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Abstract

This thesis addresses hyperspectral unmixing, which is the decomposition of pixel spectra acquired

by spectral sensors into a collection of constituent spectra, or endmember spectral signatures, and

their corresponding abundance fractions. The need for hyperspectral unmixing has been fostered

by the development of extremely powerful hyperspectral sensors, with hundreds of narrow (on the

order of 10nm) contiguous bands, spanning the visible, the near-infrared, and the mid-infrared

wavelengths (between 0.3µm and 2.5µm) of the electromagnetic spectrum. These sensors have

improved the recognition of Earth substances based on their signatures, i.e., based on the scattered

electromagnetic energy on each wavelength. However, since the spatial resolution of any sensor is

finite, those substances are very often spatially mixed. In given circumstances, these substances can

be unmixed and thus resolved without increasing the spatial resolution of the sensor. This thesis

introduces three new methodologies playing relevant roles in the hyperspectral unmixing processing

chain.

The first method, termed hyperspectral signal identification by minimum error (HySime), es-

timates the signal subspace to reduce the dimensionality of the data to be processed. Since the

number of components of hyperspectral vector is large (typically more than 200 bands) and the

dimension of the signal subspace is often much smaller, dimensionality reduction leads to reductions

in memory requirements and gains in the signal-to-noise ratio.
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The second method, termed vertex component analysis (VCA), extracts the endmembers ex-

ploiting the fact that the spectra of pure pixels are in vertices of a simplex. VCA searches for these

vertices based on the assumption that at least one pure pixel per endmember is present in the data

set. VCA achieves state-of-the-art performance with a computational complexity between one and

two orders of magnitude lower than the best algorithms.

The third method, termed dependent component analysis (DECA), formalizes spectral unmixing

as a maximum likelihood (ML) problem. DECA uses the expectation maximization (EM) frame-

work to infer the unmixing matrix. The abundance fraction densities are modeled by a mixture

of Dirichlet densities, thus modeling the statistical dependence normally found in hyperspectral

data. Compared with VCA, DECA does not need to assume the presence of pure pixels in the

observations.

Independent component analysis (ICA) and independent factor analysis (IFA) have been used

by many authors to unmix hyperspectral data. Due to physical constraints ever present in hy-

perspectral data, the ICA and IFA central assumption of source statistical independence does not

hold. The impact of this source statistical dependence is addressed. It is concluded that ICA and

IFA algorithms do not correctly unmix hyperspectral data. We give evidence that the unmixing

matrix minimizing the mutual information might be far from the true one.

A set of tests with simulated and real hyperspectral data evaluates the performance and illus-

trates the effectiveness of the proposed methods.

Keywords:

Hyperspectral Imagery; Linear Unmixing; Unsupervised Endmember Extraction; Signal Subspace

Estimation; Dependent Component Analysis; Spectral Mixing Model.
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Resumo

A tese aborda o problema da separação de materiais em imagens hiper-espectrais. Este problema

consiste na decomposição de cada vector espectral (pixel) de uma dada imagem num conjunto

de vectores espectrais (designadas por assinaturas) e nas respectivas concentrações (designadas

por abundâncias). A separação de dados hiper-espectrais tem ganho relevância com o desen-

volvimento de sensores de detecção remota de alta resolução espectral, denominados por sensores

hiper-espectrais, com centenas de bandas cont́ıguas de alta resolução espectral, tipicamente 10nm,

no espectro óptico e infra-vermelho (0.3µm a 2.5µm), permitindo assim distinguir elementos na

superf́ıcie terrestre com base nas suas assinaturas espectrais. A informação gerada por estes sen-

sores explora o facto de todas as substâncias dispersarem energia electromagnética, em diferentes

comprimentos de onda, consoante a sua composição molecular. Em muitos casos a resolução es-

pacial destes sensores é de 10 a 20 metros. Em consequência, o vector de observação associado

a cada pixel é uma mistura de vários elementos com concentrações distintas. Em determinadas

circunstâncias estas substâncias podem ser separadas, sem que para isso se necessite de aumentar

a resolução espacial do sensor. A tese propõe três novas metodologias de separação de materiais na

cadeia de processamento da separação de dados hiper-espectrais.

O primeiro método, designado por hyperspectral signal identification by minimum error (HySime),

estima o sub-espaço de sinal com vista à redução da dimensão dos dados a serem processados. Dado

que o número de bandas (tipicamente maior que 200) é muito superior à ordem do sub-espaço de

sinal, a redução da dimensão dos dados permite ganhos na relação sinal-rúıdo e elevadas reduções
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na memória utilizada no armazenamento de dados.

O segundo método, designado por vertex component analysis (VCA), determina assinaturas

com base nas propriedades geométricas dos dados hiper-espectrais. O método VCA determina os

vértices do simplex que contém os dados baseando-se na hipótese de que existe pelo menos um

elemento puro de cada material presente no conjunto de dados. Para um desempenho ao ńıvel

do estado-da-arte, o VCA tem uma complexidade computacional entre uma a duas ordens de

magnitude mais baixa do que os melhores métodos.

O terceiro método, designado por dependent component analysis (DECA), formaliza a separação

de dados espectrais como um problema de máxima verosimilhança (ML). O algoritmo expectation-

maximization (EM) é usado para inferir a matriz de separação. Este método modela as densidades

das abundâncias como misturas de Dirichlet, impondo assim as restrições habitualmente presentes

em dados hiper-espectrais, ou seja, soma constante e não negatividade. Este algoritmo apresenta

a vantagem de não necessitar da presença de pixeis puros nos dados.

A tese estuda ainda o impacto que a dependência estat́ıstica exibida pelos dados hiper-espectrais

tem no desempenho dos algoritmos de análise de componentes independentes (ICA) e na análise de

factores independentes (IFA), quando aplicados ao problema da separação de dados hiper-espectrais.

Conclui-se que estes algoritmos não separam correctamente os dados hiper-espectrais e que a matriz

de separação pode estar muito distante da solução correcta.

Na tese apresenta-se um conjunto de testes com dados hiper-espectrais simulados e reais para

avaliar o desempenho das metodologias propostas e ilustrar a sua efectividade.

Palavras-Chave: Imagens Hiper-espectrais; Separação Linear; Extracção Não Super-

visionada; Estimação do Sub-espaço de Sinal; Análise de Componentes Dependentes; Modelo de

Mistura Espectral.
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Aos amigos do CEDET quero agradecer todo o est́ımulo e incentivo que me deram durante a

execução deste trabalho.

Um agradecimento muito especial aos meus pais e irmãos, pela forma como souberam apoiar-me,
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Overview

Scope

Terrestrial remote sensing imagery involves the acquisition of information from the Earth’s surface

without physical contact with the area under study. Among the remote sensing modalities, hy-

perspectral imaging has recently emerged as a powerful passive technology. Hyperspectral sensors

sample the scattered or emitted electromagnetic radiation in the portion spectrum extending from

the visible region through the near-infrared and mid-infrared (wavelengths between 0.3µm and

2.5µm), in hundreds of narrow (on the order of 10nm) contiguous bands [106, 168]. This capability

enables the acquisition of images where each pixel is a vector with high spectral resolution.

This unprecedent spectral resolution has opened the door to a series of civilian and military

applications among which we refer to: land use, agriculture assessment, ecological and environ-

mental monitoring, ground-cover classification, mineral exploitation, change detection, man-made

materials identification and detection, target detection, target activities, and surveillance [152, 153].

Underlying all these applications is the fact that all substances scatter electromagnetic energy, at

specific wavelengths, in distinctive patterns related to their molecular composition [66].

