ones is

known as the 2D phase unwrapping problem, which is, then, crucial in many technologies.



4 CHAPTER 1. INTRODUCTION

1.3 This thesis

1.3.1 Addressed problem

This thesis addresses the 2D phase unwrapping problem (for simplicity we shall drop

hereafter the “2D” prefix). We consider a Bayesian formulation having a prior given by a

first-order Markov random field (MRF), and an observation mechanism characteristic of

many applications for which phase unwrapping is needed. The inference of the absolute

phase, given by the maximum a posteriori (MAP), is formulated as a discrete energy

minimization problem. This energy minimization constitutes the main problem to be

addressed by this thesis. Subsidiary topics such as phase denoising, frequency diversity

to enhance phase unwrapping, and blind edge preservation are tackled under the same

framework.

1.3.2 Motivation

The major motivation for the work in this thesis was the state-of-the-art results, obtained

by Bioucas-Dias and Leitão, with the absolute phase estimation algorithm ZπM [36]. In

that work the authors adopt a Bayesian viewpoint, with a prior for the absolute phase

given by a (first-order) Gaussian Markov random field (GMRF). This leads to a phase

unwrapping operation (the Z step), that consists of solving a discrete quadratic opti-

mization problem. In spite of being quadratic, the simple fact of dealing with discrete

variables makes of it a very demanding problem, for which the authors propose an exact

(and polynomial-time) algorithm based on network programming techniques (furthermore,

generally, the operation deals with a large number of variables given by the number of

pixels in the phase image).

The fruitfulness of the above mentioned work made “mandatory” the prosecution of

further research on phase unwrapping in the same Bayesian formulation with prior given

by a Markov random field plus discrete optimization vein. This is the theme of this thesis.

1.3.3 Our path

The biggest methodological innovation in our approach consists, in our opinion, in bring-

ing graph cuts [19] into the phase unwrapping formulation. Graph cuts techniques have

been being, during the last decade, largely employed in several research fields (specially in

vision and image processing) which require the solution of high dimensional discrete opti-
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mization problems, namely for inference on MRFs. At the very basic level the ideas of our

proposed algorithms and the phase unwrapping step of ZπM are alike: to solve the formu-

lated discrete optimization problem through a sequence of binary optimizations. However,

instead of solving each binary optimization through network programming methods, we

employ graph cuts. These are very well suited to solve binary optimization problems (but,

by no means, not only) [67].

The use of graph cuts has great impacts. Perhaps the most immediate which we have

found is that, unlike the formulation of ZπM, we have immediate flexibility on the type

of MRFs that we can use. As detailed in Section 3.1, the Bayesian formulation leads

us to minimize a so-called energy function. We found that our algorithm guarantees a

global energy minimum in pseudo polynomial time [1], as long as the MRF potential,

which governs the interactions between pairs of interacting variables (we are considering

a first-order MRF), is any convex function (ZπM considers a quadratic potential). This

fact alone yields a family of algorithms, in the sense of family of parameterizations of the

algorithm that, for instance, solve any minimum Lp norm phase unwrapping problem. See

Chapter 2 for a definition of this problem.

In image restoration non-convex potentials have been used with success to preserve

edges [16]. In phase unwrapping, edges also play an important role (see next section) and,

accordingly, we modified the original algorithm to include these type of potentials (Chapter

4). The resulting algorithm is approximate in nature, which is all that we can expect in this

regime, in face of the local minima brought by non convexity (excluding exponential time

algorithms such as simulated annealing [45]). The experiments with which we have tested

it, have systematically shown state-of-the-art competitive or even state-of-the-art results,

with the particularity of being capable of edge preservability without prior information on

the edges (some more comments on this in the next section). These results mean that the

devised algorithm systematically finds good energy local minima. To our knowledge there

is in the literature one previous method that also employs non convex potentials in order

to preserve edges [86]. We should mention, however, that it demands a set of parameters

to be tuned. Furthermore we make a comparison between our algorithm and that one in

a representative experiment illustrated in Chapter 4.

A third distinctive trait of our approach is a denoising procedure (Chapter 5) also

based on the same graph cuts based discrete optimization rationale. Our idea consists of

sequentially reducing the precisions (the steps) with which we make the variables change,
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in the energy minimization task. When one precision no longer allows energy decreasing

we change into a smaller one. While this greedy method might sound a bit naive, it is

justified by the state-of-the-art competitive results that yields. Unlike traditionally in the

phase unwrapping field, we employ denoising only after the unwrapping step. This is made

possible thanks to the previous described edge preservation capability which, in particular,

allows the existing noise not to compromise the unwrapping procedure. Conversely, not

making the denoising step before phase unwrapping has the great benefit of avoiding

the denoising to destroy, as a collateral effect, phase information relevant for a proper

unwrapping.

Finally, we also adopted into our method a frequency diversity technique. Phase

images having high phase rates may compromise the unwrapping task (see Chapter 2).

An ingenious and simple technique, used in some fields like Radar signal processing [80],

which is called frequency diversity, allows to solve an identical problem. The foundation of

the technique can be found in the chinese remainder theorem [59] from which we can, given

some assumptions, guess a number given its remainders from the divisions by two other

numbers specially chosen. To our knowledge the existing phase unwrapping literature

adopting phase diversity is very scarce (Chapter 6). Furthermore, those existing works

devise algorithms which, in our opinion, are too simplistic or employ optimization methods

like simulated annealing, which are inadequate to the problem by consuming too much

time. Again we use graph cuts to implement the algorithm.

For the reasons that were sustained before we, hereafter, shall refer to our method as

an energy minimization approach to the phase unwrapping problem.

1.3.4 Motivation a posteriori

In the strict sense phase unwrapping is an impossible problem, as to a certain wrapped

phase value there correspond an infinite number of possible absolute phase values. In math-

ematical parlance, this fact translates into phase unwrapping being an ill-posed problem

[56]. To work around this fact, and achieve phase unwrapping, some extra information or

assumption is required.

It does not take much imagination to assume that some kind of relation might exist

between neighbouring pixels. Namely, in the Bayesian formulation the interactions be-

tween pixels are governed by a potential and, generally for every formulation, its assumed

that in principle, neighboring pixels’s absolute phases do not differ by too much. In fact,



1.3. THIS THESIS 7

this assumption is present, more or less explicitly, in all approaches to phase unwrapping

under the name of Itoh condition, where by too much it is intended, exactly, more than

π rad. This condition ensures the annihilation of the intrinsic ambiguity present in the

wrapped phase values, in the sense that if two neighbors’s absolute phases do not differ by

more than π, then we can unambiguously tell the absolute phase in one of them given the

absolute phase in the other. We will refer to some other arising complications in Chapter

2, when describing certain methods that explicitly lay upon the Itoh condition.

What if in fact the Itoh condition does not apply, and the difference between the

absolute phases of two neighboring pixels differs by more than π? In fact, what if such

a kind of bad behaved phase difference happens not only between two pixels, but along

many other neighboring pairs of pixels defining a curve along some part of the image?

This scenario is in fact very much common in real world images, where these discontinuity

edges are due to boundaries of objects or, generically, regions having some relevant (to the

phase images) characteristic (like, e.g., height in InSAR). We can guess that it is likely

that a phase unwrapping algorithm will tend to behave poorly around discontinuities. In

fact, that is the case for the streamline state-of-the-art or otherwise noteworthy algorithms.

However, we have found that our approach tends to behave well, specially while employing

non-convex potentials. In Figure 1.3 we illustrate this with an extremely hard phase

unwrapping problem. The 3-D mesh of the original phase image corresponds to two

intertwined spirals. Such an image has a lot of discontinuities, which induces a very hard

phase unwrapping problem. Figure 1.3 (a) shows the corresponding wrapped phase image

and Figure 1.3 (b) shows the unwrapped image with Figure 1.3 (c) displaying its 3-D mesh.

To our knowledge no other algorithm is able to solve this phase unwrapping problem. To

do that other algorithms require that the user feeds in information about the localization

of the discontinuities, otherwise the solution will not preserve them. On the contrary,

the algorithm proposed in this thesis has the capability of blindly preserve discontinuities,

specially while working with non-convex potentials.

This result alone is, in our opinion, one of the nicest features of the presented approach,

and justifies the efforts made to accomplish this work.

1.3.5 Energy minimization

In this work we approach the phase unwrapping problem as a labeling task on a 2D grid,

where sites in the grid correspond to the image pixels. The label we assign to each site
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Figure 1.3: Extremely hard phase unwrapping problem. (a) Wrapped phase image. (b)

Unwrapped image. (c) 3-D mesh of the unwrapped image.
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corresponds to the estimate quantity that should be added to the respective wrapped

phase, in order to obtain the absolute phase. By adopting a Bayesian formulation in

which the prior probability for the absolute phase is given by a Markov random field (over

the same grid), the maximum a posteriori (MAP) estimate for the absolute phase is given

by an energy minimization [6, 45]. This energy is made of two terms: a data term which

penalizes inconsistency between the observed and the estimated phases, and a smooth

term which encodes some type of smoothness between the phase of neighboring pixels.

More precisely, by defining l to be a labeling, i.e., the set of labels assigned to every pixel

p, the energy is:

E = Edata(l) + λEsmooth(l), (1.1)

where λ is the so-called regularization parameter that sets the balance between the data

term and the smooth term and, defining lp to be the label of pixel p, we have:

Edata(l) =
∑

p

dp(lp),

dp being a data cost for pixel p, and

Esmooth(l) =
∑

{p,q}∈N

Vpq(lp, lq),

where N is the set of all pairs of neighboring pixels (adjacent horizontal and vertical pairs,

in our case), and V is the prior potential defined by the Markov random field, penalizing

somehow non-smoothness. In our particular case, furthermore, the data term is given by

the cosine of the difference between absolute and wrapped phases.

To the above described minimization problem we still add the knowledge that the dif-

ference between wrapped and absolute phases is a multiple of 2π. This has two immediate

consequences: first the energy turns out to be discrete (in multiples of 2π); second, the

data term evaluates to zero as it is, in our case, given by the cosine of the difference

between absolute and wrapped phases. We are led to a high dimensional discrete opti-

mization problem (the dimension is the number of pixels, which can be millions) which is,

then, usually a hard task.

Energy minimization is considered in several different fields, particularly in computer

vision where it proofs to be very powerful and elegant. There, it has been employed in many

applications, e.g., image restoration [45, 6], surface reconstruction [14], stereo matching

[3], image denoising, segmentation, inpainting and stitching [92], video segmentation [78]
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and face matching [2]. The adoption of energy minimization in computer vision was

hampered by the lack of powerful enough optimization techniques to efficiently perform it.

For many years, the methods of choice were mainly Iterated Conditional Modes (ICM) [6]

and simulated annealing [65, 45], which have shown lack of efficiency [92]. As referred in

[79], by the beginning of this century a few papers, including namely [61, 17, 20], brought

the attention of the computer vision community to the graph cuts techniques, and its

extremely efficient performance in energy minimization for computer vision applications

(the seminal work using graph cuts for vision had been published more than a decade before

[54]). In this work we also propose a graph cuts based set of algorithms to approach our

energy minimization, in order to achieve phase unwrapping. In fact, the algorithms which

we propose have a close relation with certain energy minimization algorithms in computer

vision. We will now briefly refer to this.

Exact algorithm

In Chapter 3 we propose an algorithm to solve the above described energy minimization

problem, with the potential V being an arbitrary convex function. As in many applications

in vision, the smoothness energy term involves a function which depends on the difference

of labels at neighboring pixels: Vpq(lp, lq) = Vpq(lp − lq) as a way to somehow penalize

big differences between labels of adjacent pixels. This algorithm is exact, has pseudo

polynomial complexity [1] and is fast (see Chapter 3). By the time we developed our

work, another approach to exact energy minimization was independently developed by

Jérôme Darbon and Marc Sigelle [31, 28], by also using graph cuts and by using level sets

techniques. In that work the authors consider the existence of a convex data term, which

in our approach is also straightforward to consider if we like, and for the potential V in the

smoothness term, the potential V is considered to be the (non isotropic) total variation.

This energy is clearly more restrictive than ours. In that work, the authors illustrate the

power of the approach, by making image denoising considering an energy having an L2

data term (it represents the square of the difference between the data and the optimal

solution) and (non isotropic) TV smoothness term, where TV means the total variation of

the optimal solution (total variation has been conjectured to be a good image model since

seminal work of Rudin [89] and Rudin, Osher, and Fatemi [68]). This implicitly qualifies

our algorithm to also perform that kind of image denoising.

Rather than considering the L2 as the data term, in our phase unwrapping problem



1.3. THIS THESIS 11

we know that it is given by a cosine. More precisely, as already referred, the cosine

of the difference between the observed and the estimated phases. Thus being, to make

denoising, we devised a procedure of going on with the energy minimization by searching

for the unwrapped phase with increasing submultiples of 2π, until a certain stopping

precision. By, thus, increasing the precision of the steps in the minimization, we expect

to make denoising, and so it happens with all the experiments we performed. Obviously,

having a data term which is non convex goes out of the scope of our proposed algorithm.

To cope with that, we have devised an approximate version of it. We should refer that

after we have developed and published our approximate version of the algorithm, two

other approaches were published by Vladimir Kolmogorov [66] and by Jérôme Darbon

[30] (Darbon published a previous not so powerful result in [29]), which propose efficient

global energy minimizers valid as long as the potential V is convex. The main advancement

consists of allowing any data term (be it convex or not).

Approximate algorithm

Although we might employ one of the last two cited algorithms to implement the above re-

ferred denoising (which uses the non convex data term), the challenge of making phase un-

wrapping that preserves discontinuities (preserves boundaries of regions) led us to consider

discontinuity preserving potentials which, in particular, are non convex [55, 93]. Many of

the energy minimization applications in vision also require a non convex potential. Such

minimization problems are known to be extremely difficult to solve exactly. In fact, even

for one of the simplest non-convex potentials, given by the Potts model, the optimization

turns out to be NP-hard [20]. In this thesis we propose an approximate algorithm which

is a modification of the exact one, and relies, basically, on a maximization-minimization

approach and the enlargement of the moves employed. The phase unwrapping results

prove to be state-of-the-art competitive, being sometimes the state-of-the-art. We plan in

the future to evaluate the performance of the algorithm in some computer vision problems

namely stitching, inpainting, denoising, stereo matching and object recognition.
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1.4 Contributions

List of papers

The following papers, which substantiate this thesis, were published in reviewed journals

and conferences:

Journal

1. G. Valadão and J. Bioucas-Dias, “CAPE: Combinatorial Absolute Phase Estima-

tion”, Journal of the Optical Society of America A (Optics, Image Science and

Vision). September 2009 (pp. 2093 - 2106) [96].

2. J. Bioucas-Dias and G. Valadão, “Phase Unwrapping via Graph Cut”, IEEE Trans-

actions on Image Processing, March 2007 (pp. 698 - 709) [11].

Conference

3. J. Bioucas-Dias and G. Valadão, “Multifrequency Absolute Phase Estimation via

Graph Cuts”, in Proceedings of the 17th European Signal Processing Conference -

EUSIPCO2009, Glasgow, Scotland, August 24-28, 2009 [13].

4. G. Valadão and J. Bioucas-Dias, “Phase Imaging: Unwrapping and Denoising with

Diversity and Multi-Resolution”, in Proceedings of the 7th Conference on Telecom-

munications, ConfTele2009, Santa Maria da Feira, Portugal, May, 2009 [97].

5. G. Valadão and J. Bioucas-Dias, “Phase Imaging: Unwrapping and Denoising with

Diversity and Multi-Resolution”, in Proceedings of the 2008 International Workshop

on Local and Non-Local Approximation in Image Processing, LNLA 2008, Lausanne,

Switzerland, August 23-24, 2008 [98].

6. J. Bioucas-Dias and G. Valadão, “Phase Unwrapping via Diversity and Graph Cuts”,

in Proceedings of the IWSSIP 2008 (15th International Workshop on Signals, Sys-

tems and Image Processing), Bratislava, Slovak Republic, June 25- 28 [12].

7. G. Valadão and J. Bioucas-Dias, “PUMA: Phase Unwrapping via Max flows”, in

Proceedings of the 6th Conference on Telecommunications, ConfTele2007, Peniche,

Portugal, May, 2007 [95].
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8. J. Bioucas-Dias and G. Valadão, “Discontinuity Preserving Phase Unwrapping using

Graph Cuts”, in proceedings of the Energy Minimization Methods in Computer

Vision and Pattern Recognition EMMCVPR05, St. Augustine, U.S.A, Vol. 1, pp.

268-284, November, 2005 [8].

9. J. Bioucas-Dias and G. Valadão, “Phase Unwrapping: a New Max-flow/Min-cut

Based Approach”, in Proceedings of the IEEE International Conference on Image

Processing - ICIP2005, Genova, Italiy, September, 2005 [9].

10. J. Bioucas-Dias and G. Valadão, “Phase Unwrapping via Graph Cuts”, in Proceed-

ings of the 2nd Iberian Conference on Pattern Recognition and Image Analysis -

IbPRIA2005, Estoril, Portugal, 2005 [10].

11. G. Valadão and J. Bioucas-Dias, “Phase Unwrapping Via Graph Cuts”, in Global

Developments in Environmental Earth Observation from Space: 25th EARSEL Sym-

posium, EARSEL2005, Porto, Portugal, June 2005 [94].

Next we list, synthetically, the major contributions of this thesis:

• A new approach to phase unwrapping [10, 94, 11].

• Unification of the minimum Lp norm, p ≥ 1, phase unwrapping problems [9, 8, 95,

11].

• Proposal of approximate phase unwrapping algorithms able to consider non-convex

potentials in the MRF [9, 8, 95, 11].

• Denoising procedure sharing the same discrete rationale of phase unwrapping [98,

97, 96].