The majority of image processing and analysis algorithms dealing with hyperspectral imagery

can be classified as follows [56, 157]: detect known or unknown objects or materials in a given

scenario; classify/segment the image into regions where a material is predominant; estimate the

materials and the respective area fractions that they occupy within a pixel, the so-called hyper-

spectral unmixing.
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Figure 1: Spectral resolution versus spatial resolution.

Spectral Resolution Versus Spatial Resolution

This thesis addresses the hyperspectral unmixing problem, which is the decomposition of the pixel

spectrum into a collection of constituent spectra, or endmember spectral signatures, and their

corresponding abundance fractions [86, 142]. Although important in it’s own right, unmixing also

permits the change of spectral resolution with spatial resolution.

To illustrate this, let’s assume that a given spectral vector r ∈ RL (L is the number of bands)

is a linear combination of mj signatures, weighted by the respective abundance fractions αj , for

j = 1, . . . , p. Thus,

r = Mα,

where M = [m1, . . . , mp] is the mixing matrix and α = [α1, . . . , αp]T is the abundance fractions

vector.

Fig. 1 illustrates the concept of pure and mixed pixels. Suppose we want to resolve the material

in brown. The spatial resolution of the sensor shall be increased from (∆x×∆y) to (∆x/4×∆x/4),

i.e., 16 times. On the other hand, if the mixing matrix M can be inferred and the columns of M

are linearly independent, then α can be computed and thus the materials can be resolved within

pixels without increasing the spectral resolution; i.e., α = M#r (M# stands for the pseudo-inverse
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of M). Of course, a necessary condition for the columns of M to be independent is that L ≥ p. As

a conclusion, hyperspectral sensors offer the possibility of changing spatial resolution with spectral

resolution.

The primary objective of this thesis is to recover the matrix M and the vector α for each pixel of

the hyperspectral image. This is a blind source separation problem to which many methods and

frameworks have been developed [6, 41, 74, 117]. However, most of them do not apply directly to

hyperspectral data, since the abundance fractions have particular constraints due to the physics of

the acquisition process, namely: i) mj º 0; ii) αj ∈ ∆p, where

∆p ≡ {α ∈ Rp : αj ≥ 0,

p∑

j=1

αj = 1}.

Thesis Contributions

This section summarizes the topics addressed in the thesis and its main contributions. These topics

are schematized in Fig. 2.

Linear Mixture Model

Chapter 1 describes a linear model for the observed spectral vectors. The model accounts for

the degradation mechanisms normally found in hyperspectral data, namely, signature variability,

topographic modulation, and sensor noise. This model is part of the material published in [119,

122, 124, 128].

Hysime, an Hyperspectral Signal Subspace Estimator

Chapter 2 proposes a new method termed hyperspectral signal identification by minimum error

(HySime). The method is based on a mean squared error (MSE) approach to determine the
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signal subspace in hyperspectral imagery. HySime is an eigendecomposition based method; it first

estimates the signal and noise correlations matrices, then it selects the subset of eigenvalues that

best represents the signal subspace in the least square sense. A variation of this method, exploiting

the fact that hyperspectral mixtures are nonnegative, is also proposed.

The noise estimation, a necessary step in the HySime algorithm, is based on the multiple

regression theory and exploits the high correlation existing between contiguous hyperspectral bands.

This method has been optimized to reduce the computational complexity. Parts of HySime were

published in [16, 18, 125, 126].

VCA, A Fast Algorithm to Unmix Hyperspectral Data

Chapter 3 proposes a new unsupervised method for linear unmixing termed vertex component

analysis (VCA). VCA is a fast method based on the following hyperspectral geometric features: i)

the endmembers are the vertices of a simplex; ii) the affine transformation of a simplex is also a

simplex. Briefly, VCA algorithm iteratively projects the spectral vectors onto a direction orthogonal

to the subspace spanned by the endmembers already determined. The new endmember signature

corresponds to the extreme of the projection. This algorithm competes with the current state-of-

the-art methods, yet it has much lower computational complexity. Parts of this work were published

in [18, 120, 121, 123, 127].

The Role of ICA on Hyperspectral Data Unmixing

VCA, as other geometrical approaches, assumes the presence of pure pixels on the data set. This

is a strong requirement that may not hold in some hyperspectral data sets. Statistical methods,

such as independent component analysis (ICA) or independent factor analysis (IFA), do not re-

quire such assumption. However, hyperspectral mixtures have statistical dependence among the

endmembers’ abundance fractions. Chapter 4 addresses the impact of the source (i.e., abundance
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fractions) statistical dependence on unmixing hyperspectral data using ICA and IFA algorithms. It

is shown that these algorithms do not correctly unmix hyperspectral data. We give evidence that

the unmixing matrix minimizing the mutual information might be very far from the true one.

A method based on the source entropy to sort the output of ICA or IFA algorithms according

to the likelihood of being correctly separated is also proposed. Parts of the study were published

in [119, 122, 124, 128].

Dependent Component Analysis

Chapter 5 introduces a new direction to blindly unmix hyperspectral data, termed dependent com-

ponent analysis (DECA). This method ensures abundance fractions constraints by using mixtures of

Dirichlet (MOD) densities and it uses an expectation maximization (EM) algorithm to estimate the

unmixing matrix and the Dirichlet parameters. Compared with the geometric based approaches,

the proposed direction does not need to assume the presence of pure pixels in the observations.

Parts of this work were published in [17, 128].

Thesis Organization

The thesis is organized as follows: Chapter 1 describes the hyperspectral unmixing problem and

the hyperspectral linear mixture model; Chapter 2 presents the hyperspectral signal identification

by minimum error (HySime) method to determine the signal subspace of the hyperspectral image.

Chapter 3 presents the vertex component analysis (VCA), a new geometrical method to unmix hy-

perspectral data. Chapter 4 addresses the impact of the source statistical dependence on unmixing

hyperspectral data using ICA and IFA frameworks. Chapter 5 presents the dependent component

analysis (DECA) method to blindly unmix hyperspectral data. Chapter 6 concludes the thesis

summarizing the main contributions and presenting future research directions.
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Chapter 1

Introduction

1.1 Hyperspectral Data Acquisition

The science of remote sensing has advanced over the recent past by using increasingly capable

sensors. The development of an extremely powerful class of Earth remote sensing instruments

has improved the capability of ground-based data collection in the fields of agriculture, geography,

geology, mineral identification, detection [33, 108], and classification [13, 97, 109, 115, 153].

Hyperspectral imaging sensors collect two dimensional spatial images over many contiguous

bands of high spectral resolution covering the visible, near-infrared, and shortwave infrared spectral

bands [106, 168]. Table 1.1 presents five examples of aircraft and satellite hyperspectral sensors

and their principal characteristics.

Table 1.1: Hyperspectral imaging sensors.

AVIRIS HyDICE Hymap Probe-1 Hyperion
[62] [143] [134] [104] [167]

Introduction Year 1987 1995 1996 1997 2000
Platform airborne airborne airborne airborne spaceborn
Nominal Altitude (km) 20 6 5 2.5 705
Spatial Resolution (m) 20 3 10 5 30
Spectral Resolution (nm) 10 10 17 10 10
Spectral Coverage (µm) 0.4-2.5 0.4-2.5 0.4-2.5 0.4-2.5 0.4-2.5
Number of Channels 224 210 128 128 220
Swath Width (km) 12 0.9 6 3 7.7
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Figure 1.1: Principle of hyperspectral data acquisition.

The AVIRIS [62, 168], Probe-1 [37, 104], and Hymap [134] instruments perform the collection

of data in a whisk-broom mode to the cross-track direction by mechanical scanning and in the

along-track direction by movement of the platform. Hyperion [135, 136, 167] and HyDICE [143]

instruments use a push-broom imaging sensor, which acquires data in a cross-track line without

any mechanical scanning. Usually an optical dispersing element such as a grating or a prism splits

the received ground surface radiance from the spectrometer into discrete channels registered by

several line array detectors. The digital data is produced by an analog to digital converter, which

samples the radiance measured in each spectral channel with a given radiometric resolution.

Fig. 1.1 illustrates the principles involved in the hyperspectral data acquisition. The spatially

and spectrally sample information of the ground surface can be described by a three dimensional

structure, referred to as a data cube. Fig. 1.2 shows an example of such a data cube and the

radiance of a pixel vector as a function of the wavelength. The ground pixel size varies from meters

to tens of meters depending on the altitude of the platform and on the instantaneous field of view

(IFOV) of the sensor.
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Figure 1.2: Hyperspectral data cube and pixel radiance example.

The information content of hyperspectral images with thousands of pixels and hundreds of

channels allows us to remotely identify ground materials, based on their spectral signature, and to

perform land characterization based on the abundance of each material.

Very often, the spatial portion occupied by a substance is smaller than the ground pixel size

(tens of meters). As a result, the signal read by the sensor from a given spatial element of resolution

and at a given spectral band is a mixing of components originated from the constituent substances,

termed endmembers, located at that element of resolution [106]. In this situation, the scattered

energy is a mixing of the endmember spectrum [71, 137, 151]. Hyperspectral unmixing is the

decomposition of the pixel spectrum into a collection of constituent spectra, or spectral signatures,

and their corresponding abundance fractions, occasionally termed sources, indicating the proportion

of each endmember present in the pixel [86, 142].

Depending on the mixing scales at each pixel, the observed mixture is either linear or nonlinear

[87, 105]. The linear mixing model holds approximately when the mixing scale is macroscopic [156]

and there is negligible interaction among distinct endmembers [39, 65]. Fig. 1.3(a) illustrates a
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Figure 1.3: Illustration of a pixel: (a) linear mixture (macroscopic mixing scale); (b): nonlinear
mixture (intimate mixture).

linear mixing scale. The nonlinear model holds when the mixing scale is microscopic (i.e., intimate

mixtures) [129, 155]. Fig. 1.3(b) illustrates an intimate mixture, yielding a nonlinear scenario. The

linear model assumes negligible interaction among distinct endmembers [39, 65]. The nonlinear

model assumes that incident solar radiation is scattered by the scene through multiple bounces

involving several endmembers [23]. Very often, the effects of multiple scattering are assumed to be

negligible and thus the linear model is adopted [110].

Fig. 1.4 shows the most common steps to unmix hyperspectral data. Due to illumination and

atmospheric effects, the radiance acquired by hyperspectral sensors cannot be directly compared

with a digital spectral library or even with other radiance data sets. This comparison is made

possible by the atmospheric correction, which transforms the radiance spectra into reflectance.

This operation accounts for solar spectrum, sensor and sun directions, path radiance, secondary

illumination, and shadowing. The second operation, data reduction, is a consequence of the fact

that the number of endmembers present in the scene is usually much smaller than the number of

bands of an hyperspectral data set. This operation has a great impact since it reduces the amount

of data, implying computational savings in the unmixing step, and it improves the signal-to-noise

ratio (SNR). The third operation, spectral unmixing, usually embodies two steps: endmember

determination and inversion. The first step estimates the signatures of the distinct endmembers
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Figure 1.4: Schematic diagram of hyperspectral unmixing.
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Figure 1.5: Schematic diagram of the main contributions to the radiance read by the sensor in the
solar spectrum.

present in the scene. The second step estimates the abundance fractions of each endmember.

To conduct the hyperspectral unmixing operation, a mixture model must be adopted to describe

how the constituent endmembers and how the atmosphere scatters the sun light at a given pixel.

This process is addressed in the next section.

1.2 Spectral Radiance Model

This section describes a typical passive remote sensing scenario (see Fig. 1.5). The sun illuminates a

random media formed by the earth surface and by the atmosphere; a sensor (airborne or spaceborn)

reads, within its instantaneous field of view, the scattered radiance in the solar-reflectance region

extending from 0.4 to 2.5 µm, encompassing the visible, near-infrared, and shortwave infrared

bands. Angles θ and φ, with respect to the normal ng on the ground, are the colatitude and the

longitude, respectively. The solar and sensor directions are (θ0, φ0) and (θs, φs), respectively.

The total radiance at the surface level is the sum of three components, as schematized in Fig. 1.5:

the sunlight (ray 1), the skylight (ray 2), and the light due to the adjacency effect (ray 3), i.e.,
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due to the successive reflections and scattering between the surface and the atmosphere. Following

[163, 169], the spectral radiances of these components are, at a given wavelength λ, respectively,

given by

L1 = µ0E0T↓, where E0 is the solar flux at the top of the atmosphere, µ0 = cos(θ0), and T↓ = T↓(θ0)

is the downward transmittance.

L2 = µ0E0t↓, where t↓ = t↓(θ0) is the downward diffuse transmittance factor.

L3 = µ0E0T
′
↓[ρtS + (ρtS)2 + (ρtS)3 . . . ], where T ′↓ = [T↓ + t↓], ρt is the mean reflectance of the

surroundings with respect to the atmospheric point spread function (PSF), and S is the

spherical albedo of the atmosphere.

The total radiance incident upon the sensor location is the sum of three components: the

light scattered by the surface (ray 4), the light scattered by the surface and by the atmosphere

(ray 5), and light scattered by the atmosphere (ray 6), the so-called path radiance. Assuming a

Lambertian surface, and again following [163, 169], these radiances at the top of the atmosphere

are, at wavelength λ, respectively, given by

L4 =
µ0E0

π

T ′↓T↑
1− ρtS

ρ, where ρ is the surface reflectance and T↑ = T↑(θ0) is the upward transmit-

tance.

L5 =
µ0E0

π

T ′↓t↑
1− ρtS

ρt, where t↑ = t↑(θs) is the upward diffuse transmittance factor.

L6 =
µ0E0

π
ρa, where ρa(θ0, θs, φs − φ0) is the atmosphere reflectance.

Thus, the total radiance, Ls, incident upon the sensor location is

Ls = aρ + b,
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where

a =
µ0E0

π

T ′↓T↑
1− ρtS

(1.1)

b =
µ0E0

π

(
T ′↓t↑

1− ρtS
ρt + ρa

)
. (1.2)

Let us assume that the sensor has L channels (wavebands). Assuming linear receivers and

narrow wavebands, the signal at the output of the ith channel (waveband centered at wavenumber

λi) is given by

ri = ciρ + di + ni,

where ci and di are proportional to a(λi) and b(λi), respectively, and ni denotes the receiver

electronic noise at channel i plus the Poisson (photonic) signal noise (see, e.g., [79]).

Terms a and b in expressions (1.1) and (1.2) depend in a complex way on the sun and sensor

directions, on the atmosphere composition, on the topography, and on the scene materials and

configurations [107, 163, 169]. The compensation for these terms, the so-called atmospheric cor-

rection, is a necessary step in many quantitative algorithms aiming at extracting information from

multispectral or hyperspectral imagery [14, 146, 169].

In the thesis, linear unmixing of abundance fractions at the pixel level is addressed. The

term linear indicates that the observed entities are linear combinations of the endmember spectral

signatures weighted by the correspondent abundance fractions. Therefore, it is assumed that at-

mospheric correction has been applied to ensure a linear relation between the radiance Ls and the

reflectance ρ; i.e., for each channel, the relation between the radiance and the reflectivity is linear

with coefficients independent of the pixel.
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A brief description of the most used atmospheric correction methods is presented in Appendix A.