• Frequency diversity phase unwrapping [12, 13].

• Development of algorithms that are interesting to other domains such as, e.g., com-

puter vision.

1.5 Dissertation outline

This dissertation is divided into seven chapters. Chapter 2 formulates the phase unwrap-

ping problem, gives a brief overview of the main approaches to solving it, and makes refer-

ence to some state-of-the-art or otherwise outstanding algorithms. Following it, Chapter
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3 establishes the (Bayesian) adopted modeling, and introduces our aproach, that we name

PUMA, to phase unwrapping. Besides experimental results this chapter puts emphasis

on theoretical and algorithmic issues. Subsequently, Chapter 4 presents the variant of

PUMA that has the ability to blindly preserve discontinuities, and presents some exper-

imental results and benchmarking. Then, Chapter 5 brings out the denoising version of

PUMA, also showing some benchmarking and experimental results. Finally, Chapter 6

introduces frequency diversity illustrating it with experiences, and Chapter 7 succintly

draws conclusions about the introduced approach setting some future research directions.

Figure 1.4 depicts the main logical interdependences between the chapters of the dis-

sertation.
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Figure 1.4: Thesis outline.





Chapter 2

Phase Unwrapping

We have alluded, in the previous chapter, to the plethora of instances where phase imaging

sensors are only able to retrieve the wrapped phase instead of its absolute (i.e., real) value

[47, 49, 82, 91]. This makes phase unwrapping extremely important in the field of phase

imaging technologies.

Putting it a bit more formal, let us define the wrapper operator W(·) by

W : R −→ [0, 2π)

φ 7→ φ− 2πk,
(2.1)

where k ∈ Z is such that φ − 2πk ∈ [0, 2π). Therefore, W is simply the modulo-2π

operator. The inverse operation, i.e., to get φ given φ − 2πk ∈ [0, 2π) constitutes the

phase unwrapping problem. The variable φ is the absolute phase, which corresponds to

some physical quantity that depends on the application, and φ−2πk is the wrapped phase,

which is the observed quantity. In this dissertation phase is a real variable with the usual

physical meaning concerning the waves used in the imaging technique under consideration.

Alternatively, the wrapper operator is, very often, defined according to

W : R −→ [−π, π)

φ 7→ φ− 2πk,
(2.2)

where k ∈ Z is such that φ− 2πk ∈ [−π, π). According to (2.2) operator W, thus, wraps

any phase φ into the principal interval [−π, π) and, thus, it is in essence the modulo-2π

operator. In what follows we will use both equivalent definitions (2.1) and (2.2); at each

time, if relevant, the definition at use will be evident from context.

As previously mentioned, phase unwrapping is an ill-posed problem [56] as to a certain

wrapped phase value there corresponds an infinite number of possible, in theory, abso-

17
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Figure 2.1: (a) Modulo-2π wrapped image and its mesh rendering. (b) Possible unwrapped

solution and its mesh rendering. (c) A second possible unwrapped solution and its mesh

rendering.

lute phase values. Figure 2.1 illustrates this lack of uniqueness intrinsic to unwrapping,

by using a toy example employing 3 × 3 images. Figure 2.1 (a) shows a wrapped im-

age, together with a corresponding mesh rendering. Figures 2.1 (b) and 2.1 (c) present

two different possible corresponding unwrapped images, along with their mesh renderings

which emphasize how different those solutions are. To overcome the ill-posedness of phase

unwrapping, additional or a priori information is needed.

2.1 The Itoh Condition

The Itoh Method

An assumption taken by most phase unwrapping strategies, is that the absolute value of

phase differences between neighbouring pixels is less than π rad, the so-called Itoh condi-

tion [62]. If this assumption is not violated, it eliminates the ill-posedness of the problem,

allowing the absolute phase image to be easily determined up to a constant. Introducing

some simple notation, let us consider a sequence {φn} of values of neighbouring pixels over

an absolute phase image, and define a corresponding sequence of linear differences by

∆φn = φn − φn−1. (2.3)
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Hereafter, φ will always be denoting an absolute (i.e., unwrapped) phase, and ψ a wrapped

phase; the ∆ operator definition as a linear difference will hold, irrespective of phase being

an absolute or a wrapped one.

The Itoh condition can be expressed as

|∆φn| < π. (2.4)

From (2.3), it comes immediately

m∑

n=1

∆φn = φm − φ0, (2.5)

as the intermediate sequence values cancel out each other. Now, from (2.2), we have

W(φn) = φn − 2πkn (kn ∈ Z) and so,

∆W(φn) = φn − φn−1 − 2π(kn − kn−1), (2.6)

where kn, kn−1 ∈ Z. We can, thus, introducing (2.3), write

W [∆W(φn)]︸ ︷︷ ︸
a

= ∆φn −2π(kn − kn−1) − 2πk︸ ︷︷ ︸
b

, (2.7)

where kn, kn−1, k ∈ Z, and 2πk is the proper 2π multiple to bring a into the principal

interval. From (2.4) and knowing that by definition |a| ≤ π, we have necessarily b = 0,

which allows us to write,

W [∆W(φn)] = ∆φn. (2.8)

Finally, introducing (2.8) into (2.5) we obtain:

φm =

m∑

n=1

W [∆W(φn)] + φ0, (2.9)

which gives us a procedure for obtaining the unwrapped phase on any pixel, φm, from the

wrapped phase values along any path linking that pixel to another, for which the absolute

phase value, φ0, is known: the Itoh method. By covering the image with a path, it allows

us to unwrap an entire image up to a constant (the absolute phase value for one pixel in

the image) given that the Itoh condition is satisfied (on the path).

A Smoothness Assumption

Again referring to Figure 2.1, the image in Figure 2.1 (b) clearly verifies the Itoh condi-

tion, while image in Figure 2.1 (c) does not. These two images correspond to very different
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absolute phase solutions, the first one showing the smoothness assumption that Itoh con-

dition holds for the absolute images. This is, in fact, the case in many phase imaging

applications, where phase is very often spatially smooth or, at least, piecewise smooth.

It is instructive to note that the Itoh condition can also be understood as a version of

the Nyquist sampling theorem. Nyquist’s theorem states that a continuous, bandwidth-

limited, signal1 can be completely reconstructed from a sampling made, almost everywhere,

at a frequency greater than the double of its higher frequency component w [102]. This

means that, the “minimum” sampling must have a frequency higher than 2w, for which the

samples present a phase difference less than π radians, which is exactly the Itoh condition

(2.4). Furthermore, as stated in Nyquist’s theorem, Itoh condition can be relaxed just to

be satisfied almost everywhere in the image.

Itoh condition lies at the heart of most phase unwrapping techniques, hence the em-

phasis we have put on it in this section. In the following one, we will briefly review the

main phase unwrapping approaches and representative state-of-the-art algorithms.

2.2 Main Phase Unwrapping Approaches and

State-Of-The-Art Algorithms

We have seen that Itoh condition immediately provides a phase unwrapping method,

which, as explained in the previous section, employs a path following concept. Never-

theless, it is unrealistic to expect it to be applicable everywhere, as phase images very

often exhibit discontinuities, i.e., neighbour pixels phase differences larger than π radians,

which constitute violations to the Itoh condition. Moreover, noise also introduces phase

discontinuities.

In this scenario, the phase unwrapping problem is rather more difficult and a great

number of solving techniques (exact or approximate) have been proposed in the literature.

In this section, we succinctly overview the main approaches and highlight some of the

representative algorithms.

2.2.1 Path Following Methods

Path following methods directly apply the concept, introduced in the Itoh algorithm, of

discrete phase integration along a path. Given a starting pixel, for which the absolute

1A continuous function whose Fourier transform power spectrum is limited [102].
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Figure 2.2: (a) Wrapped image. (b) A possible unwrapped solution. (c) Another possible

unwrapped solution.

phase is known, Itoh method prescribes on how to compute the absolute phase on any

other pixel, without restricting the path linking the two whatsoever. A basic question

arises, though, on whether this discrete integration is, in general, path independent. The

answer to this question is negative, as is illustrated in Figure 2.2, where a very simple

counter-example is given. There, we depict an elementary wrapped image [Figure 2.2 (a)]

along with the unwrapped solutions obtained by employing the Itoh condition using two

distinct paths linking the start pixel (represented by a hollow square) and the end pixel

[Figs. 2.2 (b) and (c) respectively]. In what follows, we call parallel paths to any two

(or more) paths sharing the same start and end pixels. As can be seen, in this case the

integration is path dependent.

Residues

These path dependence phenomena in 2D phase unwrapping were first reported by Ghiglia

et al. in [48]. There, furthermore, the authors observed that these inconsistencies were

restricted to some regions in the phase image.

We note here that path integration dependence among two parallel2 paths can be

tested by reverting the direction of one of them, and then integrating along the resultant

closed loop path. Clearly, there is path dependence when that quantity does not evaluate

to zero.

Accordingly, to identify in full detail the inconsistencies locations in the image, Ghiglia

et al. devised the (natural) strategy of path integrating the phase around every elementary

2 × 2 loop; whenever that sum is not zero, it signals an inconsistency located precisely

2By definition, path integration dependence is to be tested between parallel paths.
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Figure 2.3: (a) An elementary closed loop having a residue. The path integration always

sums up to a 2π multiple, and in this case the residue charge is negative. (b) Any closed

loop can be given as composition of elementary closed loops. In this sketch each pair

of cancelling elementary path components is signalled by a red ellipse. The remaining

components constitute the original outer closed path.

on that loop. Later, the term residue3, instead of inconsistency, was introduced by Gold-

stein et al. in [53], and became the standard term ever since. By convention residues are

computed using counter-clockwise closed loops, the absolute value of the sum is always

a 2π multiple4, as illustrated in Figure 2.3 (a), and its signal defines the residue charge

sometimes also termed residue polarity. It should be noted that a 2×2 loop is elementary,

in the sense that it is the shortest closed path that we may define and, accordingly, any

closed path can be given by a composition of all such elementary loops that it encloses;

Figure 2.3 (b) illustrates this issue. Therefore, given two parallel paths and considering

again the correspondent closed loop, the sum of the enclosed residues is an effective cri-

terion for inconsistency detection. We must remark at this point that while, as above

referred, a residue implies a phase discontinuity existence, the converse implication does

not hold. Therefore, additional information is very often, even if implicitly, introduced, as

will become apparent in the next sections.

Branch Cuts Algorithms

A strategy to overcome path dependence in path following phase unwrapping methods is

to connect opposite charge residues with certain lines with which integration paths are

not allowed to have cross-overs. In this way, the net charge of possible residues that may

3In a clear resemblance with complex analysis.
4It can be easily shown [49, Chap.2].
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(a) (b)

Figure 2.4: Example of residues and respective possible branch cuts configurations (taken

from [49]). Positive charged residues are represented by black dots and negative charged

ones by white dots. (a) Ill branch cuts configuration. (b) Minimum length branch cuts

configuration.

be enclosed on any path, is necessarily zero and, as argued in the previous section, there

is no path dependence phenomena (as alluded before, this does not ensure a correct phase

unwrapping though). Those lines are the so-called branch cuts5; other valid branch cuts

are those linking a residue to a border of the image (it makes it impossible for any path

to encircle the residue). From the many PU algorithms of the branch cuts type published

in the literature, we emphasize [53] by Goldstein, Zebker, and Werner, published in 1988,

which is one of the earliest to be reported in the 2D phase unwrapping literature.

Choosing the placement for the branch cuts is a critical task, as illustrated in Figure

2.4 taken from [49]. In Figure 2.4 (a), we show a set of opposite charges residues and a

certain branch cuts configuration. Clearly, that is an ill choice, as there are large isolated

regions which will always remain so6, and the lengthy branch cuts almost isolate other huge

regions as well. The proposed configuration in Figure 2.4(b) is clearly better, suggesting

the minimization ot the total branch cuts length as a criterion to the choice of the cuts

configuration.

To minimize the total branch cuts length is, by itself, a very difficult problem. That

is why Golsdstein’s algorithm only solves it approximately. Besides being seminal in the

phase unwrapping literature, Goldstein’s algorithm is still competitively fast and does not

restrict itself to creating dipoles, but also residues clusters7. Other branch cuts algorithms

5Also termed residue cuts by some authors.
6As integration paths cannot traverse branch cuts.
7More complex structures in which same charge residues are linked together forming charged clusters.
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include, e.g., [58], [26].

Quality Guided Algorithms

This class of algorithms employs quality maps to guide the integration paths. By noting

that residues tend to be located in low quality regions of the image [49, Chap.4], they use

the additional information to avoid residues-originated path dependence without, however,

explicitly identifying those residues. In fact, they constitute an attempt to overcome the

possible misplacement of branch cuts which, as previously referred, is a difficult problem.

Many of these techniques basically adopt the criterion of letting the quality values to

define the order by which phase is unwrapped, giving priority to high quality phase pixels

[88], [73].

A further development is the design of algorithms using quality maps to delineate the

branch cuts [83], [34], [40]. In doing so, they attempt to employ the additional information

contained in the quality maps, as well as retaining the branch cuts guarantee of path

integration independence.

When a good quality map is lacking, the performance of the Goldstein’s algorithm is

found to be superior to the performance of quality guided algorithms [49, Chap. 4].

2.2.2 Minimum Norm Methods

In the previous section, we introduced a seminal phase unwrapping class of methods which

rely on path following concepts. Now, we will overview another major approach to phase

unwrapping: the minimum norm methods. As will become apparent in what follows,

they rely on a completely different concept. While path following methods are local in

nature, minimum norm methods adopt a global perspective, addressing the problem via

optimization procedures that involve the image as a whole.

The Minimum Lp Norm

Minimum norm methods try to find an absolute phase image solution Φ8, for which the Lp

norm9 of the difference between absolute phase’s linear differences10 and wrapped phase’s

The opposite charged clusters are then connected by a branch cut to balance charge.
8When referring to a whole image, instead of one of its pixels, we will employ boldface types.
9This is an analogy with norms defined in Lp spaces, which are measure theory concepts. For further

reading see, e.g., [84].
10The term linear difference is employed here as the difference between neighbour pixels values.
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linear differences, horizontal and vertical, is minimized. This kind of methods, thus, look

for unwrapped phase images whose local variations match the measured local variations,

in a certain sense that is given by the particular Lp norm chosen, as detailed in the next

paragraph. So, in fact, they can be considered as surface fitting processes.

More formally, the minimization goal is to yield an unwrapped image solution Φ̂, and

can be expressed by

Φ̂ = arg min
Φ

E(Φ), (2.10)

with E(Φ) being the above referred Lp norm which is given by

E(Φ) =
M∑

m=1

N−1∑

n=1

∣∣∣∆hφm,n − ∆hψm,n

∣∣∣
p
+

M−1∑

m=1

N∑

n=1

|∆vφm,n − ∆vψm,n|p , p ≥ 0 (2.11)

and

∆hφm,n ≡ φm,n+1 − φm,n, ∆vφm,n ≡ φm+1,n − φm,n,

∆hψm,n ≡ W (ψm,n+1 − ψm,n) , ∆vψm,n ≡ W (ψm+1,n − ψm,n) ,

where Φ is a possible unwrapped phase image, Ψ is the wrapped phase image, M and

N denote, respectively, the number of lines and columns in the images, ∆h(·) and ∆v(·)
denote the horizontal and vertical linear differences, respectively, and W is the wrapper

operator introduced in expression (2.2). Let us note here that the presence of the wrapper

operator is, again, a way of applying the Itoh condition11. Given that by hypothesis

Φ = Ψ + 2πk, where k is an integer image, (2.11) turns into

E(Φ) =
M∑

m=1

N−1∑

n=1

∣∣∣∆hkm,n

∣∣∣
p
+

M−1∑

m=1

N∑

n=1

|∆vkm,n|p , p ≥ 0, (2.12)

where

∆hkm,n ≡ km,n+1 − km,n, ∆vkm,n ≡ km+1,n − km,n,

and where, without loss of generality, we do not care about a 2π factor attached to the

integer values. From (2.12) we can see that we are dealing with an optimization problem

constrained to the integers.

11To illustrate the importance of operator W in this formula, let us consider two neighbour pixels with

phase values π−0.1 and π+0.1, respectively. Their correspondent derivative is ∆ = 0.2. On the other hand,

their wrapped counterparts are π − 0.1 and −π + 0.1 respectively, and accordingly, their correspondent

derivative is ∆ = −2π + 0.2. Obviously, it is desirable to fit the derivative of the unwrapped solution to

the true ∆ = 0.2 and not to ∆ = −2π + 0.2. It is, therefore, convenient to apply the wrapper operator to

annihilate the erroneous introduced 2π ambiguity in the latter derivative value.
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Furthermore, when a quality map Q is available, it is possible to derive horizontal and

vertical quality measures [41] Qh and Qv, respectively, and it can be defined a weighted

Lp norm analogous to (2.11):

E(Φ) =

M∑

m=1

N−1∑

n=1

qh
m,n

∣∣∣∆hφm,n − ∆hψm,n

∣∣∣
p
+

M−1∑

m=1

N∑

n=1

qv
m,n |∆vφm,n − ∆vψm,n|p , p ≥ 0.

(2.13)

Namely, in regions where it is known to exist absolute phase discontinuities, or noise

corruption, we can set qm,n to low or zero values and, so, reduce the poor quality phase’s

influence on the unwrapped solution [49, Chap. 4].

Expressions (2.10), (2.11), and (2.13) clearly highlight the global character of these

techniques, in the sense that all the observed phases are used to compute a solution.

Distinct exponent p values in Lp norms yield distinct properties in the unwrapping per-

formance; usually only p ≤ 2 values are employed and namely p = 0, 1, 2 are the most

representative. We will next quickly refer to some of the correspondent algorithms for

these p values.