Note, however, that no correction may be necessary. This is the case when the scene is a surface

of approximately constant altitude, the atmosphere is horizontally homogeneous, and ρt, the mean

reflectance of the surroundings, exhibits negligible variation.

1.2.1 Linear Spectral Mixture Model

In spectral mixture modeling, the basic assumption is that the surface is made of a few number

of endmembers with relatively constant spectral signatures, or, at least, constant spectral shapes.

If the multiple scattering among distinct endmembers is negligible and the surface is partitioned

according to the abundance fractions, then the spectral radiance upon the sensor location is well ap-

proximated by a linear mixture of endmember radiances weighted by the correspondent abundance

fractions [2, 66, 86, 87, 105].

Under the linear mixing model and assuming that the sensor radiation pattern is ideal (i.e.,

constant in the IFOV and zero outside), the output of channel i from a given pixel is

ri = ci

p∑

j=1

ρijαj + di + ni, (1.3)

where ρij denotes the reflectance of endmember j at wavenumber λi, αj denotes the abundance

fraction of endmember j at the considered pixel, and p is the number of endmembers.

Abundance fractions α = [α1, . . . , αp]T as the name indicates is a vector of fractions belonging

to the simplex ∆p given by

∆p ≡ {α ∈ Rp : αj ≥ 0,

p∑

j=1

αj = 1}, (1.4)

where
∑p

j=1 αj = 1 and αj ≥ 0, for j = 1, . . . , p are the so-called full additivity and positivity

constraints, respectively. For a real sensor, the output of channel i is still formally given by
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expression (1.3), but αj depends on the sensor PSF hx,y(u, v) according to

αj =

∫
Aj

hx,y(−u,−v) dudv∫
R2 hx,y(−u,−v) dudv

,

where Aj denotes the set of points on the surface belonging to the jth endmember. The PSF

hx,y(u, v) may be spatially variant (i.e., it depends on surface coordinates x and y) and it includes

the effect of finite aperture and receiver impulse response. Note that the meaning of αj depends not

only on the true abundance fractions, but also on the endmember distribution inside the IFOV and

on the surface point (x, y). An image-restoration-based approach to mitigate the errors introduced

by the non-ideal nature of the PSF is proposed in [175].

Herein it is assumed that the signal at the output of channel i is given by expression (1.3). A usual

procedure is to remove low-SNR channels from the spectral vectors. Thus, since only high-SNR

channels are considered, Poisson noise is neglected. Concerning the atmospheric correction, it is

assumed that the images have been processed to remove the path radiance (ray 5 in Fig. 1.5) and

the light scattered by interaction between surface and the atmosphere (ray 6 in Fig. 1.5). Note,

however, that the corrected image is still in radiance units.

Let r be an L×1 vector, where L is the total number of bands and mo
j ≡ [c1ρ1j , c2ρ2j , . . . , cLρLj ]T

is the so-called signature of the jth endmember. In this case, expression (1.3) can be written as

r = Mα + n′, (1.5)

where M ≡ [mo
1,m

o
2, . . . ,m

o
p] is a matrix with the signatures of the endmembers present in the

covered area, α ≡ [α1, α2, . . . , αp]T , and n′ models additive receiver electronic noise.

The model (1.5) is an oversimplification of reality, because it does not take into account signa-

ture variability (from pixel to pixel) due to changes in the configuration and in the composition
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of substances, surface contaminants, variation in the substances such as age-induced color fading

due to oxidation or bleaching, uncompensated atmospheric and environmental effects, and uncom-

pensated errors in the sensor. Signature variability has been studied and accounted for in a few

unmixing algorithms (see, e.g., [10, 22, 92]).

Signature variability is primarily characterized by spectral shape invariance [152]; i.e., while the

spectral shapes of the endmembers are fairly consistent, their amplitude varies considerably over

the scene. Based on this rationale, the spectral variability of the jth endmember at a given pixel

is modeled as

mj = ψj mo
j + ηj , (1.6)

where ψj ≥ 0 is a scale factor and ηj is a zero-mean random vector. Noise ηj accounts for signature

variability not modeled by ψj . Introducing expression (1.6) into expression (1.5), for a given pixel,

leads to

r = Mψα +
p∑

j=1

αjηj + n′, (1.7)

where ψ ≡ diag (ψ1, . . . , ψp) is a p× p diagonal matrix.

Having in mind that illumination variability due to surface topography affects equally all bands

and that additive noise is assumed, the spatial vector associated to a given pixel can be written as

r = M γψα︸ ︷︷ ︸
s

+ γ

p∑

j=1

αjηj + n′

︸ ︷︷ ︸
n

= Ms + n, (1.8)

where γ models the surface topography effect.

Model (1.8) is adopted in the experiments conducted in the following chapters of the thesis. It

is still linear and accounts for illumination fluctuations, signature variability, and sensor noise.
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Chapter 2

HySime: An Hyperspectral Signal
Subspace Estimator

2.1 Introduction

Hyperspectral sensors provide more accurate and more detailed data than their multispectral an-

cestors. From each pixel, they acquire spectral vectors with hundreds of components, yielding large

amounts of data. For example, AVIRIS collects a 512 (along track) × 614 (across track) × 224

(bands) × 12 (bits) data cube in 43 seconds, corresponding to more than 700 Mbits, and Hyperion

collects 4 Mbits in 3 seconds, corresponding to 366Kbytes/Km2 [85]. Such huge data volumes put

stringent requirements in what concerns communications, storage, and processing.

Each pixel of an hyperspectral image can be represented as a vector in the Euclidian space

RL, where L is the number of bands and each channel is assigned to one axis of space. Under the

linear mixing scenario, the spectral vectors are a linear combination of the so-called endmember

signatures. The number of endmembers present in a given scene is, very often, much less than

the number of bands L. Therefore, hyperspectral vectors lie in a low dimensional linear subspace.

The identification of this subspace enables the representation spectral vectors in a low dimensional

subspace, thus yielding gains in computational time and complexity and in data storage. The

computation of statistical estimates is a relevant example of the advantages of dimensionality

reduction, since the number of samples required to obtain accurate estimates increases drastically
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with the dimensionality of the data [97].

2.1.1 Hyperspectral Dimensionality Reduction Methods

Dimensionality reduction has been approached in many ways. Band selection or band extraction,

as the name suggests, exploits the high correlation existing between adjacent bands to select a

few spectral components among those with higher SNR [7, 72, 78, 154, 160]. The signal subspace

methods can be classified either as global or local [80]. The global methods estimate the signal

subspace using the complete data set. The local methods use local information contained in pixel

neighborhoods, thus avoiding projections of data onto a lower-dimensional subspace. Projection

techniques, which are usually used in the global approaches, seek for the best subspace to project

data by minimizing an objective function. For example, principal component analysis (PCA)

[82], computes the Karhunen-Loéve transform, which seeks for the projection that best represents

data in the least square sense; singular value decomposition (SVD) [149] provides the projection

that best represents data in the maximum power sense; maximum noise fraction (MNF)[61] and

noise adjusted principal components (NAPC)[99] seek for the projection that optimizes the ratio

of noise power to signal power. This is in contrast with PCA and SVD, where no noise model

is used. Orthogonal subspace projection (OSP) [68] is a technique that projects the data set

onto a subspace orthogonal to the undesired signatures. This operation is an optimal interference

suppression process in the least squares sense.

Topological methods are local approaches that infer the manifold, usually of low dimension,

where data set live [28]. For example, curvilinear component analysis [45], curvilinear distance

analysis [101], and manifold learning [57] are non-linear projections based on the preservation of

the local topology. Independent component analysis [102], projection pursuit [77, 81], and wavelet

decomposition [83, 132] have also been considered.
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U. S. Naval Research Laboratory developed ORASIS [25, 27] aiming at real-time implemen-

tations. This framework consists of several algorithms, where the exemplar selector module uses

a non-statistical technique, based on a squared error optimization, to reduce the dimension of

hyperspectral data.