L2 Norm Algorithms

With p = 2 we have a least squares problem. We remark here that the minimization of an

Lp norm, as defined above, even just for p = 2 is a discrete minimization problem which

is very demanding from the computational point of view [49, Chap. 5]. As such, the great

majority of the existing algorithms are approximate ones. In addition, a drawback of the

L2 norm based criterion is that it tends to smooth discontinuities, unless they are provided

as binary weights.

Fried and Hudgin were the first to propose least squares type phase unwrapping ap-

proximate algorithms [42], [57]. Since then, many algorithms have been published, from

which we highlight (due to popularity) those approximating the least squares solution by

relaxing the discrete domain Z
MN to R

MN . In doing so, they intend to overcome the

complexity introduced by the discrete nature of the problem. It can be shown that in

the continuous domain, the problem is equivalent to solving a Poisson partial differential

equation [49, Chap. 5]. This has been solved by applying techniques using fast Fourier or

cosine transforms, and then coming back to discrete domain [50]. An exact solution to least

squares is developed as a step of the ZπM algorithm in [36], using network programming

techniques.
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L1 Norm Algorithms

L1 norm performs better than L2 norm in what discontinuity preservability is concerned

[68], [77]. Such a criterion has been solved exactly by Flynn [41] and Costantini [24],

using network programming concepts. We here highlight with a little more detail Flynn’s

algorithm, as it is somehow closer to our own approach.

Flynn’s Minimum Discontinuity Algorithm

As presented previously, phase unwrapping is an inverse problem with relation to the

wrapping process, which in turn, by definition, creates discontinuities in the wrapped

image. Given that the discontinuities in the unwrapped image should be limited to noisy

areas and to the true absolute image discontinuities, which often can be identified in quality

maps, Flynn’s algorithm [41] fundamental idea consists in choosing between the possible

unwrapped images, the one which minimizes discontinuities. Basically, this algorithm

operates by applying iteratively an elementary procedure of partitioning the image in two

connected regions and, then, adding a 2π phase to one of them, such that the weighted

sum of discontinuities decreases.

Introducing, succinctly, the notation used by Flynn in [41], let us define, respectively,

the vertical and horizontal jump counts by:

vm,n =

⌊
φm,n − φm−1,n + π

2π

⌋
, (2.14)

zm,n =

⌊
φm,n − φm,n−1 + π

2π

⌋
, (2.15)

where (m,n) represents the usual pixel indexing, and ⌊x⌋ is the largest integer less or

equal than x. A jump count is, then, the multiple of 2π that is required to annihilate

a discontinuity (we recall that a discontinuity exists when two neighbouring pixels phase

difference is greater than π). The goal of Flynn’s algorithm is, thus, to minimize the L1

norm of the (weighted) jump counts (2.16)

E =
∑

wv
m,n |vm,n| + wz

m,n |zm,n| , (2.16)

where wv
m,n and wz

m,n denote vertical and horizontal weights, respectively, which are de-

rived from quality maps. It should be noted that the minimization procedure is guaranteed

to reach the global minimum [41].
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2.2.3 Low p Valued Lp Norm Algorithms

With 0 ≤ p < 1 the discontinuity preserving ability of the minimum Lp norm algorithms

is further increased at stake, however, of highly complex algorithms [21]. In particular,

the L0 norm is generally accepted as the most desirable in practice. The minimization of

the Lp, 0 ≤ p < 1, norm is, however, an NP-hard problem [44], [21], for which approximate

algorithms have been proposed in [49, Chap. 5] and [22]. An interpretation for the benefits

of the L0 norm (and, for that matter, the Lp norm with 0 ≤ p < 1) is the sparsity of the

solution which, for Lp norms, is highest for p = 0. It is accepted (in the phase unwrapping

community) that those sparse solutions, which tend to concentrate the discontinuities in a

few locations, give the best approximation to ground truth under the minimum Lp norm

rationale.

2.2.4 Bayesian and Parametric Methods

The Bayesian approach relies on a data-observation mechanism model, as well as a prior

knowledge of the phase to be modelled. This is a probabilistic approach to phase unwrap-

ping, where data-observation mechanism is modelled by a conditional probability density

function P (Ψ|Φ), and the a priori knowledge by the so-called prior probability density

function P (Φ). Here Φ is the unwrapped image and Ψ the wrapped image. Using the

Bayes’ theorem

P (Φ|Ψ) =
P (Ψ|Φ)P (Φ)

P (Ψ)
, (2.17)

we can get the a posteriori probability density function and, from there, to infer the

unwrapped image Φ.

For instance in [70], a non-linear optimal filtering is applied, while in [37] an InSAR

observation model is considered, taking into account not only the image phase, but also

the backscattering coefficient and correlation factor images, which are jointly recovered

from InSAR image pairs. Work [32] proposes a fractal based prior.

Finally, parametric algorithms constrain the unwrapped phase to a parametric surface.

Low order polynomial surfaces are used in [43]. Very often in real applications just one

polynomial is not enough to describe accurately the complete surface. In such cases the

image is partitioned and different parametric models are applied to each partition [43].



Chapter 3

Phase Unwrapping: Convex

Scenario

3.1 Bayesian Model

The observation model relating the noisy wrapped phase with the true phase depends

on the system under consideration (see, e.g., [49, 36, 64] for an account of observation

models in different coherent imaging systems). The essential of most of these observation

mechanisms is, however, captured by the relation

z = Aejφ + n, A > 0, (3.1)

= |z|ej(φ+φn),

where φ is the true phase value (the so-called absolute phase value), n = nI + jnQ is

a complex-valued zero-mean circular white additive noise with variance σ2 (i.e., nI and

nQ are zero-mean independent Gaussian random variables with variance σ2/2), φn is the

phase of noise n, A is an amplitude, and z is a random variable from which, by using

the wrapper operator, we get the observed wrapped (and noisy) phase. The wrapper

operator was defined through expressions (2.1) and (2.2). A more compact and possibly

more familiar definition is given by

ψ = angle(z) = W(φ+ φn), ψ ∈ [−π, π). (3.2)

We recall that the operator W maps the phase φ + φn into the principal phase interval

[−π, π): our goal is to infer the absolute phase φ from the wrapped and noisy observed

phase ψ.

29
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Let G = (V, E) be a directed graph associated to a first order Markov random field

(MRF), where the set of nodes V represents the set of image pixels and the set of directed

edges E represents the set of links between pairs of neighboring pixels. In this work, we

consider only first-order MRFs and, therefore, the edges in E link horizontal and vertical

immediate neighbors. Nevertheless, all the concepts and results next presented are valid

for any set of pairwise interactions. We will make inference in these random fields.

We follow the Bayesian framework, accordingly, we need to build the posterior density

function p(φ|Z) of the phase image φ ∈ R
|V|, given the observed complex image Z ∈ C

|V|

(C denotes the complex field). Invoking the Bayes’ law we have p(φ|Z) ∝ p(Z|φ)p(φ),

where p(Z|φ) is the likelihood function measuring the data fit, and p(φ) is the prior

density encoding a priori knowledge about the absolute phase image φ.

Let us assume conditional independence in the observation mechanism, i.e., p(Z|φ) =
∏

i∈V p(zi|φi). This is a standard assumption that is true as long as the resolution volumes

that contribute to distinct pixels are disjoint, which is a valid approximation for most

imaging systems [23]. Furthermore, let us explicit the knowledge that the prior of an

MRF is Gibbsian, i.e., p(φ) ∝ exp {−µV (φ)} [45, 5], where V (φ) =
∑

{i,j} Vi,j(φi, φj),

µ is often termed the regularization parameter, Vi,j(·) (a real valued function) is the

so-called clique potential associated with edge {i, j}, and where we consider Vi,j(φi, φj) ≡
Vi,j(φi−φj). The usual assumption that, in an MRF, the random variables at neighboring

sites have similar realizations, i.e., that neighboring pixels have similar values, is modeled

by such set of potentials, which penalize the difference between those values. It is in

view of this penalization that we define Vi,j(φi, φj) ≡ Vi,j(φi − φj). Generally, greater

differences between phase values get more penalized, nevertheless, the specific dependence

is, obviously, determined by the particular chosen Vi,j.

Under the Bayesian framework and an MRF prior it is usual to adopt the maximum

a posteriori (MAP) criterion to estimate the unknown, which in our case is φ. The MAP

estimate seeks the mode of the posterior distribution: φ̂ = arg maxφ p(φ|Z). Although

MAP is not the only criterion available, it has been widely used in reconstruction problems

(such as ours) for which it very often seems well suited [45, 72].

MAP estimation

In these circumstances, computing the MAP estimate is equivalent to minimize the neg-

ative logarithm of the posterior density, i.e., the energy, E : R
|V| → R ∪ {+∞} given
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by

E(φ) ≡
∑

i∈V

Di(φi)

︸ ︷︷ ︸
Data fidelity term

+µ
∑

{i,j}∈E

Vi,j (φi − φj)

︸ ︷︷ ︸
Prior term

, (3.3)

where Di(φi) ≡ − log p(zi|φi).

Given the observation mechanism introduced in (3.2), we have (see, e.g., [36])

p(zi|φi) =
1

πσ2
e

−|zi−Ae
jφi |2

σ2 ,

and, thus, by dropping some irrelevant constants we get

Di(φi) = −λi cos(φi − ψi), for i ∈ V,

with λi ≡ 2A|zi|/(σ2) and ψi ≡ angle(zi); i.e., the loglikelihood function is proportional to

a shifted cosine of φ. The MAP absolute phase estimate is then obtained by minimizing

the negative of the logposterior function given by

E(φ) ≡
∑

i∈V

−λi cos(φi − ψi)

︸ ︷︷ ︸
Data fidelity term

+µ
∑

{i,j}∈E

Vi,j (φi − φj)

︸ ︷︷ ︸
Prior term

. (3.4)

Notice that µ, the regularization parameter, sets the relative weight between the data

fidelity term and the prior term.

We emphasize that the MAP estimation gives place to minimizing the logposterior

(3.4). For a given image phase φ candidate to a MAP solution, this function comprises

a data fidelity term, which measures the misfit between the observed data and φ, and a

prior term, which measures the lack of plausibility of φ, induced by the potentials Vi,j(·);
roughly, enforcing smooth surfaces implies convex potentials, whereas enforcing piecewise-

smoothness, and thus preserving surface’s discontinuities, implies non-convex potentials.

Assume that the noise approaches zero. Then, λi ≡ 2A|zi|/(σ2) → +∞ and any MAP

solution satisfies cos(φi − ψi) = 1 implying the constraints

φi = ψi + 2πki, for i ∈ V and ki ∈ Z. (3.5)

Therefore, computing the MAP solution reduces to minimizing the prior term in (3.4)

under the constraints (3.5). This is the strict phase unwrapping problem, which is an

integer optimization problem well known to be a difficult task to perform [20]. The phase

unwrapping is even more tricky because, usually, the phase images have a large |V| (e.g.,

106 variables for a 1000 by 1000 image) and are noisy.
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3.2 Problem Formulation

As we have seen in the previous section, the MAP estimation of the absolute phase φ in

a noiseless scenario reduces to minimize (3.4) under constraints (3.5), i.e., to minimize

E(k|ψ) ≡
∑

{i,j}∈E

Vij (∆φij) , (3.6)

where k ≡ {ki : i ∈ V} is an image with integer values which count 2π multiples, the so-

called wrap-count image, ψ ≡ {ψi : i ∈ V} is the observed wrapped phase image, Vij(·)
is the clique potential, a real valued function, and ∆φij denotes the difference between

neighboring pixels phase given by

∆φij ≡ [2π(ki − kj) − ∆ψij ] , k ∈ Z (3.7)

∆ψij ≡ ψi − ψj . (3.8)

We can encode the a priori availability of knowledge about the location of phase discon-

tinuities, by introducing variables dij that signal their existence. So, dij ∈ {0, 1}, with

dij = 0 meaning that we know that there is a discontinuity between neighboring pixels i

and j, and dij = 1 meaning that we do not have such information. The MAP estimation

consists then of minimizing (3.9)

E(k|ψ) ≡
∑

{i,j}∈E

Vij (∆φij) dij , (3.9)

which is identical to (3.6) except for the terms dij which we have just introduced, and for

which, by default, we have dij = 1.

Our goal is to find the integer image k that minimizes energy (3.9), k being such that

φ = 2πk + ψ, where φ is the estimated unwrapped phase image, and ψ is the observed

wrapped image.

As will be seen in the next section, this energy minimization approach yields the

classical minimum Lp norm formulation, or a more general one, depending on the chosen

potential V. We should stress that the variables dij , conveying discontinuity information,

are introduced when available. In the jargon of PU these images are the quality maps.

These, can also be used as continuous variables in [0, 1], expressing prior knowledge on

phase variability. Quality maps can be derived, for example, from correlation maps in

InSAR, or from phase derivative variance in a more general setting [49, Chap. 3].
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In the next sections, we present in detail the proposed approach. We show that for

convex potentials V , the minimization of E(k|ψ) can be achieved through a sequence of

binary optimizations; each binary problem is mapped onto a certain graph and a binary

minimization obtained by computing a max-flow/min-cut on it. Finally, we address a set

of potentials tailored to phase unwrapping.

3.3 Equivalence Between Local and Global Minimization

Assuming a convex potential V , the following theorem assures that if the minimum of

E(k|ψ) is not yet reached, then, there exists a binary image δ ∈ {0, 1}|V| ≡ B (i.e., the

elements of δ are 0 or 1) such that E(k + δ|ψ) < E(k|ψ). Therefore, if a given image

k is locally optimal with respect to the neighborhood N1(k) ≡ {k + δ : δ ∈ B}, i.e., if

E(k′|ψ) ≥ E(k|ψ) for all k′ ∈ N1(k), then k it is also globally optimal.

Theorem 1 Let k1 and k2 be two wrap-count images such that

E(k2|ψ) < E(k1|ψ). (3.10)

Then, if V is convex, there exists a binary image δ ∈ B such that

E(k1 + δ|ψ) < E(k1|ψ). (3.11)

Proof: See the Appendix.

3.4 Convergence Analysis

In accordance with Theorem 1, we can iteratively compute kt+1 = kt + δ, where δ ∈ B
is such that it minimizes E(kt + δ|ψ), until the minimum energy is reached. There is of

course the pertinent question of whether the algorithm stops1 and, if it does, in how many

iterations. Regarding the second issue, assuming that k0 = 0, the next lemma, which is

inspired in the Proposition 3.7 of [27], leads to the conclusion that after t iterations the

algorithm minimizes E(·|ψ) in Dt ≡ {k′ : 0 ≤ k′i ≤ t}.

1To stop is a necessary condition for a set of instructions to be considered an algorithm, in many of the

definitions of the concept.
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Lemma 1 Let kt and kt+1 be globally optimal minimizers of E(·|ψ) on Dt and Dt+1,

respectively. Then

kt+1 − kt ∈ B.

Therefore, kt+1 can be found by minimizing E(kt + δ|ψ) with respect to δ ∈ B.

Proof: See the Appendix.

Assume that the range of E spans over K wrap-counts. Then its global minimizer is

in the set DK , and therefore Lemma 1 assures that the iterative scheme

do

kt+1 = kt + arg min
δ∈B

E(kt + δ|ψ)

while E(kt+1|ψ) < E(k|ψ),

starting with k0 = 0, finds this minimizer in at most K iterations. Its complexity is

therefore KT , where T is the complexity of a binary optimization. Regarding the first

issue, of whether the algorithm stops, we note that if the energy minimum exists, then it

is evident that between k0 = 0 (or any other starting k0) and a minimizer, the number

of configurations is finite; by configuration we mean the set of images having the same

difference image (a difference image is one whose entries are given by ∆k = ki − kj; we

stress that the considered energy depends only on configurations). This implies that the

algorithm stops. We note that for the minimum to exist it is enough to consider that the

clique potential is coercive, which we consider hereinafter.

3.5 Mapping Binary Optimizations onto Graph Cuts

Let kt+1
i = kt

i + δi be the wrap-count at time t+ 1 and pixel i. Introducing kt+1
i into (3.7)

we obtain

∆φij =
[
2π(kt+1

i − kt+1
j ) − ∆ψij

]
. (3.12)

After some simple manipulation, we get

∆φij = [2π(δi − δj) + aij] , (3.13)

where

aij ≡ 2π(kt
i − kt

j) − ∆ψij. (3.14)



3.5. MAPPING BINARY OPTIMIZATIONS ONTO GRAPH CUTS 35

Now, introducing (3.13) into (3.9), we can rewrite energy E(kt + δ|ψ) as a function of the

binary variables δi ∈ {0, 1}, i.e.,

E(kt + δ|ψ) =
∑

{i,j}∈E

V [2π(δi − δj) + aij] dij︸ ︷︷ ︸
Eij(δi,δj)

. (3.15)

We now map the minimization of (3.15) with respect to δ onto a graph mincut problem.

In the last decade a considerable amount of research effort has been devoted to energy

minimization by graph cuts methods (among the main contributions we highlight [67],

[99], [20], [38], [103], [60]). Namely, the mapping of a pairwise-interaction first order MRF

minimization problem into a sequence of binary minimizations, computed by graph cuts

techniques, has been addressed in [99] and [20]. Nevertheless, those two works provide

approximate solutions only.

Work in [67] gives necessary and sufficient conditions for a binary function with pairwise

interactions to be representable on a graph; furthermore, the graph structures therein

proposed are simpler and, accordingly, we adopt the method proposed therein. A special

reference to [60] should be made: it introduces an exact energy minimization for convex

potentials also by using graph cuts. However, in practice, for most problems involving

many variables, as is the case with images, the graph there employed can be huge, which

imposes heavy computational and storage demands.