The identification of the signal subspace is a model order inference problem to which information

theoretic criteria like the minimum description length (MDL) [144, 150] or the Akaike information

criterion (AIC) [4] comes to mind. These criteria have in fact been used in hyperspectral applica-

tions [32] adopting the approach introduced by Wax and Kailath in [172].

Harsanyi, Farrand, and Chang [67] developed a Neyman-Pearson detection theory-based thresh-

olding method (HFC) to determine the number of spectral endmembers in hyperspectral data (re-

ferred to in [32] as virtual dimensionality - VD). The HFC method uses the eigenvalues to measure

signal energies in the detection model. A modified version of this method, termed noise-whitened

HFC (NWHFC), includes a noise-whitening process as a preprocessing step to remove the correla-

tion [31]. This method requires a noise estimation step.

2.1.2 Proposed Approach

This chapter proposes two new minimum mean squared error based approaches to determine the

signal subspace in hyperspectral imagery. The first method, termed hyperspectral signal identifica-

tion by minimum error (HySime), starts by estimating the signal and the noise correlation matrices

using multiple regression. The eigenvectors of the signal correlation matrix are then used to build a

sequence of nested subspaces. The signal subspace is inferred by minimizing the sum of the projec-

tion error power with the noise power, which are, respectively, decreasing and increasing functions

of the subspace dimension. Therefore, if the subspace dimension is overestimated the noise power

term is dominant, whereas if the subspace dimension is underestimated the projection error power

term is the dominant. The overall scheme is adaptive in the sense that it does not depend on any
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tuning parameters. The second method is a mean-value based approach. It exploits the structure

of hyperspectral mixtures, namely, the fact that spectral vectors are nonnegative. The effectiveness

of the proposed methods is illustrated using simulated and real hyperspectral images.

In spite of very good nonlinear existing methods, it makes sense to research the linear approach

because, besides being light from the computational point of view, the linear mixing model is a

good approximation in many real scenarios. Even in the nonlinear mixing case, the data is, very

often, in a subspace of dimension much lower than the number of bands, i.e., p ¿ L.

The chapter is structured as follows. Section 2.2 formulates the signal subspace identification

problem and reviews the SVD and MNF methods. Section 2.3 describes the fundamentals of

the proposed method. Section 2.4 evaluates the proposed algorithm using simulated and real

data. Section 2.6 ends the chapter by presenting some concluding remarks. Parts of the proposed

approach herein presented were published in [16, 18, 125, 126].

2.2 Problem Formulation and Classical Dimensionality

Reduction Methods

Assume that the observed spectral vectors, r ∈ RL, are given by (see Section 1.2.1)

r = x + n, (2.1)

where x and n are L-dimensional vectors standing for signal and additive noise, respectively. Fur-

thermore, assume that signal vectors are in an unknown p-dimensional subspace, i.e.,

x = Ms,
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with M being a full-rank L × p matrix. Under the linear mixing scenario, the columns of M ≡

[m1,m2, . . . ,mp] are the endmember signatures and s is the abundance fraction vector. To be

physically meaningful [108], abundance fractions are subject nonnegativity and full additivity con-

straints, i.e., s ∈ ∆p [see expression (1.4)].

Herein, we do not assume any special structure for the scattering mechanism; i.e., our approach

works both under the linear and nonlinear scenarios. Even in the nonlinear mixing scenario, it

often happens that signal subspace dimension, although larger than the number of endmembers,

is much smaller than the number of bands L. In these cases, it is still worthy, then, to estimate

the signal subspace and represent the data on it. Note that this procedure does not preclude the

application of future nonlinear projection techniques; on the contrary, it is an advantage, since the

data is represented by vectors of smaller dimension, thus lightening the computational complexity

of any posterior processing scheme.

Let us assume, for a while, that noise n is zero-mean Gaussian i.i.d., (i.e., the components of n

are independent and identical distributed) with variance σ2
n per band. Under these circumstances,

the maximum likelihood (ML) estimate of the signal subspace is spanned by the p-dominant eigen-

vectors of the sample correlation matrix of r [149, Ch. 6]; i.e., 〈M〉 = 〈[e1, . . . , ep]〉, (the notation

〈M〉 represents the subspace spanned by the columns of M) where ei, for i = 1, . . . , p, are the

p-dominant eigenvectors of the sample correlation matrix K̂r.

2.2.1 Eigenanalysis of the Sample Correlation Matrix

The ML estimator of the subspace signal just presented assumes that the dimension of the subspace

is known beforehand. However, this dimension is often a priori unknown. Nevertheless, a similar

approach has been extensively used as a dimensionality reduction tool in hyperspectral image

processing [87, 153]. It consists in assuming that the noise is zero-mean i.i.d.. Thus, the correlation

matrix of the observed vectors may be written as Kr = E(Σ + σ2
nIL)ET , where E and Σ are the
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eigenvector and eigenvalue matrices of Kx, respectively. Assuming that Kx has just p positive

eigenvalues and that they are ordered along the diagonal of Σ by decreasing magnitude, we have

then 〈M〉 = 〈[e1 . . . ep]〉; i.e., the estimate of the signal subspace is the span of the eigenvectors of

Kr whose respective eigenvalues values are larger than σ2
n [149].

This is, basically, the idea behind SVD-based dimensionality reduction. Two limitations of this

approach are the following:

i) the noise present in most hyperspectral data sets is not i.i.d. and, thus, the signal subspace is

no longer given by the span of the first p singular vectors nor by any other set of eigenvalues.

ii) even if the noise was i.i.d., the procedure described above to infer the subspace dimension is

prone to errors owing to random perturbations always present in the estimates of σ2
n, E, and

Σ.

We illustrate these limitations with an experiment built on a simulated hyperspectral image com-

posed of 105 pixels and generated according to the linear mixing scattering mechanism. Each pixel

is a mixture of five endmembers signatures (p = 5) selected from the USGS digital spectral library

[40]. Abundance fractions are generated according to a Dirichlet distribution given by

D(s1, s2, . . . , sp|θ1, θ2, . . . , θp) =
Γ(

∑p
j=1 θj)∏p

j=1 Γ(θj)

p∏

j=1

s
θj−1
j , (2.2)

where {s1, . . . , sp} ∈ ∆p and the mean value of the jth endmember fraction, sj , is E[sj ] =

θj/
∑p

l=1 θl [54]. This density, besides enforcing positivity and full additivity constraints, displays

a wide range of shapes, depending on the parameters of the distribution. On the other hand, as

noted in [116], the Dirichlet density is suited to model fractions.

Consider that the noise correlation matrix is Kn = diag(σ2
1, . . . , σ2

L) and that the diagonal
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elements follow a Gaussian shape centered at the band L/2, i.e.,

σ2
i = σ2 e

− (i−L/2)2

(2η2)

∑L
j=1 e

− (j−L/2)2

(2η2)

, (2.3)

for i = 1, . . . , L. Parameter η plays the role of variance in the Gaussian shape (η →∞ corresponds

to white noise; η → 0 corresponds to one-band noise). Parameter σ2 controls the total noise power.

We set σ2 = 8.1× 10−3 leading to SNR = 17 dB, where

SNR ≡ 10 log10

E
[
xTx

]

E
[
nTn

] . (2.4)

To measure the dissimilarity between the signal subspace and the subspace inferred by SVD,

we adopt the chordal distance [60, 159], defined as

d =
1√
2
‖Up −UM‖F , (2.5)

where ‖·‖F denotes the Frobenius norm of a matrix, Up = EpET
p and UM = EMET

M are projection

matrices onto the subspace of dimension p spanned by, respectively, the first p singular vectors of

K̂y and by the columns of M. We note that the chordal distance is a measure of the projection

error norm, i.e., it is a measure of the errors (Up −UM )x for ‖x‖ = 1 and x ∈ RL. When this

distance is zero the two projections are equal.

Fig. 2.1(a) shows the shape of the noise variance σ2
i for η ∈ {18, 38, 74,∞}. Fig. 2.1(b) presents

the chordal distance between the signal subspace and the subspace inferred by SVD, as a function

of η and for p = 5. Notice the clear increasing of the chordal distance with η, i.e., the chordal

distance increases as the noise correlation shape becomes less flat. The degradation of the signal

subspace estimate owing to the violation of the white noise assumption is quite clear.

In the example just presented, the subspace dimension was assumed known. However, this
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Figure 2.1: (a) Noise variance in each band for different values of η; (b) Chordal distance as a
function of parameter η for SNR = 17 dB. (line) subspace inferred by SVD; (dashed line) subspace
inferred by MNF.

dimension is unknown in most real applications and must be inferred from data as already referred

to. This is a model-order inference problem that, if based only on the eigenvalues of the data

correlation matrix, may lead to poor results. This aspect is illustrated in Fig. 2.2, where we have

plotted the eigenvalues (circles) of K̂r computed in the experiment above with SNR = 12 dB and

η = 18. Note how difficult is to infer the number of signal eigenvalues for this SNR, because they

are masked by the noise eigenvalues. We will see that HySime is able to infer the correct subspace

dimension in the present scenario.

2.2.2 Maximum Noise Fraction

Maximum noise fraction (MNF) is a another popular subspace inference tool in remote sensing

that takes into account the noise statistics. Nonetheless, it has limitations similar to SVD-based

approaches, as we illustrate below.

MNF finds orthogonal directions minimizing the noise fraction (or, equivalently, maximizing the

SNR). Assuming that the noise correlation matrix Kn or an estimate is known, this minimization
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consists in finding orthogonal directions minimizing the ratio

vT
i Knvi

vT
i Krvi

, (2.6)

with respect to vi. This problem is known as the generalized Rayleigh quotient and the solution is

given by the left-hand eigenvectors vi, for i = 1, . . . , L, of KnK−1
y [48].

For i.i.d noise, we have Kn = σ−2
n I and K−1

r = E
(
Σ + σ2

nI
)−1 ET, and therefore MNF and

SVD yield the same subspace estimate. However, if the noise is not i.i.d., the directions found

by the MNF transform maximize the SNR but do not identify correctly the signal subspace. To

illustrate this aspect, we apply the MNF transform to the data set generated in the the previous

section.

The dashed line in Fig. 2.1(b) represents the chordal distance between the signal subspace and

the subspace inferred by the MNF transform for different values of parameter η and assuming p = 5.

The chordal distance exhibits a pattern similar to that of the SVD based approach being, however,

larger for η 6= ∞ (white noise case).

Fig. 2.2 (triangles) plots the ratio (vT
i Krvi)/(vT

i Knvi) along direction vi by decreasing order.
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As in the SVD-based approach, we face a model-order selection problem that is hard to solve

without any further information or criterium.

2.3 Signal Subspace Estimation

This section introduce formally a new method to estimate the hyperspectral signal subspace termed

hyperspectral signal identification by minimum error (HySime). The method starts by estimating

the signal and the noise correlation matrices and then it selects the subset of eigenvectors that

best represents the signal subspace in the minimum mean squared error sense. The application of

this criterium leads to the minimization of a two-term objective function. One term corresponds

to the power of the signal projection error and is a decreasing function of the subspace dimension;

the other term corresponds to the power of the noise projection and is an increasing function of

subspace dimension.

2.3.1 Noise Estimation

Noise estimation is a classical problem in data analysis and particulary in remote sensing. Arguably,

in hyperspectral imagery, the simplest noise estimation procedure is the shift difference method,

also denominated as nearest neighbor difference (NND) [61]. This approach assumes that noise

samples taken from adjacent pixels are independent and have the same statistics, but the signal

component is practically equal. To obtain meaningful noise estimates, the shift difference method

shall be applied in homogeneous areas rather than on the entire image. This method has two

weaknesses: first, it assumes that adjacent pixels have the same signal information, which is not

valid in most hyperspectral data sets; second, to improve the noise estimation, a supervised selection

of homogeneous areas must be carried out.

Herein, we follow a multiple regression theory [32, 148] based approach, which outperforms the

shift difference method, as it exploits the high correlation existing among hyperspectral bands. Let
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us denote by R =
[
r1, r2, . . . , rN

]
an L×N matrix holding the N spectral observed vectors of size

L. Define the matrix Z = RT , the N ×1 vector zi = [Z]:,i, where [Z]:,i stands for the ith column of

Z (i.e., zi contains the data read by the hyperspectral sensor at the ith band for all image pixels),

and the N × (L− 1) matrix Z∂i
= [z1, . . . , zi−1, zi+1, . . . , zL].

Assume that zi is explained by a linear combination of the remaining L − 1 bands. Formally,

this consists in writing

zi = Z∂iβi + ξi, (2.7)

where Z∂i is the explanatory data matrix, βi is the regression vector of size (L− 1)× 1, and ξi is

the modeling error vector of size N × 1. For each i ∈ {1, . . . , L}, the least squares estimator of the

regression vector βi is given by

β̂i =
(
ZT

∂i
Z∂i

)−1ZT
∂i
zi. (2.8)

The noise is estimated by

ξ̂i = zi − Z∂iβ̂i, (2.9)

and the correlation matrix by K̂n =
[
ξ̂1, . . . , ξ̂N

]T [
ξ̂1, . . . , ξ̂N

]
/N . Notice that the determination

of each noise vector ξ̂i implies the computation of the pseudo-inverse Z#
∂i

=
(
ZT

∂i
Z∂i

)−1ZT
∂i

, of size

(L − 1) × (L − 1), for each i = 1, . . . , L. This huge computational complexity can, however, be

greatly reduced by taking advantage of the relation between Z#
∂i

and Z. Let the L× L symmetric

and positive definite matrices K and K−1 be partitioned into block matrices as follows

K =




A b

bT c




, K−1 =




A′ b′

b′T c′




, (2.10)
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where A and A′ are (L − 1 × L − 1) matrices, b and b′ are (L − 1 × 1) vectors, and c and c′ are

scalars. Since K, K−1, A, A−1, and c′ are positive definite, thus

AA′ + bb′T = IL−1 (2.11)

Ab′ + bc′ = 0L−1. (2.12)

Replacing A−1b′ = −b′/c′, derived from (2.12), into expression (2.11), we obtain

A−1 = A′ − b′b′T /c′. (2.13)

Based on this relation, the inversion of the matrix ZT
∂i
Z∂i , for i = 1, . . . , L, can be obtained

by removing the ith row and the ith column of the matrix
(
ZTZ

)−1 and implementing expression

(2.13) with the necessary adjustments.

The pseudo-code for the noise estimation is shown in the Algorithm 2.1. Symbol [K̂]∂i,∂i
denotes

the matrix obtained from K̂ by deleting the ith row and the ith column, [K̂]i,∂i denotes the ith

row of [K̂]:,∂i , and [K̂]∂i,i denotes [K̂]Ti,∂i
. Steps 2 and 3 compute matrix K̂ = ZTZ and its inverse,

respectively. Steps 5 and 6 estimate, respectively, the regression vector β̂i and the noise ξ̂i, for

each i = 1, . . . , L.