Following then [67], we exploit a one-to-one map existing between energy (3.15), as a

function of δ, and cuts on G. We further detail that the graph has non negative weights

and has two special vertices besides the vertices contained in V, namely the source s and

the sink t. An s − t cut C = {S, T} is a partition of vertices V into two disjoint sets S

and T , such that s ∈ S and t ∈ T . The number of vertices is 2 + |V| (two terminals, the

source and the sink, plus the number of pixels). The cost of the s − t cut is the sum of

costs of all edges that link S to T . Using the notation above introduced, we have

Eij(0, 0) = V (aij) dij ,

Eij(1, 1) = V (aij) dij ,

Eij(0, 1) = V (−2π + aij) dij,

Eij(1, 0) = V (2π + aij) dij .

(3.16)

According to [67] we define the class F2 to be the family of functions that can be written

as a sum of functions of up to two binary variables at a time. Clearly energy E(kt + δ|ψ)
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belongs to F2. Roughly speaking2, a function of F2 is graph representable, i.e., there exists

a one-to-one relation between δ ∈ {0, 1}|V| [i.e., points in the domain of E(kt + δ|ψ)] and

s− t cuts on that graph, if and only if holds

Eij(0, 0) + Eij(1, 1) ≤ Eij(0, 1) + Eij(1, 0). (3.17)

For a proof see [67]. In terms of Eij [see expression (3.16)] equation (3.17) can be stated

as [V (−2π + a) + V (2π + a)] dij ≥ 2V (a)dij , which is verified due to convexity of V . So,

our binary function is graph-representable.

The structure of the graph is as follows: first build vertices and edges corresponding

to each pair of neighbouring pixels, and then join these graphs together based on the

additivity theorem also given in [67].

So, for each energy term Eij [see expression (3.15)], we construct an “elementary”

graph with four vertices s, t, v, and v′, where s and t represent the source and the sink,

respectively, common to all terms, and v, v′, represent the two pixels involved [v being

the left (up) pixel and v′ the right (down) pixel]. Following very closely [67], we define

a directed edge {v, v′} with the weight E(0, 1) + E(1, 0) − E(0, 0) − E(1, 1). Moreover,

if E(1, 0) − E(0, 0) > 0, we define an edge {s, v} with the weight E(1, 0) − E(0, 0) or,

otherwise, we define an edge {v, t} with the weight E(0, 0) −E(1, 0). In a similar way for

vertex v′, if E(1, 1)−E(1, 0) > 0, we define an edge {s, v′} with weight E(1, 1)−E(1, 0) > 0

or, otherwise, we define an edge {v′, t} with the weight E(1, 0) − E(1, 1). Figure 3.1 (a)

shows an example where E(1, 0) − E(0, 0) > 0 and E(1, 0) − E(1, 1) > 0. Figure 3.1 (b)

illustrates the complete graph obtained at the end.

We may rewrite each term of energy (3.15) to clarify the mapping between its (binary)

minimization and a graph cut. By recalling that E =
∑

{i,j}∈E E
ij(xi, xj), where xi, xj ∈

{0, 1}, and by defining x̄i = 1−xi, it is straightforward to verify that the following identity

(3.18) holds:

Eij(xi, xj) = Eij(0, 0)x̄ix̄j + Eij(1, 0)xix̄j +Eij(0, 1)x̄ixj + Eij(1, 1)xixj , (3.18)

which in turn we can rearrange into

Eij(xi, xj) = c+ αixi + αjxj + βij(xi − xj)xi, (3.19)

2As defined in [67], a function E of n binary variables is called graph-representable if there exists a graph

G = (V, E) with terminals s and t and a subset of vertices V0 = {v1, . . . , vn} ⊂ V − {s, t} such that, for

any {δ1, . . . , δn}, the value of the energy E(δ1, . . . , δn) is equal to a constant plus the cost of the minimum

s-t-cut among all cuts C = {S, T} in which vi ∈ S, if δi = 0, and vi ∈ T , if δi = 1 (1 ≤ i ≤ n).
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Figure 3.1: (a) Elementary graph for a single energy term, where s and t represent source

and sink, respectively, and v and v′ represent the two pixels involved in the energy term.

In this case E(1, 0) − E(0, 0) > 0 and E(1, 0) − E(1, 1) > 0. (b) The graph obtained at

the end results from adding elementary graphs.

by noting that xi
2 = xi, and where βij = Eij(1, 0) + Eij(0, 1) − Eij(0, 0) − Eij(1, 1), and

c, αi, and αj are appropriate coefficients. As already mentioned, this (any) binary energy

is graph representable, i.e., can be minimized by computing the min s− t cut of a certain

graph, if and only if βi,j ≥ 0 [67]. Figure 3.2 clarifies now the aforementioned map between

an energy term and an elementary graph s− t cut. One can easily verify that, indeed, the

energy values are given by appropriate s − t cuts. We should make two remarks: at the

top right quarter of the figure (αi < 0) the value of the cut is equal to the unary term plus

a constant. This constant allows us to consider positive weights for the edges of the graph

and, obviously, does not change the optimization problem. A second remark concerns the

two bottom schemes [configurations (xi = 0, xj = 1) and (xi = 1, xj = 0), respectively].

In the left scheme the link goes from T to S and, accordingly, it represents a cut whose

value is zero (there is no flow from T to S). In the right scheme the link goes from S to T

and, accordingly, it represents a cut whose value is βij . We finally note that the already

referred additivity theorem [67] allows to merge all the elementary graphs, corresponding

to the Eij terms, and to obtain the energy minimum by computing the min s − t cut of

the obtained graph.
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Figure 3.2: Map between energy (3.19) and a graph cut. (a) Energy’s unary terms. (b)

Energy’s pairwise terms.
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3.6 Energy Minimization Algorithm

Algorithm 1 PUMA: Graph cuts based phase unwrapping algorithm.

Initialization: k ≡ k′ ≡ 0, possible improvement ≡ 1

1: while possible-improvement do

2: Compute E(0, 0), E(1, 1), E(0, 1), and E(1, 0) {for every horizontal and vertical pixel

pair}.
3: Construct elementary graphs and merge them to obtain the main graph.

4: Compute the max-flow/min-cut (S, T ) {S- source set; T -sink set}.
5: for all pixel i do

6: if pixel i ∈ S then

7: k′

i = ki + 1

8: else

9: k′

i = ki {remains unchanged}
10: end if

11: end for

12: if E(k′|ψ) < E(k|ψ) then

13: k = k′

14: else

15: possible-improvement = 0

16: end if

17: end while

Algorithm 1 shows the pseudo-code for the Phase Unwrapping MAx-flow (PUMA)

algorithm. It solves a sequence of binary optimizations until no energy decreasing is

possible.

Concerning computational complexity, PUMA takes Nbopt × Nmf flops (measured in

number of floating point operations), where Nbopt and Nmf stand for number of binary

optimizations and number of flops per max-flow computation, respectively. In Section 3.4

we have proved that the algorithm stops inK iterations, whereK is the range of E in wrap-

counts. Therefore, Nbopt = K. Concerning Nmf , in the experimental results presented in

this work we have used the augmenting path type max-flow/min-cut algorithm proposed

in [18]. The worst case complexity for augmenting path algorithms is O(n2m) [4], where

n and m are the number of vertices and edges, respectively. However, in a huge array
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of experiments conducted in [18], authors systematically found out a complexity that is

inferior to that of the push-relabel algorithm [52], with the queue based selection rule,

which is O(n2√m). Thus, we herein take this bound.

Given that in our graphs m ≃ 3n and Nbopt does not depend on n, the worst case

complexity of the PUMA algorithm is bounded above by O(n2.5). In section 3.8, we run

a set of experiments where the worst case complexity is roughly O(n). This scenario has

systematically been observed [11].

3.7 Potentials

So far, we have assumed the clique potentials to be convex. This is central in the two

main results of the chapter: the Theorem 1 and the regularity of energy (3.4). Both are

implied by the inequality (3.20)

V (a) + V (c) − V (b) ≥ V (a+ c− b), (3.20)

shown in Appendix (expression (A.10)), where min(a, c) ≤ b ≤ max(a, c). What if we

apply a function θ to the arguments of V ? Using the notation θ(x) = x′, we get the

hypothetical inequality (3.21):

V (a′) + V (c′) − V (b′) ≥ V [(a+ c− b)′]. (3.21)

Now, noting that, by construction3, a, b and c differ from each other by multiples of 2π, if

we choose θ(x) = P(x) + αx, where P is any 2π-periodic real valued function and α ∈ R,

(3.21) becomes,

V (a′) + V (c′) − V (b′) ≥ V [P(a + c− b) + α(a+ c− b)]

= V [P(a) + α(a+ c− b)] (3.22)

= V [(P(a) + αa) + (P(a) + αc)

− (P(a) + αb)] (3.23)

= V (a′ + c′ − b′). (3.24)

Since any 2π-sampling of θ is a monotone sequence, it is guaranteed that min(a′, c′) ≤
b′ ≤ max(a′, c′); so, inequality (3.24) follows from (3.20). Therefore we have the following

result:

3Stated in the proof of Theorem 1.
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Proposition 1 The set of clique potentials considered in Theorem 1 can be enlarged by

admitting functions of the form V ≡ C ◦ (P + L), where C is a convex function, P is a

2π-periodic function, and L is a linear function.

It should be stressed that for such a potential, the regularity condition (3.17) is also

satisfied; it follows directly from (3.24). We can thus conclude that the PUMA algorithm

is valid for this broader class of clique potential functions. We next give some examples

of possible clique potentials.

3.7.1 The classical Lp norm

As referred back in Chapter 2, the minimum Lp norm methods form one of the main

approaches to phase unwrapping. In this context, and referring to [49, p. 181], the Lp

norm is given by

J =
∑

{i,j}∈E

|φj − φi − ∆ij|p, (3.25)

where ∆ij = W(ψj − ψi) [W defined in (2.2)]. These methods find a phase solution φ for

which the Lp norm of the difference between absolute phase differences and wrapped value

of wrapped phase differences (so a second order difference) is minimized. We note that

this is the Lp norm of the 2π − quantized differences. We clarify this 2π − quantization

operation with an example below.

In our formulation the Lp norm is given by the potential V (∆φ) = |∆φ −W(∆ψ)|p.
Since ∆φ and ∆ψ differ by a multiple of 2π, then |∆φ − W(∆ψ)|p = |∆φ − W(∆φ)|p.
Therefore, in our setting, we identify immediately C(x) = |x|p, P(x) = −W(x), and

L(x) = x.

We note that the identity V (∆φ) = |∆φ −W(∆φ)|p, above emphasized, may suggest

that PUMA does not take data, which is given by ψ, into account. We stress that this is

not the case as, in fact, PUMA (in this chapter) considers φ to be given, iteratively, by

φ = 2πk + ψ, k ∈ Z. In particular, this means that φ is 2π congruent with ψ and, thus,

that data is really accounted for by noting that W(∆φ) = W(∆ψ).

From above, we see that C is convex given that p ≥ 1. Therefore, we conclude that,

for this range of p values, PUMA exactly solves the classical minimum Lp norm phase

unwrapping problem.

We refer to Q2π(x) ≡ −W(x)+x as the 2π-quantization function and denote V2π(x) ≡
V [Q2π (x)]. Figure 3.3 plots the potential C(x) = |x|1.4, the quantization function Q2π(x),
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Figure 3.3: (a) The convex function C(x) = |x|1.4; (b) Q2π(x) = x − W(x); (c) The

classical L1.4 norm potential given by V2π(x) = C[Q2π(x)].

and the classical L1.4 norm given by V2π(x) = |Q2π(x)|1.4.

3.7.2 Convex potential

Choosing any convex C(x), P (x) = 0 and L(x) = x, we obviously get back to the convex

potential case. For example, the quadratic clique potential V (x) = x2 was used in work

[36], under a Bayesian approach and a Markovian prior for the absolute phase. As already

stated, this potential tends to smooth phase discontinuities.

3.8 Experimental Results

We remark that, for each of the following presented experiments, the Matlab (mixed with

C++) code has been run in a 2.2 GHz Intel dual core processor, in a maximum of few

dozens of seconds.

Figure 3.4 (a) displays the phase data for an MRI image (256× 256 pixels) of the knee

(data distributed with [49]); as we can see this is a wrapped phase image, and a phase

unwrapping procedure is needed in order to obtain the desired physical information (in
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Figure 3.4: (a) MRI image of the knee (water/fat separation problem [49, 51]). (b) Image

in (a) visualized with a mask (dark blue) to omit main noisy areas. (c) Unwrapped image

visualized with the mask used in (b).

this example it is water/fat separation [49, 51]). The background is noisy, which poses one

of the main challenges for the phase unwrapping: obtain the unwrapped solution in spite of

the great amount of noisy area which might destroy it. Figure 3.4 (b) shows the same data

as in (a) but now we have applied a mask only to see the phase image in areas where noise

is low (dark blue means masked out area). Figure 3.4 (c) shows the unwrapped solution;

for better visualization we also apply the mask used in (b). We can see that PUMA is

successful at unwrapping this phase image, despite the original wide noisy area (includes

mainly the background but also some regions in the interior). For this unwrapping we

have chosen a quantized L2 norm potential, which proofed to be successful.

Figure 3.5 is similar to Figure 3.4, but now it deals with an MRI image of the head

(data distributed with [49]). Besides the noise, this head image, Figure 3.5 (a), has several
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Figure 3.5: (a) MRI image of the head (water/fat separation problem [49, 51]). (b) Image

in (a) visualized with a mask (dark blue) to omit main noisy areas. (c) Unwrapped image

visualized with the mask used in (b).

phase regions which are almost isolated (also because of noise) from the remaining part

of the image and, accordingly, pose a difficult problem. Figure 3.5 (b) shows the same

data as in (a) but now we have applied a mask only to see the phase image in areas where

noise is low (dark blue means masked out area). Figure 3.5 (c) shows the unwrapped

solution; for better visualization we also apply the mask used in (b). PUMA is successful

at unwrapping this phase image in defiance of the almost isolation of several areas inside

the head. For this unwrapping we have chosen a quantized L2 norm potential, which

proofed to be successful.

Figures 3.6 (a) and 3.7 (a) display two phase images (256×256 pixels) to be unwrapped;

they are synthesized from original absolute phase surfaces formed by Gaussian elevations

with heights of 25π and 50π radians, respectively, and common standard deviations σv =
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25 pixels and σh = 40 pixels, in the vertical and horizontal dimensions, respectively. They

are represented in a linear gray scale.

The first image [Figure 3.6 (a)] has a noise whose standard deviation is 1.07 rad,

thus inducing a large number of phase jumps (residues), making the unwrapping a hard

task. Figure 3.6 (b) shows the corresponding unwrapped surface by PUMA using a non-

quantized L2 norm potential. Even with the noise induced discontinuities, PUMA success-

fully accomplishes a correct unwrapping (error free). We emphasize that our algorithm

seeks the correct wrap-count image, so it does not intend to get rid of the possible existing

noise, whatsoever. Regarding the image in Figure 3.7 (a), although there is no noise,

it presents phase rates large enough to produce aliasing, such that the unwrapping be-

comes a hard task. Figure 3.7 (b) shows the corresponding unwrapped surface by PUMA

using again a non quantized L2 norm potential. Even with aliasing induced discontinu-

ities, PUMA successfully accomplishes a correct unwrapping (error free). For both the

unwrappings we have chosen the non quantized L2 norm potential, as it shows a good

performance regarding the unwrapping of this kind of noisy/aliased wrapped surfaces [36].

Figure 3.6 (c) shows the residues existing in the image shown in Figure 3.6 (a); white

pixels are positive residues and black pixels are negative residues. We point out that it

was not supplied any discontinuity information to the algorithm. Figure 3.7 (c) shows

the regions of the original image, from which the image in Figure 3.7 (a) is the wrapped

version, having aliasing (white pixels region). Figures 3.6 (d) and 3.7 (d) show the energy

evolution along the fifteen and twenty-six iterations taken by the algorithm to perform

the unwrapping of the images in Figures 3.6 (a) and 3.7 (a), respectively. It is noticeable

a major energy decreasing in the first few iterations.

The last illustrating experiment for phase unwrapping with PUMA (in the convex

regime) aims to characterize its performance amidst different levels of noise, different

amounts of phase discontinuities, as well as benchmarking it against noteworthy phase

unwrapping algorithms. Figure 3.8 (a) displays a phase image (512 × 512 pixels) which

corresponds to “Peaks”, the Matlab’s example function of two variables, which is obtained

by translating and scaling Gaussian elevations. In this experiment we scale the default

elevations by a factor of 4. While the range of phase values for such an image is ap-

proximately 18π rad only, and it does not present any phase discontinuities, we add to it

different levels of (Gaussian) noise which indeed produce phase discontinuities. Figure 3.8

(b) shows the wrapped version of the image in (a), while Fig. 3.8 (c) displays a wrapped
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Figure 3.6: (a) Wrapped Gaussian elevation with 25π height. The associated noise stan-

dard deviation is 1.07 rad. (b) Image in (a) unwrapped by PUMA. (c) Residues in the

image presented in (a): white and black pixels means positive and negative residues,

respectively. (d) Energy decreasing for the unwrapping of image in (a).
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Figure 3.7: (a) Wrapped Gaussian elevation with 50π height. The associated noise stan-

dard deviation is 0 rad. (b) Image in (a) unwrapped by PUMA. (c) Aliased regions

(signalled by white pixels) of the original image corresponding to the image in (a). (d)

Energy decreasing for the unwrapping of image in (a).
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Figure 3.8: (a) The scaled Matlab’s “Peaks” image. (b) Wrapped version of the previous

image. (c) Noisy version of the image in (b). The standard deviation of the error is 2.14

rad (d) Unwrapped solution by PUMA: RMSE = 1.89 rad.

and highly noisy (RMSE = 2.14 rad, where RMSE stands for root mean square error,

which corresponds to the standard deviation of the error image where, in this case, the

error image is the difference image between noisy and noiseless wrapped images) version of

that image. For such a high level of noise PUMA is still able to yield a correct unwrapping,

which we show in Fig. 3.8 (d). The error, with relation to the noiseless original image, of

the obtained image solution is RMSE = 1.89 rad, which is similar (lower) to the original

noise.

With the aim of benchmarking we compare PUMA with noteworthy phase unwrapping

algorithms, namely:

• Path following type: Goldstein’s branch cut (GBC) [53]; quality guided (QG)

[74]; and mask cut (MC) [40].
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Figure 3.9: List of the phase unwrapping solutions obtained with comparing algorithms

working on the scaled and wrapped “Peaks” image in a high noise scenario (std = 2.14

rad): (a) QG. (b) GBC. (c) MC. (d) FMD. (e) WLS. (f) L0N (g) PUMA. Only PUMA is

able to yield a correct unwrapping.

• Minimum norm type: Flynn’s minimum discontinuity (FMD) [41]; weighted least-

squares (WLS) [50]; and L0 norm (L0N) (see [49, Chap. 5.5]).

For such a high level of noise as the one illustrated in Fig. 3.8, std = 2.14 rad, and

amongst the comparing algorithms, PUMA was the only one able to achieve a correct

phase unwrapping. This is summarized in Figure 3.9, which lists the solutions yield

by each algorithm. We note that, in the experiments that we have performed, all the

algorithms fail for a noise higher than std = 2.14 rad. On the other hand, as we lower the

noise all the comparing algorithms are progressively able to yield correct unwrappings,

L0N being consistently the closest to PUMA in performance.
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Figure 3.10: Error of the PUMA solutions for various amounts of noise in the initial

wrapped images.

Figure 3.10 shows a plot of the error of the PUMA solutions for several levels of noise.

The yellow shaded area corresponds to successful unwrappings. We can notice that for

a noise level higher than 2.14 rad the error of the solutions grows steeply. On the other

hand, in the shaded region the error of the PUMA solutions is always smaller than the

noise of the correspondent wrapped images.

Finally, we observe the performance of PUMA for different amounts of aliased areas

in the “Peaks” image. Figure 3.11 (a) displays the aliasing present in scaled versions of

the “Peaks” image having different scale factors (from 4 to 13). White pixels correspond

to the presence of aliasing. Figure 3.11 (b) shows the corresponding unwrapping PUMA

solutions, which are correct for the images in the first row and wrong for the images in

the second row. The error of these ten solutions is plotted in Fig. 3.12. Again the shaded
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(a)

(b)

Figure 3.11: PUMA performance in the presence of aliasing. (a) Aliasing (white pixels),

in ten different scaled versions of the “Peaks” image. (b) PUMA solutions for the wrapped

versions of the images in (a).

area corresponds to correct unwrapping. As we can see PUMA admits some robustness to

aliasing, however, from a certain point the unwrapping gets compromised in the aliasing

areas.

As referred in Section 3.6, we have observed approximately an O(n) complexity (where

n is the size of the input image) in the experiences we have run with PUMA. Figure 3.13

illustrates this for the unwrapping of the Gaussian surface with and without noise, and

employing two kinds of clique potentials.
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Figure 3.12: Error of the PUMA solutions listed in Fig. 3.11 (b).
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Figure 3.13: Unwrapping times of a 14π height Gaussian surface with PUMA, using a

PC workstation equipped with a 2.2 GHz Intel dual core processor: time (s) vs image

size (n). Time grows roughly as O(n) in all the four shown experiments. An O(n2.5)

line is shown for reference. (A) Gaussian surface with 1.07 rad interferometric noise

unwrapped with a non-quantized L2 norm. (B) Gaussian surface without interferometric

noise unwrapped with a non-quantized L2 norm. (C) Gaussian surface with 1.07 rad

interferometric noise unwrapped with a classical (quantized) L2 norm. (D) Gaussian

surface without interferometric noise unwrapped with a classical (quantized) L2 norm.





Chapter 4

Phase Unwrapping: Nonconvex

Scenario

4.1 Why to Use Nonconvex Potentials

In image reconstruction, and in phase unwrapping in particular, images usually show a

piecewise smooth spatial arrangement; this is a consequence of the smoothness of the im-

aged objects themselves, and of the discontinuities introduced by their borders. These

discontinuities encode, then, relevant information that should be preserved in the recon-

structed image.

It is well known that, in an energy minimization framework for image reconstruction,

nonconvex potentials are desirable to allow discontinuity preservation (see, e.g., [71, Chap.

3] for discussion about discontinuity adaptive potentials). Figure 4.1 illustrates some

examples of such edge preserving potentials, namely, a Huber potential (Figure 4.1 (a))

which is quadratic around the origin and linear elsewhere; an L1 potential (b); a quadratic

truncated potential (c); and an Lp, (0 <= p < 1) potential (d). The idea of employing

such potentials consists of incurring approximately in the same cost, whether the phase

differences between neighboring pixels are big or small, given that they are above a certain

threshold. In fact, the first two depicted potentials (Figures 4.1 (a) and (b)) are convex,

yet they possess some edge preserving capabilities as, in some sense, they are almost non

convex.

We should note here that, as we have shown in Section 3.7, formally, a nonconvex

potential is allowed in the proposed algorithm, as long as every 2π-periodic sampling is

55
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Figure 4.1: Edge preserving potentials: (a) Huber potential. (b) L1 potential. (c) Trun-

cated quadratic potential. (d) Lp, 0 ≤ p < 1, potential.

convex (about the issue of convex functions on discrete domains see, e.g., [76]). It is,

however, a trivial reasoning to conclude that this kind of nonconvex potentials are not

discontinuity preserving, in our case. The alternative to nonconvex potentials, in order to

preserve discontinuities, is to explicitly supply their location, which is allowed as we have

already mentioned regarding expression (3.9). That is why it is said that (some) nonconvex

potentials allow blind discontinuity preservation, i.e., they preserve them without knowing

where they are.

4.2 An Approximate Solution

A general nonconvex potential, nevertheless, makes the above introduced algorithm not

valid and the reason is twofold. First, Theorem 1 demands a 2π-periodically convex V ,

i.e., a potential V such that every 2π-periodic sampling of it is convex. Let us use the

terminology of [99] and call a 1−jump move the operation of adding a binary image δ;

so, if V is nonconvex it is not possible, in general, to reach the minimum through 1-jump

moves only. Second, as we emphasize in the sequence, it is trivial to show that, with a

general nonconvex V , condition (3.17) does not hold with generality for every horizontal
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and vertical pairwise interaction. This means that we cannot apply the energy graph-

representation used in the binary optimization employed on Algorithm 3.6.

We now devise an approximate algorithm as a minor modification of PUMA to handle

those two issues.

Regarding the latter, as the problem relies on the non-regularity of some energy terms

Eij(δi, δj), i.e., they do not verify (3.17), our procedure consists in approximating them

by regular ones. We do that by leaning on majorize minimize MM [69] concepts. Assume

that we still want to minimize E(kt + δ|ψ) given by (3.15). E(kt|ψ) corresponds to δ = 0

and, therefore, to δi = 0. Consider the regular energy E
′ij(δi, δj) such that





E

′ij(δi, δj) ≥ Eij(δi, δj), if (δi, δj) 6= (0, 0)

E
′ij(δi, δj) = Eij(δi, δj), if (δi, δj) = (0, 0),

(4.1)

i.e., E
′ij majorizes Eij . Define Q(δ) =

∑
(i,j)∈E E

′ij(δi, δj) and δ∗ = minδ Q(δ). Then,

E(kt + δ∗|ψ) ≤ Q(δ∗) ≤ Q(0) = E(kt|ψ).

Therefore, the sequence
{
E(kt|ψ), t = 0, 1, · · ·

}
is decreasing.

A possible solution to obtain the replacement terms is, for instance, to increase term

Eij(0, 1) until
[
Eij(0, 1) + Eij(1, 0) − Eij(0, 0) − Eij(1, 1)

]
equals zero; the corresponding

graph of the Figure 3.1 has no more negative edge weights. This solution, while may not

be the best (concerning energy decreasing), is the simplest to implement: by observing

that Eij(0, 1) does not enter into any of the source/sink edges in the graph, it suffices to

set the (v, v′) inter-pixel edge (see Section 3.5) weight to zero (thus assuring regularity).

In Figure 4.2 we illustrate this energy approximation. We recall that, using a notation

abuse, Eij(δi, δj) = Eij(δi − δj) [see (3.4) and (3.15)]. The regularity condition (3.17),

thus, can be written as

Eij(0) ≤ Eij(−1) + Eij(1)

2
, (4.2)

which, being a convexity expression, means that regularity and convexity are equivalent for

the energy that we are considering. Continuous convex and concave functions are shown

to emphasize the regular/convex and nonregular/nonconvex parallel1. We note again that

other energy approximations are possible and eventually even better; for instance, equally

1It should be noted that discrete functions f : Z −→ R are convex iff there exists an extension of f ,

f : R −→ R, that is also convex.
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Figure 4.2: Replacing nonregular energy terms by regular ones; we end-up with an ap-

proximate energy. One of the possible approximations is to increase Eij(0, 1).

increasing Eij(0, 1) and Eij(1, 0) until condition (4.2) is satisfied. This issue is however

out of the scope of this work.

With respect to the first referred reason for non validity of PUMA, our strategy is

to extend the range of allowed moves. Instead of only 1-jumps we now use sequences of

s-jumps, which correspond to add an sδ image (increments can have 0 or s values).

4.3 An approximate algorithm

The above presented approximate algorithm has proved outperforming results in all the

experiments we have put it through; in the next section we illustrate some of that experi-

ments. Algorithm 2 shows its pseudo-code2.

It should be noted that the question of what particular nonconvex potential to choose

is a relevant one. The main problems, in phase unwrapping, arise both from noise and

from discontinuities presence. The small amplitude noise (variance smaller than π) is well

described by a Gaussian density, meaning that the potentials near the origin should be

2We note that, preferably, the maximum jump size should be chosen to be equal to the range of values

of the unwrapped surface divided by 2π. Most of the times a smaller maximum jump size is enough.
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Algorithm 2 PUMA (nonconvex potentials to preserve discontinuities).

Initialization: k ≡ k′ ≡ 0

1: for s := [1, 2...,m, 1, 2, ...,m] (m is the maximum jump size) do

2: possible-improvement ≡ 1

3: while possible-improvement do

4: Compute E(0, 0), E(1, 1), E(0, 1), and E(1, 0) {for every horizontal and vertical

pixel pair}.
5: Find non-regular pixel pairs [E(0, 1) +E(1, 0)−E(0, 0)−E(1, 1) < 0]. If there is

any, regularize it using the MM method (for instance, set the linking edge weight

to zero).

6: Construct elementary graphs and merge them to obtain the main graph.

7: Compute the max-flow/min-cut (S, T ) {S- source set; T -sink set}.
8: for all pixel (i, j) do

9: if pixel (i, j) ∈ S then

10: k′

i,j = ki,j + s

11: else

12: k′

i,j = ki,j {remains unchanged}
13: end if

14: end for

15: if E(k′|ψ) < E(k|ψ) then

16: k = k′

17: else

18: possible-improvement = 0

19: end if

20: end while

21: end for
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quadratic. In what relates to larger amplitude discontinuities, they should not be too

much penalized and, as such, it makes sense to employ potentials growing much slower

than the quadratic. This is why it makes sense to choose half-quadratic potentials like,

e.g, the truncated quadratic [14] and the potential used by Geman and McClure [46].

4.4 Experimental Results

In this section we present some experimental results that illustrate the performance of

the above introduced algorithm. All the experiences regard very hard phase unwrapping

problems, derived from both synthetic and real data. We should refer that in all the figures

presenting phase images we employ a linear gray scale; we do not show a colorbar legend

in the figures of this section in order to facilitate their understanding. We remark that

the Matlab (mixed with C++) code has been run in a 2.2 GHz Intel dual core processor,

in a maximum of few dozens of seconds.

Figure 4.3 (a) displays a phase image (150 × 100 pixels) to be unwrapped; it is syn-

thesized from an original phase surface formed by a Gaussian with a 14π rad height and a

clipped quarter. This quarter causes many discontinuities, which renders a very difficult

phase unwrapping problem. It should be noted that we do not provide any discontinuity

information to PUMA in this experiment. Figure 4.3 (b) shows the tentative unwrapped

image with a classical L2 norm. With such a potential, the computed phase is useless. Fig-

ure 4.3 (c) displays a successful, with an error of 3× 2π in just one pixel (the dark among

white ones in the border), unwrapping in 12 iterations, for which the energy decreasing is

shown in Figure 4.4 (d). Figure 4.3 (d) displays the mesh corresponding to 4.3 (c). This

unwrapping was obtained using the approximate version of PUMA with the nonconvex

potential depicted in Figure 4.4 (c), and a maximum jump size m = 1. In Figures 4.4 (a)

and 4.4 (b) we show, respectively, the nonregular horizontal and vertical cliques during

the first iteration of the algorithm (signalled as white). The number of nonregular cliques

is relatively small (235 and 243, respectively).

Figure 4.5 (a) shows a phase image (152×458 pixels) to be unwrapped. It was obtained

from an original absolute phase surface that corresponds to a (simulated) InSAR acqui-

sition for a real steep-relief mountainous area inducing, therefore, many discontinuities

and posing a very tough PU problem. This area corresponds to Long’s Peak, Colorado,

USA, and the data is distributed with book [49]. The wrapped image is generated ac-
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Figure 4.3: (a) Wrapped Gaussian elevation with a clipped quarter. (b) Image in (a)

tentatively unwrapped with a classical L2 norm potential. (c) Image in (a) successfully

unwrapped (3×2π error in one pixel) using a nonconvex potential. (d) A “3-D” rendering

of the unwrapped image.
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Figure 4.4: This figure refers to the unwrapping illustrated in Figure 4.3 (successful un-

wrapping). (a) Nonregular horizontal cliques (white signalled) during the first iteration.

(b) Nonregular vertical cliques (white signalled) during the first iteration. (c) Nonreg-

ular potential employed in the unwrapping. (d) Energy decreasing along the successful

unwrapping.
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cording to an InSAR observation statistics (see, e.g., [63]), producing an interferometric

pair; by computing the product of one image of the pair by the complex conjugate of the

other and finally taking the argument, the wrapped phase image is then obtained. Figure

4.5 (d) shows a quality map (also distributed with book [49]) computed from the InSAR

coherence estimate (see [49, Chap.3] for further details). However, to illustrate the dis-

continuity blind detection and preservation ability of the PUMA method with nonconvex

potentials, we have reduced, substantially, the number of supplied discontinuities to the

algorithm. The corresponding quality map is shown in Figure 4.5 (c). The PU problem

thus obtained is far more difficult than the original (i.e., using the complete quality map)

and a nonconvex potential is able to solve it. The resulting phase unwrapped is “3-D”

rendered in Figure 4.5 (b), corresponding to an error norm (standard deviation of the, one

dimensionally considered, image given by the difference between original and unwrapped

phase images) of 0.3 radians. The unwrapping was obtained using the approximate version

of PUMA, with m = 2. In Figure 4.5 (f) the employed non-convex and quantized potential

is depicted. The correspondent analytical expression is given by V2π(x) = [Q2π(x)]0.002.

Figure 4.5 (e) illustrates the energy evolution with the algorithm iterations.

Figure 4.6 (a) shows another phase image (257 × 257 pixels) to be unwrapped, which

was synthesized from an original surface (distributed with the book [49]) consisting of two

“intertwined” spirals built on two sheared planes. It should be noticed that the original

phase surface has many discontinuities, which make this an extremely difficult unwrapping

problem, if no information is supplied about their location. The approximate version of

PUMA is able to blindly unwrap this image as is shown in Figure 4.6 (b), by using a

maximum jump size m = 7 and a nonconvex potential given by the following analytical

expression:

V (x) =





0.5(0.001−2)x2, |x| ≤ 0.5

|x|0.001 , |x| > 0.5 .
(4.3)

Figure 4.6 (c) shows a “3-D” rendering of the unwrapped surface and Figure 4.6 (d) shows

the decreasing of the energy, along 31 iterations, in the unwrapping process.

We emphasize that we obtained a correct (error free) unwrapping except for a few (ten

or so) pixels; these are pixels that in image 4.6 (a) are in the border of the two spirals

and furthermore present continuity with both vertical and horizontal neighbours. This is

considered an image artifact and not an error of the algorithm. We further stress that, to

our knowledge, PUMA is the only algorithm able to perform this unwrapping perfectly,
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Figure 4.5: (a) Wrapped phase image obtained from a simulated InSAR acquisition from

Long’s Peak, Colorado, USA (Data distributed with [49]). (b) Image in (a) unwrapped by

PUMA (32 iterations). (c) Discontinuity information given as input to the unwrapping

process. White pixels signal discontinuity locations. (d) The total discontinuity informa-

tion at disposal. White pixels signal discontinuity locations. (e) Energy decreasing for the

unwrapping of image in (a). (f) The potential employed.
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Figure 4.6: (a) Wrapped phase image corresponding to an original phase surface of two

intertwined spirals in two sheared planes (Data distributed with [49]). (b) Image in (a)

blindly unwrapped by PUMA (31 iterations). (c) A “3-D” rendering of the unwrapped

image. (d) Energy decreasing for the unwrapping of image in (a). Notice that no discon-

tinuities are supplied to the algorithm.
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without recurring to the use of information about the location of discontinuities.

Figure 4.7 (a) shows another phase image (256 × 256 pixels) to be unwrapped. As in

[86], it corresponds to a kind of cylinder upon a ramp and has a uniform noise of 3 radians.