Algorithm 2.1 : Noise estimation
1: INPUT R ≡ [r1, r2, . . . , rN ]
2: Z = RT , K̂ :=

(
ZTZ

)
;

3: K′ := K̂−1;
4: for i := 1 to L do
5: β̂i := ([K′]∂i,∂i − [K′]∂i,i[K

′]i,∂i/[K′]i,i) [K̂]∂i,i;
{Note that ∂i = 1, . . . i− 1, i + 1, . . . L}

6: ξ̂i := zi − Z∂iβ̂i;
7: end for
8: OUTPUT ξ̂; { ξ̂ is a N × L matrix with the estimated noise}
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Table 2.1: Computational complexity of the noise estimation algorithms.

Algorithm 2.1 4NL2 + 6L3

Algorithm without relation (2.13) 4NL2 + 2NL3 + L4
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Figure 2.3: Illustration of the noise estimation algorithm complexity: implementation of Algorithm
2.1 (Solid line); direct implementation without using relation (2.13) (dashed line); (a) computational
complexity as a function of the number of bands, for N = 104; (b) computational complexity as a
function of the number of pixels, for L = 224.

The main advantage of Algorithm 2.1 is that the computation of K̂ and of K′ = K̂−1 are out

of the loop for. Thus, the computational complexity, i.e., the number of floating point operations

(flops), of Algorithm 2.1 is substantially lower than that of an algorithm implementing the multiple

regression without using the relation (2.13). Note that the computation of the sample correlation

matrix and of its inversion demands, approximately, 2NL2 + L3 flops, whereas the multiple regres-

sion algorithm without using the relation (2.13) has to compute L times the above matrices, thus

demanding, approximately, 2NL3 + L4 flops. Table 2.1 presents approximated expressions for the

number of floating point operations used by each algorithm. For N À L, Algorithm 2.1 demands,

approximately, L/2 less flops, what is a significant figure since L/2 takes, in many applications,

values on the order of 100. Fig. 2.3 presents the computational complexity of the Algorithm 2.1,

as a function of the number of pixels and as a function of the number of bands. In the same figure
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it is also presented the computational complexity of the noise estimation algorithm without using

relation (2.13). Note that the Algorithm 2.1 has lowest complexity as mentioned above.

The next experiment illustrates Algorithm 2.1 working. The input data is a simulated hyperspec-

tral image composed of 104 spectral vectors, each one following the linear mixing model (2.1). The

abundance fractions are generated according to a Dirichlet distribution and the endmembers signa-

tures are selected from the USGS digital spectral library. The noise is zero-mean independent with

variances along the bands following a Gaussian shape [see Fig. 2.1(a)]. The number of endmembers

is p = 5 and SNR = 20 dB.

Fig. 2.4(a) shows the noiseless spectral vector x and the noisy version x + n. Fig. 2.4(b) shows

the true and the estimated noise. The improvement in the SNR (i.e., E[‖n‖2]/E[‖x̂−x‖2]) is about

13 dB. Fig. 2.4(c) shows the diagonal of the covariance matrices of noise and its estimate. Note the

accuracy of the estimate.

2.3.2 Signal Subspace Inference

This section presents the core structure of HySime. The first step, based on the noise estimation

procedure introduced in the previous section, identifies a set of orthogonal directions of which an

unknown subset spans the signal subspace. This subset is then determined by seeking the minimum

mean squared error between x, the original signal, and a noisy projection of it obtained from the

vector r = x + n. In the following, we assume that n ∼ N (0, K̂n), i.e., the noise is zero-mean

Gaussian distributed with covariance matrix K̂n.

Let K̂x = [x̂1, . . . , x̂N ] [x̂1, . . . , x̂N ]T /N denote the signal sample correlation matrix. The eigen-

decomposition of K̂x can be written as

K̂x = EΣET , (2.14)
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Figure 2.4: Illustration of the noise estimation; (a) bold line: reflectance signal of a pixel; narrow
line: the same pixel with noise; (b) solid line: true noise; dashed line: estimated noise. (c) solid line:
diagonal of the estimated noise covariance matrix; dashed line: diagonal of the noise covariance
matrix.
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where E ≡ [e1, . . . , ek, ek+1 . . . , eL] is a matrix with the eigenvectors, ej , ordered by the decreasing

magnitude of the respective eigenvalues. The space RL can be decomposed into two orthogonal

subspaces: 〈Ek〉 spanned by Ek ≡ [e1, . . . , ek] and 〈Ek〉⊥ spanned by E⊥k ≡ [ek+1, . . . , eL], i.e., the

orthogonal complement of subspace Ek, where k is the order of the signal subspace.

Let Uk = EkET
k be the projection matrix onto 〈Ek〉 and x̂k ≡ Ukr be the projection of the

observed spectral vector r onto the subspace 〈Ek〉. The first and the second-order moments of x̂k

given x are

E
[
x̂k|x

]
= UkE

[
r|x]

= UkE
[
x + n|x]

= Ukx

≡ xk, (2.15)

E
[
(x̂k − xk)(x̂k − xk)T |x]

= E
[
(Ukr−Ukx)(Ukr−Ukx)T |x]

= E
[
(UknnTUT

k )
]

= UkK̂nUT
k . (2.16)

The mean squared error between x and x̂k is

mse(k|x) = E
[
(x− x̂k)T (x− x̂k)|x

]

= E
[
(x− xk︸ ︷︷ ︸

bk

−Ukn)T (x− xk︸ ︷︷ ︸
bk

−Ukn)|x]

= bT
k bk + tr(UkK̂nUT

k ). (2.17)

Computing the mean of (2.17) with respect to x, noting that bk = x − xk = U⊥
k x, and using
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the properties U = UT , U2 = U, and U⊥ = I−U of the projection matrices, we get

mse(k) = E[(U⊥
k x)T (U⊥

k x)] + tr(UkK̂nUT
k )

= tr(U⊥
k Kx) + tr(UkK̂n)

= tr(U⊥
k Kr) + 2 tr(UkK̂n) + c, (2.18)

where c is an irrelevant constant. The criteria we propose to estimate the signal subspace is the

minimization of mse(k) given by (2.18) with the correlation matrix Kr replaced with the sample

correlation matrix K̂r = RRT /N , i.e.,

k̂ = arg min
k

{
tr(U⊥

k K̂r) + 2 tr(UkK̂n)
}

, (2.19)

Each term of expression (2.19) has a clear meaning: the first accounts for the projection error power

and is a decreasing function of k; the second accounts for the noise power and is an increasing

function of k.

The pseudo-code for HySime is shown in the Algorithm 2.2. HySime inputs are the spectral ob-

served vectors and the sample correlation matrix K̂r. Step 2 estimates the noise correlation matrix

K̂n. Step 3 estimates the signal correlation matrix K̂x. Step 4 and 5 calculate the eigenvectors of

the signal correlation matrix and the mean squared error function. The minimizer of this function

is the the estimated signal subspace dimension, k̂.

Algorithm 2.2 : HySime

1: INPUT R ≡ [r1, r2, . . . , rN ], K̂r ≡
(
RRT

)
/N

2: K̂n := 1
N

∑
i

(
n̂in̂T

i

)
; {K̂n is the noise correlation matrix estimates}

3: K̂x := 1
N

∑
i

(
(ri − n̂i)(ri − n̂T

i )
)
; {K̂x is the signal correlation matrix estimates}

4: Uk := EkET
k ; {where Ek are eigenvectors of K̂x}

5: k̂ := arg mink

{
tr(U⊥

k K̂r) + 2 tr(UkK̂n)
}
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Signal Subspace Order Estimation Using the Mean Value of Spectral Vectors

(HySimem)

An alternative to the projection U⊥
k K̂r, consists in projecting the sample mean r ≡ 1

N

∑N
i=1 ri onto

the subspace orthogonal to the signal subspace. The underlying rational for this approach is that

spectral vectors are nonnegative and then r accumulates information about every spectral vectors

in the data set. Of course, for this approach to work, the projection of r onto any eigenvector

ej , j = 1, . . . , k must be nonzero. Although we have not any proof of this statement, we believe,

supported on practical evidence, that the probability of rTej = 0 is practically zero in real data

sets.