The result of unwrapping this image using the approximate version of PUMA is shown in

Figure 4.7 (b). It was employed the nonconvex potential

V (x) =





2(0.01−2)x2, |x| ≤ 2

|x|0.01 , |x| > 2
(4.4)

and a maximum jump size of m = 9. Figure 4.7 (c) shows the pixels where the unwrapping

went wrong (white pixels); it amounts to only 0.39% of the total pixels. It should be

noticed that no discontinuity information was supplied to the algorithm, which employed

43 iterations along nearly 100 seconds. Figure 4.7 (d) depicts the employed potential. The

results here presented show an apparent more accurate and fast phase unwrapping than

those reported in [86] (note that we use 4 neighbors for each pixel).

Given the quite different problems presented above, in this and in the preceding chap-

ter, a natural question arises: given a certain particular PU problem, what potential,

scheduling and regularization parameter should be taken? Firstly, we stress that a proper

answer to this question is out of the scope of the present work. However, let us remark

that for the problems in Figures 3.6 and 3.7 any kind of non-quantized potential proved

to work in all the experiences we have put it through; regarding Figure 4.3, we found that

most of the potentials with exponent less than one are suitable; with respect to Figures 4.5

and 4.7, a more fine tuning of an appropriate potential had to be carried out, and finally,

to attain a successfull solution of the difficult problem presented in Figure 4.6, an even

more thorough fine tuning was required. Regarding scheduling, a similar pattern of tuning

needs was found; the values presented in this work proved to give the smallest schedules

good enough to solve the problems. Finally, the regularization parameter was also hand

tuned to get the best results. Although we put emphasis in that PUMA algorithm allows

a large family of potentials and move spaces, which gives flexibility to address different

phase unwrapping problems, the question of finding the most suitable ones (as well as the

best balance between the data and prior terms, i.e., the best regularization parameter) is

relevant and to be addressed in the future.
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Figure 4.7: (a) Wrapped phase image corresponding to an original phase surface given by

a kind of cylinder upon a ramp. In all the image there is a uniform noise of 3 radians

(data reported in [86]). (b) Image in (a) blindly unwrapped by PUMA (43 iterations). (c)

0.39% of the total number of pixels (shown in white) had a wrong unwrapping. (d) The

potential employed.
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Table 4.1: Root Mean Square Error (rad).

Algorithms

Experiments PUMA GBC QG MC FMD WLS L0N

Clipped Gaussian 0.15 1.08 0.36 2.16 1.23 5.99 5.41

Long’s Peak 0.30 8.12 12.02 14.77 0.50 1.14 0.48

Spirals 0 29.36 33.50 33.57 33.51 33.80 33.44

Cylinder on plane 1.53 6.07 12.34 16.95 8.61 14.82 12.00

4.4.1 Benchmarking

In this section we benchmark the version of PUMA approach introduced in this chapter

(Algorithm 2) against several state-of-the-art and representative algorithms. The bench-

marks are evaluated on the experiments addressed in the previous sections. Table 4.1

summarizes the quantitative results obtained for the benchmarks. The performances of

the algorithms are measured by the RMSE (root mean squared error), i.e., the standard

deviation of the absolute error between original and unwrapped phase images. The com-

paring algorithms are the same that were considered in Chapter 3, namely:

• Path following type: Goldstein’s branch cut (GBC) [53]; quality guided (QG)

[74]; and mask cut (MC) [40].

• Minimum norm type: Flynn’s minimum discontinuity (FMD) [41]; weighted least-

squares (WLS) [50]; and L0 norm (L0N) (see [49, Chap. 5.5]).

The obtained results clearly illustrate the competitiveness of PUMA with relation to

state-of-the-art algorithms.

We note the following:

1. PUMA’s performance is systematically the best for the shown experiments.

2. PUMA is the only algorithm that is able to unwrap the intertwined spirals image.

Furthermore, it does that perfectly, while all the other fail totally. We emphasize

that this is an extremely hard phase unwrapping problem as no information on the

tricky discontinuities is given.

3. The only algorithm which is able to unwrap the cylinder on plane image is PUMA.

All the other benchmarked algorithms fail, which is reflected on their RMSE values.
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We emphasize that this is also a very difficult phase unwrapping problem, as it

presents many original discontinuities plus noise derived ones; moreover, the non-

alignment with horizontal and vertical directions brings additional difficulties.





Chapter 5

Phase Unwrapping and Denoising

5.1 Motivation

We have presented, in the two previous chapters, two algorithms for our PUMA approach

(tackling convex and nonconvex potentials, respectively). For both we have shown exper-

imental results involving noisy data, in which the phase unwrapping was successful and

in that sense we dealt with noise. Regarding some of the resulting unwrapped images,

they appear noisy which is far from the ideal for usual real applications. This brings

us to consider denoising. The pertinence of this operation is transversal to all imaging

technologies and constitutes by itself a broad independent research topic. Being so, our

interest goes beyond applying the existing state-of-the-art techniques: we seek an exten-

sion of the PUMA approach that yields useful denoising. The main two characteristics of

the proposed solution are the following:

1. Contrarily to the majority of the phase unwrapping formulations that also perform

denoising, the so-called absolute phase estimation methods, we opt for applying

unwrapping before denoising. By using a discontinuity preserving prior, PUMA not

only infers the 2π multiples of the absolute phase, but also, implicitly, detects the

discontinuity locations as we have shown in Chapter 4. This is a crucial information

for the effectiveness of the phase denoising, that would eventually not be available

if this step was applied prior to unwrapping. This way, we avoid the denoising step

to erroneously take important phase information by noise.

2. Both phase unwrapping and denoising share the same rationale. This is achieved

through the proposal of a multiprecision version of the optimization algorithms previ-

71
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ously presented. The multiprecision principle improves the performance by decreas-

ing the complexity of the algorithm. The denoising inherits the fast performance

from the max-flow algorithms.

5.2 Multiprecision Solution

Revisiting Section 3.1 we can see that the MAP estimation of the absolute phase is given

by minimizing the energy given by (5.1),

E(φ) ≡
∑

i∈V

−λi cos(φi − ψi)

︸ ︷︷ ︸
Data fidelity term

+µ
∑

{i,j}∈E

Vi,j (φi − φj)

︸ ︷︷ ︸
Prior term

, (5.1)

which we emphasize as being a hard task as both data fidelity and prior terms are non-

convex (in general).

We note that φ represents the set of optimization variables, and ψ stands for the noisy

observations. These two sets are linked through the data fidelity terms (the observation

model). Our purpose is to reconstruct the observed phase ψ, mitigating the perturbation

of noise. In order to achieve that, we address the MAP estimation problem considering

that φ is a set of continuous variables, whose (MAP) estimate is tackled via a greedy and

multi-precision technique, which yields an approximate solution.

First unwrap then denoise

Sometimes we may be just interested in computing the 2π multiple in the representation

φi = ψi + 2πki, which amounts to be the phase unwrapping problem. A way of thinking

about how to obtain the unwrapped solution is that, since the data fidelity term, Di(φi =

ψi + 2πki) = −λi, does not depend on ki, then the unwrapping optimization problem

consists in minimizing the prior term of (5.1) with respect to φ ∈ ∏
i∈V{ψi + 2πki : ki ∈

Z}. In Chapters 3 and 4 we have introduced a descent method that, depending on the

potentials, yields exact (in the case of convex potentials) or approximate (in the case of

nonconvex potentials) solutions. Each step of the method solves a binary problem by

computing the min-cut of an appropriate graph. We apply this method in this chapter,

first for phase unwrapping and then similarly for multiprecision schedules, as will be clear

in the sequence.
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Multiprecision optimization

We note that the basic phase unwrapping step can be viewed as a discretization of the

original domain, using a sampling interval of 2π. A consequence of this discretization is

that the resulting objective function is easier to deal with since, for φ ∈ ∏
i∈V{ψi + 2πki :

ki ∈ Z}, it does not depend on the nonconvex data terms −λi cos(φi − ψi).

After the unwrapping step, we get absolute phase estimates given by φ̂i = ψi + 2πk̂i.

Even if the integer image estimate is exact, we still have error in φ̂i due to the noise present

in ψi [see expression (3.2)]. In order to filter out the noise, we compute a sequence of binary

descent optimizations using a multi-precision schedule. The precision q ∈ {0, 1, . . . , N},
corresponds to a sampling interval of ∆ = 2π/2q. Thus, the coarser precision implements

phase unwrapping and the following denoising. Each of these binary descent optimizations

is achieved through the graph mincut method used in the previous two chapters.

We highlight the following qualitative characteristics of the approach just described:

1. The PUMA algorithm proposed in Chapter 4, used for phase unwrapping, is able to

deal with discontinuities and implicitly locate them.

2. The PUMA solution for phase unwrapping yields an error much smaller than π in

magnitude in most of the pixels.

3. Given that for precisions q > 0, we have, for most i ∈ V, |φi − ψi| ≪ π, then most

of the unary terms −λi cos(φi − ψi) behave as convex functions, rendering a much

easier optimization problem.

One expectable advantage of coarse-to-fine multi-precision schedule is computation

time. However, in our scenario this may not be, perhaps, the most important feature:

owing to the nonconvexity of the problem, the algorithm would have, very likely, got stuck

in a local minimum if we had begun with the highest precision.

5.3 Multiprecision algorithm

Algorithm 3 shows the pseudo-code for the multiprecision optimization, where we use the

following sets:

MU (φ′,∆) ≡
{
φ ∈ R

|V| : φi = φ′i + δi∆
}
,

MD(φ′,∆) ≡
{
φ ∈ R

|V| : φi = φ′i − δi∆
}
,
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δi ∈ {0, 1}, ∆ ∈ R, and where we use Ẽ(φ) to represent the energy approximation intro-

duced in chapter 4 (a regular approximation), which is needed to allow the energy to be

graph representable. The construction of Ẽ(φ) is illustrated in Figure 4.2.

Algorithm 3 PUMA (phase unwrapping plus denoising).

Initialization: φ = ψ {Interferogram}, successup = false, successdown = false

1: for ∆ = 2π ×
{
20, 2−1, . . . , 2−N

}
do

2: while (successup = false OR successdown = false) do

3: if successup = false then

4: φ̂ = arg minφ̂∈MU (φ,∆) Ẽ(φ̂)

5: if E(φ̂) < E(φ) then

6: φ = φ̂

7: else

8: successup = true

9: end if

10: end if

11: if successdown = false then

12: φ̂ = arg minφ̂∈MD(φ,∆) Ẽ(φ̂)

13: if E(φ̂) < E(φ) then

14: φ = φ̂

15: else

16: successdown = true

17: end if

18: end if

19: end while

20: end for

Our algorithm engages in a greedy succession of up and down binary optimizations.

The precision interval ∆ starts with the value 2π and ends with the value 2π/(2N ), where

N is a depth of precision. In order to characterize the algorithm, we start assuming

E(φ) = Ẽ(φ) and the terms Di and Vi,j in expression (5.1) to be convex. Then, for each

precision interval ∆, Algorithm 3 finds, in finite time, a minimizer of E in a grid of size

∆. More precisely, we have

Theorem 2 If the unary and pairwise terms of E, defined in (5.1), respectively, Di(·), for
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i ∈ V, and Vij(·), for (i, j) ∈ E, are convex, then, at a given precision interval ∆ = 2π/2q ,

for q ∈ {0, . . . , N}, the following holds:

1. The output of the loop “while” is a minimizer of E(φ) in the set
{
φ ∈ R

|V| : φi = ψi + zi∆, zi ∈ Z
}
.

2. The number of “while” iterations at each precision q ∈ {0, . . . , N} is bounded by

Kq + 1, where Kq = K02
q is the range of the 2π multiples variables at precision q.

Proof: See the Appendix.

Complexity

As already pointed out, we solve the binary minimizations displayed in lines 5 and 14

of Algorithm 3 by computing min-cuts on appropriate graphs. Denoting by T (n,m) the

worst-case complexity of the used min-cut algorithm, where n is the number of graph

nodes and m the number of edges, and recalling from Theorem 2 that Kq represents the

range of the 2π multiples variables at precision q, then Algorithm 3 takes the worst-case

pseudo-polynomial time O (KqT (n,m)) to find a minimum of E at the precision q.

The rationale underlying the multi-precision minimization is that of a minimum length

search for a minimizer of E. Still considering the convex scenario, given a minimizer at

a precision q, say φq, there exists a minimizer at the precision q + 1 such that ‖φq −
φq+1‖∞ < n [76, Theorem 7.18], where ‖x‖∞ ≡ maxi |xi| is the l∞-norm of x. Therefore,

the algorithm takes at most n iterations to find a minimizer at resolution q + 1 (see

Chapter 3). Consequently, the number of iterations to find a minimizer of E is bounded

by O(n logKN ). In practice, we have observed systematically ‖φq − φq+1‖∞ ≪ n, and

very often we have ‖φq −φq+1‖∞ < 2, making the algorithm highly efficient from the time

complexity point of view. This behavior is illustrated in Figure 5.1 (c), where we show

the evolution of Algorithm 3 in a convex scenario, both with and without multi-precision.

Notice that in the former case the number of “up and down”iterations (lines 6 and 14 of

Algorithm 3) to find a minimum, in a given precision, is 2 × (Kq + 1).

5.4 Experimental Results

We remark that matlab (mixed with C++) code has been run in a 2.2 GHz Intel dual

core processor, in a maximum of few dozens of seconds.
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5.4.1 Illustrating multi-precision

Figures 5.1 and 5.2 illustrate the virtues of employing a multi-precision approach. In

Figure 5.1 we intend to illustrate the pure effect of algorithm’s speed enhancing. Let us

recall the general energy expression (3.3)

E(φ) ≡
∑

i∈V

Di(φi)

︸ ︷︷ ︸
Data fidelity term

+µ
∑

{i,j}∈E

Vi,j (φi − φj)

︸ ︷︷ ︸
Prior term

, (5.2)

for which we now set Di(φi) = |φi − ψi|2, instead of the sinusoidal nonconvex observation

data model, and Vi,j (φi − φj) as being a convex prior potential. Therefore, we are dealing

with a convex energy. In this example, ψ plays the role of a noisy observation of φ in a

Gaussian additive model. Figure 5.1 (a) shows an image that corresponds to a discretized

pyramid with additive Gaussian noise (σ = 1). Figure 5.1 (b) shows the image in Figure

5.1 (a) denoised by applying Algorithm 3; the result is very good. Fig. 5.1 (c) illustrates

the energy decreasing versus iterations. The curve with marks on it represents the energy

evolution by using multi-precision; each mark corresponds to a change of precision. The

other curve corresponds to a performance of the algorithm in the finest precision from the

beginning. It can be seen that both ways we end up with the same energy (and in fact

the same denoised image), as expected by using a convex energy function; however, multi-

precision turns the algorithm much faster. In Figure 5.2 we illustrate the phase unwrapping

plus denoising by getting back to the energy (5.1) employed for phase unwrapping (with the

sinusoidal observation data model), and a prior potential identical to a truncated quadratic

[14]. Figure 5.2 (a) shows the wrapped phase corresponding to a true phase given by a

clipped Gaussian with 14π rad height. Figure 5.2 (b) shows a perfect unwrapping obtained

by Algorithm 3 using the multi-precision approach. Figure 5.2 (c) displays the completely

failed unwrapping that one obtains by running the algorithm with the finest precision

from the very beginning. Finally, Figure 5.2 (d) displays the energy evolutions either with

and without multi-precision; the curve with marks on it corresponds to the multi-precision

run (each mark represents a precision change). These plots illustrate that multi-precision

avoids the poor energy local minima that are obtained without multi-precision. Again

multi-precision enhances the speed of the algorithm.

In the next section, we present a series of experiments illustrating the effectiveness of

the proposed approach in absolute phase estimation (phase unwrapping plus denoising).
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Figure 5.1: (a) Discretized pyramid with additive Gaussian noise (σ = 1). (b) Image in (a)

denoised by Algorithm 3 (convex energy). (c) Energy decreasing vs iterations regarding

(b): marks mean increase of precision; the other curve corresponds to using the finest

precision only.
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Figure 5.2: (a) Wrapping of a clipped Gaussian with 14π rad height. (b) Perfect un-

wrapping obtained by Algorithm 3 using multi-precision approach. (c) Completely failed

unwrapping by running the algorithm with finest precision only. (d) Energy evolution

either with and without multi-precision [(b) and (c) respectively]; marks mean increase of

precision; the other curve corresponds to using the finest precision only.
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5.4.2 Phase unwrapping plus denoising

We present four experiments illustrating the performance of the proposed algorithm. With

the exception of the first one, all of them concern absolute phase surfaces which have

appeared in the experimental results shown in previous chapters. We made such a choice in

order to simplify future benchmarkings. The first three concern synthetic data [generated

according to the model shown in (3.1) and with A = 1] and the fourth deals with the

InSAR data distributed with [49], which is a commonly used benchmark to score absolute

phase estimation algorithms. In all the experiments, we employ a depth of precision

(see Algorithm 3) N = 8, which gives a minimum precision interval of 2π/28 rad ≃
2.5 × 10−3 rad. The regularization parameter µ [see (3.4)] was hand tuned for the best

performance. Regarding the potentials we use half-quadratic type potentials (5.3),

V (x) =





|x|2 if |x| ≤ π

π2 − πp + |x|p if |x| > π ,
(5.3)

with 0 < p < 1 and thus nonconvex, or either, quadratic potentials (given by the same

expression by choosing p = 2). We furthermore refer that in the four experiments the

regularization parameter was chosen to take values in the set [0.2, 0.4], and that the ex-

ponent p was chosen to take values close to 0.5, when the original absolute phase has

discontinuities, and equal to 2 when there are no discontinuities. These values of p con-

form with the introduced rationale: to preserve discontinuities, the exponent p of the half

quadratic potential, must satisfy p < 1, and thus the potential is non-convex. On the

other hand, if there are no discontinuities to preserve, convex potentials are preferable,

(e.g., p = 2), as they impose smoothness on the estimated surfaces and lead to easier

optimization problems.

We consider the following error measures:

1. RMSE ≡ std(φ̂− φ),

2. ISNR ≡ 10 log 10
‖ejφ−ejψ‖2

‖ejφ̂−ejψ‖2 ,

where, as usual, φ is the true absolute phase, ψ the noisy wrapped phase, φ̂ the esti-

mated absolute phase, and std(·) denotes the sample standard deviation. RMSE (root

mean squared error) is a measure of the total error, whereas this definition for ISNR (im-

provement in signal to noise ratio), introduced in [7], is a measure of the noise reduction

independent of the phase unwrapping.
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Synthetic data

In this section, the standard deviation of the Gaussian noise is set to σ = 0.5 which

corresponds to a signal to noise ratio SNR ≡ 1/σ2 [see generation model (3.1)] of 6.02 dB.

We should remark that in this scenario, which poses a very hard task given the amount

of noise, we have run for each experiment a Monte-Carlo simulation with ten iterations.

Figure 5.3 (a) displays an image (100×150 pixels) corresponding to an absolute phase

surface formed by two equal sized planes with slopes, respectively, of 1 and 0 rad/pixel: the

so-called sheared ramp (maximum height difference is 99 rad); Figure 5.3 (b) displays the

image shown in (a) wrapped and noisy; Figure 5.3 (c) shows the image in (b) unwrapped

and denoised, and Figure 5.3 (d) displays a wrapped version of estimated phase shown

in (c). For this experiment, we set the prior parameter µ = 0.4 and the potential with

exponent p = 0.4.

The original absolute phase image displays a vertical discontinuity between the two

planes. Thus, from the absolute phase estimation point of view, the two planes corre-

spond to two disconnected images, rendering a hard estimation problem, if no external

discontinuity information is used. Assuming that the phase estimation algorithm is able

to blindly detect discontinuities, the most we can hope for is to obtain two planes correctly

estimated, up to an unknown 2π multiple constant phase difference between them. The

proposed algorithm accomplishes that, almost perfectly, without any external discontinuity

information. The total root mean square error RMSE = [(n1var1 + n2var2)/(n1 + n2)]
1/2,

where ni and vari are, respectively, the number of pixels and the sample variance of the

error regarding the estimated absolute phase surface i = 1, 2, is RMSE = 0.14 rad. The

improvement in signal to noise ratio, as defined above, is ISNR = 8.99 dB. The num-

ber of wrong wrap counts (number of wrong multiples of 2π throughout the image) is 0

(Monte-Carlo simulation).

Figure 5.4 illustrates some more the experiment presented in Figure 5.3. Figure 5.4

(d) displays the discontinuities that the unwrapping step is able to blindly detect. Figure

5.3 (d) shows the re-wrapped image shown in 5.3 (c). As already referred to, the shear

discontinuity plus the noise poses a very hard task; it is noticeable the good unwrapping

and denoising. Figure 5.4 (a) shows a 3D rendering of the image shown in Figure 5.3

(c); Figure 5.4 (b) shows a corresponding 3D rendering after unwrapping and before

denoising. Figure 5.4 (d) shows the descending energy function along the iterations of the
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Figure 5.3: (a) Sheared ramp image (99 rad height) (b) Wrapped and noisy image shown

in (a). (c) Image in (b) unwrapped and denoised by our algorithm (RMSE = 0.14 rad).

(d) Image in (c) re-wrapped.

minimization algorithm.

Figures 5.5 and 5.6 are analogous to Figures 5.3 and 5.4, respectively, but now the

original absolute phase surface is a, 100 × 100 pixels sized, Gaussian elevation with a

height of 14π rad and standard deviations d = 15 pixels (vertically) and d = 10 pixels

(horizontally); additionally, in a quarter of the plane the Gaussian has zero height, in-

troducing surface discontinuities. We stress that this is a hard absolute phase estimation

problem given these discontinuities plus the noise. For this experiment, we used the prior

parameter µ = 0.4 and the potential with exponent p = 0.4. The absolute phase estimate

shown in Figure 5.5 (c) has RMSE = 0.7 rad and ISNR = 7.85 dB. The number of wrong

wrap counts in the image is 20.4 (Monte-Carlo simulation). The obtained reconstruction
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Figure 5.4: This figure illustrates, some more, the experiment presented in Figure 5.3. (a)

3D rendering of image in Figure 5.3 (c). (b) 3D rendering of the image in Figure 5.3 (c)

before denoising. (c) energy function evolution along the iterations of the algorithm. (d)

discontinuities blindly detected by the algorithm.
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is almost perfect.

Contrarily to the shear ramp, there is just one connected component in this example,

and then, up to a 2π multiple constant phase, the solution is unique. The reason is that,

for a given data mismatch, the adopted potential minimizes the number of discontinuities

and any other solution having the same data mismatch would have more discontinuities.

We emphasize that the quarter of the Gaussian having zero height, plus the noise,

introduces a lot of discontinuities, which the unwrapping algorithm is able to detect (the

algorithm also marks other pixels as discontinuities due to noise plus high phase rate

effects) as shown in Figure 5.6 (d). The denoising effect is quite evident in Figure 5.5 (d).

The 3D rendering of Figures. 5.5 (a) and 5.5 (b) illustrates the unwrapping plus denoising

and unwrapping effects respectively; in 5.6 (c) is shown the evolution of the objective

function along with the iterations.

Figures 5.7 and 5.8 are similar to Figures 5.5 and 5.6, respectively, but now the original

absolute phase surface is a, 100×100 pixels sized, Gaussian elevation with a height of 14π

rad and standard deviations d = 15 pixels (vertically) and d = 10 pixels (horizontally).

For this experiment we used a prior parameter µ = 0.4 and the potential with exponent

p = 2. We found out better results with such a relatively high exponent p (compared to

the p used in the last presented results); this can be explained by the fact that the original

surface does not have discontinuities, although it has high phase rates that may create

problems when noise is added. Figure 5.5 (c) exhibits an almost perfect unwrapping and

RMSE = 0.15 rad. This denoising corresponds to ISNR = 5.74 dB and is quite evident in

Figure 5.5 (d) where we show the rewrapped denoised image. The 3D rendering of Figures

5.8 (a) and (b) illustrates the unwrapping [(b)] and unwrapping plus denoising effects

[(a)]. In Figure 5.8 (c) we show the evolution of the energy along with the iterations. The

number of wrong wrap counts is 0 (Monte-Carlo simulation).

5.4.3 Real data

Finally, we illustrate the performance of the algorithm on a (152×458 pixels) InSAR image

(the same as employed in Figure 4.5 in Chapter 4). We have employed a prior parameter

µ = 0.2, and a quadratic potential p = 2. Figure 5.9 (a) displays an image corresponding

to an absolute phase surface generated by a (simulated) InSAR acquisition for a real

steep-relief area (Long’s Peak, Colorado, USA. Data distributed with book [49]), thus

inducing many discontinuities and posing a very hard absolute phase estimation problem.
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Figure 5.5: (a) Gaussian image with 14π maximum height and with a quarter set to zero.

(b) Wrapped and noisy image shown in (a). (c) Image in (b) unwrapped and denoised

(RMSE = 0.7 rad). (d) Image in (c) re-wrapped.
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Figure 5.6: This figure illustrates, some more, the experiment presented in Figure 5.5. (a)

3D rendering of the image in Figure 5.5 (c). (b) 3D rendering of the image presented in

Figure 5.5 (c) before denoising. (c) Energy evolution along the iterations of the algorithm.

(d) Discontinuities blindly detected by the algorithm.
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Figure 5.7: (a) Gaussian image with 14π rad maximum height. (b) Wrapped and noisy

image shown in (a). (c) Image in (b) unwrapped and denoised (RMSE = 0.15 rad). (d)

Image in (c) re-wrapped.
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Figure 5.8: (a) 3D rendering of image in Figure 5.7 (c). (b) 3D rendering of the image in

Figure 5.7 (c) before denoising. (c) Energy function evolution along the iterations of the

algorithm.
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Figure 5.9 (b) displays a corresponding wrapped and noisy image. In some areas the

characteristic fringes are destroyed due to typical phenomena as shadowing and layover

(see, e.g., [49]). Figure 5.9 (f) shows a quality map that is an input to the algorithm:

white color corresponds to pixels whose phase value is meaningless and gray corresponds

to the rest of the pixels. This information accounts for jamming phenomena such as, the

above mentioned, layover and shadowing. PUMA is able to screen those white pixels from

the absolute phase estimation process (therefore those pixels do not “contaminate” the

results for the rest of the image), and this is the reason why we employ a non discontinuity

preserving quadratic potential. Obviously the error values here presented refer only to gray

image areas on the quality map (in fact we also do not count with pixels at the border of

the gray image, as well as those pixels from the first and the last columns of the image; this

is so because such values are outliers driven by data acquisition artifacts). Figure 5.9 (c)

shows the unwrapped and denoised resulting image, with RMSE = 0.18 rad corresponding

to ISNR = 3.8 dB. Figure 5.9 (d) displays the image in (c) rewrapped. Comparing it with

image shown in (b), it is apparent the denoising effect; this is quite clear comparing the

zoomed patches in (b) and (d). Figure 5.9 (e) displays a 3D rendering of the image in (c).

We further add that the performance took 35 iterations (within Algorithm 3) and we got

one wrap-count error.

5.4.4 Benchmarking

In this section, we benchmark the version of PUMA approach introduced in this chapter

(Algorithm 3) against the state-of-the-art competitors PEARLS, introduced in [7], and

LPN0, presented in [49, Chap.5]. The benchmarks are evaluated on the experiments

addressed in the previous sections, with the exception that we run them for a set of noise

values σ = {0.1, 0.3, 0.5} (see Section 3.1 for the definition of σ). We emphasize that we do

not benchmark against ZπM [36] (algorithm that we have already mentioned above and

which is state-of-the-art in absolute phase estimation) because both PEARLS and PUMA

can be considered as extensions to it.

Table 5.1 summarizes the quantitative results obtained for the benchmarks. The bullets

mean that, for our purposes, that experiment is not relevant. In fact LPN0 aims at

achieving (minimum L0 norm1) phase unwrapping (not denoising) and, being so, it is not

1Commonly considered as the most desirable minimum Lp norm criterium, in practice, for phase un-

wrapping purposes.
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Figure 5.9: (a) Absolute phase gray level image generated by a (simulated) InSAR acqui-

sition for a real steep-relief area. (b) Wrapped and noisy image shown in (a). (c) Image

in (b) unwrapped and denoised by our algorithm (RMSE = 0.18 rad). (d) Image in (c)

re-wrapped. (e) 3D rendering of the image in (c). (f) Quality map that is an input to the

algorithm: white color corresponds to pixels whose phase value is meaningless and gray

corresponds to the rest of the pixels.
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Table 5.1: Root Mean Square Error (rad).

Algorithms

Experiments PUMA PEARLS LPN0

Gaussian

σ = 0 0 0 0

σ = 0.1 0.05 0.05 •
σ = 0.3 0.11 0.08 •
σ = 0.5 0.15 0.11 •

Shear Ramp

σ = 0 0 0 1.21

σ = 0.1 0.06 0.07 •
σ = 0.3 0.10 0.09 •
σ = 0.5 0.14 0.11 •

Clipped Gaussian

σ = 0 0 0 5.48

σ = 0.1 0.13 0.85 •
σ = 0.3 0.4 0.90 •
σ = 0.5 0.7 0.98 •

Long’s Peak 0.18 0.20 •

fair to apply it to noisy phase images.

We further add that for noiseless cases (σ = 0) both PUMA and PEARLS run in the

phase unwrapping mode, i.e., PUMA runs as described in [11], and PEARLS also runs as

PUMA in this case [7].

We note the following:

1. Both PUMA and PEARLS tend to outperform LPN0 in phase unwrapping (σ = 0

case) when there exist discontinuities to blindly deal with.

2. PUMA tends to outperform PEARLS when there are discontinuities. As we have

previously referred, PEARLS implements a local polynomial approximation (LPA)

with varying adaptive neighborhood. This adaptiveness trades bias with variance in

such a way that the neighborhood’s window stretches in areas where the underlying

true phase is smooth and shrinks otherwise, namely in the presence of discontinuities.
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It happens that, sometimes, this shrinkage is not enough, implying a few unwrapping

errors near these discontinuities. This phenomenon is illustrated in the results for

the clipped Gaussian.

3. PEARLS tends to outperform PUMA when there are no discontinuities and the SNR

is low. The adaptive window selection technique jointly with LPA results very pow-

erful. This is illustrated in the Gaussian experiment. In the Long’s Peak experiment

PUMA and PEARLS tend to behave very similarly (the slight difference in favor of

PUMA is meaningless because, as we have already referred to, the error is evaluated

in a subset of the image, which may have slight differences in the experiments using

both PUMA and PEARLS).

To our knowledge PEARLS is a state-of-the-art absolute phase estimation algorithm.

From all the held experiments, PUMA can also be considered state-of-the-art. Finally

we remark that PUMA has been consistently observed to be quite faster than PEARLS

(we should note that, even so, the code is a mix of matlab and C++, therefore is not

optimized).





Chapter 6

Frequency Diversity

6.1 Introduction

Frequency diversity is an acquisition strategy where more than one phase image is acquired,

each one corresponding to a different frequency of the sinusoidal nonlinearity. By acquiring

more than one phase image, the number of absolute phase solutions compatible with the

observations decreases and, therefore, the hardness of the phase estimation problem is

lightened. Frequency diversity based phase unwrapping algorithms are scarce. We are

aware only of the ones presented in [104], [100], and [81] published in 1994, 1998 and

2002, respectively. Regarding the first, [104], it proposes three very simple and appealing

algorithms that, nonetheless, are error prone. With respect to the second [100], it is a

multidimensional (accounting for multifrequency) version of the minimum L2 norm type

of PU algorithm [49], with relaxation to the continuum that is well-known [49] to give

rise to solving a Poisson equation. The weaknesses of this approach are long-familiar,

in particular the oversmoothing of high phase rate slopes and discontinuities, which is

further amplified by the proposed previous low-pass filtering stage (see [36] for a deeper

discussion on this problem). Concerning [81], it consists of an algorithm based on a

maximum likelihood estimation technique, whose goal is to approximate the unknown

(absolute) surface by means of local planes. The approach assures the uniqueness of

the solution, even accounting for high phase rates or discontinuities. However, the global

optimization required to compute the maximum likelihood, by suggestion of the authors, is

to be achieved by simulated annealing, which is a (nowadays) too much slow optimization

technique to tackle this problem, for which, e.g., graph-cuts techniques are much more
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suited.

6.2 Diversity

The data model which we consider throughout our work has been introduced in Section

3.1. We recall that it is given by expression (6.1)

z = AejFφ + n, A > 0 (6.1)

= |z|ejF (φ+φn),

where A is an amplitude, φ is the true phase value, n = nI + jnQ is a complex-valued

zero-mean circular white additive noise, and φn is the phase due to n. This time we

have introduced a constant F, without loss of generality, which has attached to it the

meaning of a frequency, namely, the observation frequency. Now we are interested in

considering frequency diversity, namely, let us (for the sake of simplicity) consider two

frequencies F1 = p/q, F2 = r/s, where {p, q, r, s} ∈ N
1. Assuming that observations (6.1)

are independent for each frequency, and similarly to what we have shown for one frequency

only, in Section 3.1, we have that the MAP estimation of the absolute phase is obtained

by minimizing the energy

E(φ) ≡
∑

i∈ν

−λ1i cos (ψ1i − F1φi) − λ2i cos (ψ2i − F2φi) + µ
∑

{i,j}∈E

V (φi, φj) , (6.2)

which is analogous to the single frequency energy.

We have referred that with frequency diversity the number of candidates to be the phase

estimate decreases. An equivalent statement is that the unambiguity interval [−π, π) gets

extended. Stating it more clearly, it is easy to show that the sum of two cosine functions,

having as in (6.2) different frequencies F1 = p/q and F2 = r/s, where {p, q} , {p, r}, {q, s},
and {r, s} are coprime integers2, results in a third periodic function whose period is q× s;

as the initial functions do have periods of respectively q and s, we conclude that the period

is, in general, extended and so the ambiguity reduced. Figure 6.1 illustrates this effect by

1Rigorously, F1 and F2 can be irrational as long as their quotient is rational. However, not considering

it does not make any loss of generality in what follows.
2Two integer numbers are said to be coprime if their greatest common divisor is the unity.
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Figure 6.1: Ambiguity reduction by summing two periodic functions: the beat effect.

plotting the function f(t) = cos(t) + cos(2/5 t), t ∈ [−8 8] with t in 2π rad units. It can

be seen that the period has been extended five times (the initial periods were 2π rad and

5× 2π rad). This “beat production”, well known in wave physics, can also be understood

by the Chinese remainder theorem [59].

It is a well known behavior, e.g., from wave phenomena, that the greater the beat

period extension, the smaller the difference between global and local optima. Furthermore,

it is also well known that beat period extension brings noise amplification. This trade-off

should then be taken into account. We further add that if the requirement of the quotient

of F1 and F2 to be rational is not met, then the sum of the two cosines will in fact result in

a non periodic (namely, quasi-periodic) function. Accordingly, the above referred first side

effect will be enhanced (i.e., there will be local optima arbitrarily close to global optima).

6.3 Phase Unwrapping with Diversity

Looking back at (6.2) and analogously to what we have shown for single frequency, if we

admit a noiseless environment we may consider that the unwrapped phase φ satisfies the

constraints:

F1φ = ψ1 + 2k1π, (6.3)
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and

F2φ = ψ2 + 2k2π, (6.4)

for the two independent observations with frequencies F1 and F2, respectively. For the

sake of simplicity we can deal with (6.3) only, and (6.2) turns3 into:

E(k) ≡
∑

i∈V

− cos

(
ψ2i −

F2

F1
(ψ1i − 2k1iπ)

)

+ µ
∑

{i,j}∈E

V
(
ψ1i − 2k1i , ψ1j − 2k1j

)
, (6.5)

with a correspondingly combinatorial optimization (minimization) to be done on variables

k1i .

Unlike what we have been considering in previous chapters, now the energy has

this nonconvex sinusoidal term and, accordingly, PUMA does not apply. We now take

V
(
ψ1i − 2k1i , ψ1j − 2k1j

)
= |ki − kj | the, so-called, non-isotropic total variation (TV); in

spite of such a potential being convex, which confers some optimization “easiness” (see,

e.g., [67] for a nice view on this “easiness” in combinatorial optimization problems), it still

has some discontinuity preservability properties.

We are aware of only three approaches, [60], [106], and [29], that are able to provide (in

polynomial time) a global minimum for a posterior energy like (6.5), which is composed

by a non-convex data fidelity term and a convex prior potential. Herein we refer to [29],

as it deals with our non-isotropic TV prior. The authors reformulate, there, the energy

in terms of independent binary Markov random fields attached to each level set of the

solution (in our case it is the unwrapped image solution). Then, the exact minimization

is obtained by using a min cut/max flow algorithm. More precisely, using their notation,

they show that the posterior energy may be written as

Eα,v({uλ}) = Ev({uλ}) + α
L−2∑

λ=0

∑

s

H(uλ
s − uλ+1

s ), (6.6)

where u is the solution image (our Φ), v is the data image (our Ψ), α > 0 is high enough

(see [29]), uλ
s = 1us≤λ is the level set image (λ level) at site s, L is the number of levels,

H is the heaviside function, and where

Ev({uλ}) =

L−2∑

λ=0

{
I∑

i=1

∑

(s,t)

τ(s,t)=i

Ri(λ)|uλ
s − uλ

t | +
∑

s

δ(λ, vs)(1 − uλ
s )} (6.7)

3We could have dealt with both observations simultaneously. For simplicity we do not.
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Figure 6.2: Sketch of the graph used to perform phase unwrapping. Toy example.

with (s, t) defining a general clique involving sites s and t, and τ(s, t) = i determining

the size of the clique, and Ri(·) being a positive non decreasing function. Concerning

the decomposition on level sets, the original image can be obtained back according to

us = min{λ, uλ
s = 1}. Having decomposed the energy as a function of binary variables,

the authors then show that it is graph representable and, hence, its global minimum is

given by the max flow min cut of the graph built according to the prescription given in

[67], which we ourselves used in previous chapters.

Figure 6.2 shows a sketch of the graph obtained for a toy example. We highlight that

each node (except source and sink) corresponds to a binary variable (a level set per layer),

and that there will be as many image layers as ki values in our case. Furthermore, each

node besides being linked to the nodes corresponding to its neighboring pixels, is also

linked to the node immediately above or beneath, which corresponds to plus one or minus

one level set. We should also advert that each node is linked to both source and sink

directly, although for simplicity, we do not depict all those edges.

In Subsection 6.4 we present some experimental results where, again, we have used

the augmenting path type maxflow/min-cut algorithm proposed in [18], whose worst case

complexity is O(n2m) [4], where n andm are the number of vertices and edges, respectively.
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Denoise

For denoising we follow the multiprecision framework that we setup in Chapter 5. So

our frequency diversity phase unwrapping plus denoising algorithm is described by the

following two lines high level pseudo-code:

Algorithm 4 PUMA (phase unwrapping with frequency diversity plus denoising)

1: Do phase unwrapping with frequency diversity by computing a max-flow/min-cut

2: Do denoising with multi-precision

In the next section we show some relevant experimental results.

6.4 Experimental Results

In this section we briefly illustrate the performance of the above presented algorithm on

two representative problems, for which phase unwrapping is a hard task due to high phase

rates of the absolute phase images. With these experiments, the important feature that

we want to emphasize is frequency diversity and we deal with denoising in a qualitative

degree only. We remark that the matlab (mixed with C++) code has been run in a 2.2

GHz Intel dual core processor, in a maximum of few dozens of seconds.

Figure 6.3 (a) displays an image which is given by a Gaussian having maximum height

of 50π rad height. Figures 6.3 (b) and (c) show the corresponding wrapped images acquired

with frequencies F1 = 1/1 and F2 = 1/5, respectively, and having signal-to-noise ratio

(SNR ≡ 1/σ2
n) of 4 dB. We note that the Gaussian’s height of 50π rad plus the noise turns

this into a hard task for which a single frequency approach is not enough. Figure 6.3 (d)

displays an image of the unwrapped Gaussian. Figure 6.4 (a) shows a 3-D mesh of the

unwrapped image in Figure 6.3 and Figure 6.4 (b) a 3-D mesh after the denoising. It is

clear that the algorithm made a perfect phase unwrapping (up to a no-meaning additive

constant) for which the diversity information was crucial. The result of the denoising

step is reflected in Figures 6.4 (c) and (d), which show the histograms (the axis are in

rad) corresponding to the surfaces rendered in Figures 6.4 (a) and (b), respectively. It is

noticeable that the denoising erases the secondary modes in the histogram.

Figures 6.5 and 6.6 are similar to Figures 6.3 and 6.4, respectively, but the starting

image is a sheared parabolic ramp having maximum height of 225 rad. The frequencies of

acquisition are F1 = 1/1 and F2 = 1/11, respectively, and the acquired images have SNR
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Figure 6.3: (a) Original Gaussian ramp phase image. (b) Image in (a) wrapped with a

relative frequency of 1. (c) Image in (a) wrapped with a relative frequency of 1/5. (d)

Unwrapped image from the previous wrapped images shown in (b) and (c).
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Figure 6.4: (a) 3-D mesh of the image in Figure 6.3 (d). (b) 3-D mesh of the image

in Figure 6.3 (d) after the denoising step. (c) Histogram corresponding to the surface

rendered in (a). (d) Histogram corresponding to the surface rendered in (b).
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Figure 6.5: (a) Original sheared quadratic ramp phase image. (b) Image in (a) wrapped

with a relative frequency of 1. (c) Image in (a) wrapped with a relative frequency of 1/11.

(d) Unwrapped image from the previous wrapped images shown in (b) and (c).

= 7 dB. We note that the parabolic’s phase rates plus the noise turns phase unwrapping a

hard task. Again the algorithm made a perfect phase unwrapping, for which the diversity

information was crucial. We emphasize that the unwrapping preserves the discontinuity

between the horizontal and the parabolic ramps. Concerning the denoising step, it is

noticeable that the denoising erases the secondary modes in the first histogram.

Still referring to the histograms, the ones corresponding to the noisy images show,

in general, a multi modal shape. Besides the central mode around zero, there are some

modes around multiples of −2π and 2π. Those correspond to “spikes” as a result of the

data observation model. After denoising they do disappear.
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Figure 6.6: (a) 3-D mesh of the image in Figure 6.5 (d). (b) 3-D mesh of the image

in Figure 6.5 (d) after the denoising step. (c) Histogram corresponding to the surface

rendered in (a). (d) Histogram corresponding to the surface rendered in (b).



Chapter 7

Conclusion

7.1 Summary

In this thesis we have introduced an approach to 2D phase unwrapping which is based

on energy minimization. By adopting a MAP-MRF rationale we ended up with an in-

teger minimization problem. Typically, the number of variables of that optimization is

high (usually the number of pixels of the images involved), which contributes to make

the optimization a hard task. We proposed to solve this optimization problem through a

succession of binary minimizations, tackling each one of those binary problems by using

graph cuts techniques. We derived a set of low-order pseudo polynomial complexity mini-

mization algorithms, and we have shown the performance of these algorithms to be similar

or better than state-of-the-art, or otherwise worthy of note, phase unwrapping algorithms,

on representative problems.

7.2 Contributions

Next we list our main contributions.

• A new, state-of-the-art competitive, approach to phase unwrapping. The approach

adopts a Bayesian formulation where the prior probability is given by a Markov

random field. The maximum a posteriori (MAP) computation leads to a discrete

energy minimization, for which we propose discrete optimization algorithms based

on graph cuts. For convex MRF potentials we prove that the algorithms always

yield a global minimum and have a low-order pseudo-polynomial complexity. The
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performance of the algorithms is fast in the sense that they can deal with hundreds

of thousands or millions of discrete variables to optimize in, at the most, some tens

of seconds (by employing a usual laptop) [10, 94, 11].

• Unification of the minimum Lp norm, p ≥ 1, phase unwrapping problems in the sense

that we propose a parametric family of algorithms that solves them exactly. For p < 1

we provide approximate algorithms that produce very good results. The proposed

algorithms go, nevertheless, beyond minimum Lp norm criteria [9, 8, 95, 11].

• The establishment of approximate phase unwrapping algorithms which are capable

to consider non-convex potentials in the MRF. The derived algorithms endow the

proposed approach the possibility to blindly detect discontinuities and preserve them.

This contribution is specially important since discontinuities play a fundamental role

in phase unwrapping, and many times in applications we don’t have prior information

about their localization [9, 8, 95, 11].

• The introduction of a denoising procedure that shares the same discrete rationale

of the phase unwrapping. That denoising is obtained through an extension of the

phase unwrapping, by considering smaller steps with which the variables can vary.

We adopt a greedy energy minimization given by a sequence of non increasing steps.

Every time the energy gets stuck in a minimum we change into a smaller step, and

proceed iteratively until a final chosen step is achieved [98, 97, 96].

• Frequency diversity phase unwrapping family of algorithms as a way to extend the

unambiguous period [−π, π) and, accordingly, to deal with higher phase rates in

the phase unwrapping tasks. This frequency diversity method is well known, for in-

stance, in radar interferometry. Its fundament can be explained through the chinese

remainder theorem [59], according to which a certain number might be deduced from

the remainders of the division by two other (certain) numbers [12, 13].

• Development of algorithms that are interesting per se and whose usefulness goes

beyond the realm of phase unwrapping into other domains such as, e.g., computer

vision.
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7.3 Future Work

Next we refer to some of the questions which we would like to address in the future:

• Besides graph cuts, there exist other efficient and widely used techniques to perform

energy minimization, namely: Loopy Belief Propagation [105] and Tree-reweighted

message-passing [101]. We intend to compare their performance in the application

of phase unwrapping.

• The proposed algorithms have free parameters, namely, the regularization parameter,

the scheduling, and the potentials. As much of the time for effective use of the

algorithms is spent in tuning those parameters, it would be of much practical (and

theoretical) interest to devise (unsupervised) procedures to learn them. We note

here that, for instance, the decision to choose a convex or non-convex potential,

when using our approach is to be made by the user, according to some a priori

knowledge that he might have about the existence (or not) of discontinuities in the

wrapped image. This knowledge may be obtained, e.g., by visually inspection of

the wrapped image. In the future we will explore this line of research on learning

parameters.

• One important question is whether we are able to easily port the proposed approach

into 3D, as it is useful for several applications. In the future we will work on our

approach for such 3D problems.

• Finally, we would like, in the future, to extend the proposed algorithms in order to

consider higher order MRF interactions and, accordingly, to deal with higher phase

rates.





Appendix A

Proofs

Proof of Theorem 1

Define ∆ki = [k2]i − [k1]i, for i ∈ V. Given that the energy E(k|ψ) depends only on

differences between elements of k, we take ∆ki ≥ 0 for i ∈ V. Define n = maxi(∆ki) and

the wrap-count image sequence
{
k(t), t = 0, . . . , n

}
, such that k(0) = k1, k(n) = k2, and

k
(t)
i = k

(0)
i + min (t,∆ki) , t = 0, . . . , n. (A.1)

The energy variation ∆E ≡ E(k2|ψ) − E(k1|ψ) can be decomposed as

∆E ≡
n∑

t=1

[
E(k(t)|ψ) − E(k(t−1)|ψ)

]

︸ ︷︷ ︸
∆E(t)

.

Since ∆E < 0 by hypothesis, then at least one of the terms ∆E(t) of the above sum is

negative. The theorem is proved if we show that the variation δE(t) ≡ E(k(0) + δ(t)|ψ) −
E(k(0)|ψ) satisfies δE(t) ≤ ∆E(t), where δ(t) ≡ k(t) − k(t−1), for any t = 1, . . . , n. This

condition is equivalent to

0 ≤ E(k(t)|ψ) − E(k(t−1)|ψ) − E(k0 + k(t) − k(t−1)|ψ) +E(k0|ψ), (A.2)

for t = 1, . . . , n. Introducing (3.9) into (A.2), we obtain 0 ≤ S, where

S =
∑

(i,j)∈E

[
V

(
∆φ

(t)
ij

)
− V

(
∆φ

(t−1)
ij

)
+ V

(
∆φ

(0)
ij

)
− V

(
∆φ

(0)
ij + ∆φ

(t)
ij − ∆φ

(t−1)
ij

)]
dij ,

(A.3)
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where V is the clique potential, and ∆φ
(t)
ij is given by (3.7) computed at the wrap-count

image k(t). To prove (A.2), we now show that the terms of S corresponding to a given

edge (i, j) ∈ E have positive sum.

The difference k
(t)
i −k(t)

j , for t = 0, . . . , n, is a monotone sequence. This is a consequence

of the definition (A.1): if ∆ki > ∆kj the sequence is monotone increasing; if ∆ki ≤ ∆kj the

sequence is monotone decreasing. Therefore the sequence
{

∆φ
(t)
ij

}
, for t = 0, . . . , n, is also

monotone. Define a ≡ ∆φ
(0)
ij , b ≡ ∆φ

(t−1)
ij , and c ≡ ∆φ

(t)
ij , and without loss of generality

let us assume1 a ≥ b ≥ c. We will show that the sum of terms of S, corresponding to the

edge (i, j), is positive:

V (c) − V (b) + V (a) − V (a+ c− b) ≥ 0

V (a) + V (c) − V (b) ≥ V (a+ c− b).
(A.4)

By hypothesis, V is convex. Also by hypothesis, a ≥ b ≥ c, so ∃t ∈ [0, 1] : b =

at+ c(1 − t). Thus,

V (b) ≤ tV (a) + (1 − t)V (c) (A.5)

V (a) + V (c) − V (b) ≥ V (a) + V (c) − [tV (a) + (1 − t)V (c)] (A.6)

≥ (1 − t)V (a) + tV (c). (A.7)

As V is convex, (1 − t)V (a) + tV (c) ≥ V [(1 − t)a+ tc]. So, from (A.7),

V (a) + V (c) − V (b) ≥ V [(1 − t)a+ tc] (A.8)

≥ V (a+ c− [at+ c(1 − t)]︸ ︷︷ ︸
b

) (A.9)

≥ V (a+ c− b). (A.10)

�

Proof of Lemma 1

The proof is inspired in the Proposition 3.7 of [27]. The main difference is that the

class of energies herein considered does not have unary terms. The implication of this is

that our steepest descent algorithm, in each steep, finds a move in the set B = {0, 1}|V|,

1The only possibilities are either a ≥ b ≥ c or a ≤ b ≤ c, because the sequence
n

∆φ
(t)
ij

o

is monotone as

we have shown.
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whereas the presence of unary terms imposes the search in the larger set {−1, 0, 1}|V|, as

proposed in [27, Chap. 3.3] and in [66].

Define u = kt, where kt is a minimizer of E(·|ψ) on Dt, and E(·) ≡ E(·|ψ). Let Mt+1

be the set of minimizers of E(·) on Dt+1. If E(v) = E(u) for v ∈ Mt+1, then u ∈ Mt+1

and the lemma is proved by choosing δ = 0. Let us then assume that E(v) < E(u) for

v ∈ Mt+1. We proceed by contradiction supposing that v − u /∈ B, for any (at least one)

v ∈ Mt+1, i.e., for some v ∈ Mt+1 there exists at least one site i ∈ V such that

vi − ui /∈ {0, 1}. (A.11)

Given u ∈ Mt and v ∈ Mt+1, define image h with hi = 1 if vi − ui > 0 and zero

elsewhere. At least one element of v takes the value t + 1 and all elements of u are less

ou equal to t. Therefore, we have h 6= 0.

Since E(·) is a linear combination of convex terms, each one depending only on a

difference of two components, then a reasoning based on (A.4) leads to

E(u) − E(v − h) ≥ E(u + h) − E(v).

The right hand side of the above inequality is nonnegative, for v is a global minimizer in

Dt+1. If E(u + h) = E(v), hypothesis (A.11) would be contradicted because v − u ∈ B.

We have then

E(u) > E(v − h).

But v− h ∈ Dt. To verify this, let us analyse the differences vi − hi, having in mind that

hi ∈ {0, 1} and 0 < vi ≤ t + 1. If vi = t + 1, then hi = 1 and vi − hi = t. Otherwise,

vi − hi ≤ t. Then v − h ∈ Dt, contradicting the fact that u is a global minimizer of E on

Dt. This ends the proof.

�

Proof of Theorem 2

For the precision interval ∆, the pseudo code embraced by the “while” loop (lines

between 2 and 19) finds a minimizer of E(φ) in
{
φ ∈ R

|V| : φi = φ′ + zi∆, zi ∈ Z
}
, where

φ′ is the minimizer obtained in the previous precision. Proofs are given in Chapter 3,

in the absence of unary terms, and in [66], [27], for the general case, i.e., when E con-

tains unary and pairwise terms. Since the successive precisions are powers of (1/2), we
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can write φ′i = ψi + li∆, where φ′i and ψi are the ith components of φ′ and ψ, respec-

tively, and li is an integer. Therefore, it follows that
{
φ ∈ R

|V| : φi = φ′ + zi∆, zi ∈ Z
}

=
{
φ ∈ R

|V| : φi = ψi + zi∆, zi ∈ Z
}
.

�
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