The sample mean vector of the data set is

r =
1
N

N∑

i=1

ri

=
1
N

M
N∑

i=1

si +
1
N

N∑

i=1

ni

= c + ω, (2.20)

where c is in the signal subspace and ω ∼ N (0,Kn/N). Note that the noise correlation is smaller

by a factor of N than that of the first method. Let ck be the projection of c onto 〈Ek〉. The

estimation of ck can be obtained by projecting r onto the signal subspace 〈Ek〉, i.e., ĉk = Ukr.
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The first and the second-order moments of the estimated error c− ĉk are respectively,

E
[
c− ĉk

]
= c− E

[
ĉk

]

= c−Ukc

= c− ck

≡ bk, (2.21)

E
[
(c− ĉk)(c− ĉk)T

]
= bkbT

k + UkK̂nUT
k /N, (2.22)

where the bias bk = U⊥
k c is the projection of c onto the space 〈Ek〉⊥. Therefore, the density of the

estimated error c− ĉk is N (bk,bT
k bk + UkK̂nUT

k /N),

The mean squared error between c and ĉk is given by

mse(k) = E
[
(c− ĉk)T (c− ĉk)

]

= tr{E[
(c− ĉk)(c− ĉk)T

]}

= bT
k bk + tr(UkK̂nUT

k /N), (2.23)

The bias bk is not known and an approximation of expression (2.23) is obtained by using the bias

estimate b̂k = U⊥
k r. However, E

[
b̂k

]
= bk and E

[
b̂T

k b̂k

]
= bT

k bk + tr(U⊥
k K̂nU⊥

k
T
/N), that is, an

unbiased estimate of bT
k bk is b̂T

k b̂k− tr(U⊥
k K̂nU⊥

k
T
/N). The criteria for the signal subspace order

determination is then

k̂ = arg min
k

{
b̂T

k b̂k + tr(UkK̂nUT
k /N)− tr(U⊥

k K̂nU⊥
k

T
/N)

}

= arg min
k

{
rTU⊥

k r + 2tr(UkK̂n/N)
}

. (2.24)

The pseudo-code for the alternative method, termed HySimem (m stands for mean), is shown
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in the Algorithm 2.3. The core of this algorithm is similar to the Algorithm 2.2, excepts for Step

5, which calculates the sample mean of the data set r, and step 6 which refers to expression (2.24).

Algorithm 2.3 :HySimem

1: INPUT R ≡ [r1, r2, . . . , rN ]
2: K̂n := 1

N

∑
i

(
n̂in̂T

i

)
; {K̂n is the noise correlation matrix estimates}

3: K̂x := 1
N

∑
i

(
(ri − n̂i)(ri − n̂T

i )
)
; {K̂x is the signal correlation matrix estimates}

4: Uk := EkET
k ; {where Ek are eigenvectors of K̂x}

5: r := 1
N

∑N
i=1 ri; {r is the sample mean of the data set}

6: k̂ := arg mink

{
rTU⊥

k r + 2tr(UkK̂n/N)
}

;

2.4 Evaluation of HySime and HySimem with Simulated Data

In this section, the proposed methods (HySime and HySimem) are applied to simulated scenes and

compared with NWHFC eigen-based Neyman-Pearson detector [32]. As concluded in [32], these

algorithms are the state-of-the-art in hyperspectral signal subspace identification, outperforming

the information theoretical criteria approaches; namely, the MDL [144, 150] and the AIC [4].

The spectral signatures are selected from the USGS digital spectral library [40]. The abundance

fractions are generated according to a Dirichlet distribution defined in expression (2.2). The results

presented here are organized into two experiments: in the first experiment, the method is evaluated

with respect to the SNR [see def. (2.4)] to the number of endmembers p, and to the spectral noise

shape (white and nonwhite). In the second experiment, the methods are evaluated with respect to

their ability to detect rare pixels.

Experiment I

Fig. 2.5 shows the evolution of the mean squared error for HySime and HySimem algorithms as a

function of the parameter k, for SNR = 35 dB and p = 5. The minimum of the mean squared error

occurs at k = 5, which is exactly the number of endmembers present in the image. As expected, the
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Figure 2.5: Mean squared error versus k, with SNR = 35dB, p = 5; (a) HySime method; (b)
HySimem method.

projection error power and of noise power display decreasing and increasing behaviors, respectively,

as a function of the subspace dimension k.

Table 2.2 presents the signal subspace order estimates yielded by HySime, HySimem algorithms,

and the VD determined by the NWHFC algorithm [32], as a function of the SNR, of the number

of endmembers, p, and of the noise shape.

NWHFC algorithm is basically the HFC one [67] preceded by a noise-whitening step, based

on the estimated noise correlation matrix. In implementing this step, we got poor results in very

high SNRs and colored noise scenarios. For this reason, we have used both the true and estimated

noise correlation matrices. The results based on the true correlation matrix are in brackets. We

stress that, for the setting of this experiment, both HySime and HySimem methods yield the same

results, whether using the estimated or the true noise correlation matrices.

Another central issue of NWHFC algorithm is the false-alarm probability Pf it is parameterized

with. This probability is used in a series of Neyman-Pearson tests, each one designed to detect a

different orthogonal signal subspace direction. There is the need, therefore, to specify the false-

alarm probability Pf of the tests. Based on the hints given in [32] and in our own results, we choose
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Pf ∈ {10−3, 10−4, 10−5}.

The figures shown in Table 2.2, based on 50 Monte Carlo runs, have the following behavior:

i) HySime and HySimem algorithms display similar performance, with a small advantage for

former, namely at small SNRs and colored noise;

ii) HySime and NWHFC algorithms parameterized with Pf = 10−3 display similar performances

at low subspace dimension, say p ≤ 5, and white noise. This is also true for colored noise

and NWHFC working with known noise covariance matrix. However, if the noise statistics is

unknown, NWHFC performs much worse than HySime;

iii) HySime performs better that NWHFC for high space dimensions, say p > 5.

We conclude, therefore, that HySime algorithm is slight better than HySimem one , yielding

systematically equal or better results than NWHFC algorithm. Another advantage of HySime

approach is its adaptiveness, i.e., it does not depend on any tunable parameter.

Experiment II

In this experiment, we set SNR = 35 dB and p = 8. The first five endmembers are mixed

according to a Dirichlet distribution, as in the previous experiment, the sixth, the seventh, and

the eighth endmembers are present as pure in 8, 4, and 2 pixels, respectively. Fig. 2.6 shows the

mean squared error versus the subspace dimension k for the HySime and HySimem methods. The

respective curves achieve their minima at k = 8 and k = 7. Thus, the HySime algorithm infers the

correct subspace dimension, whereas HySimem one underestimates it in one unit.

Table 2.3 displays the results of this experiment computed by HySime, HySimem, and NWHFC

algorithms. We observe the same pattern of behavior shown in Table 2.2, with HySime method

yielding the best performance.
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Table 2.2: Signal subspace dimension k̂, based on 50 Monte Carlo runs, as a function of SNR, p,
and η (noise shape). Figures in brackets were computed based on the true noise statistics.

Noise White (η = 0) Gaussian shaped (η = 1/18)

SNR Method p = 3 p = 5 p = 10 p = 15 p = 3 p = 5 p = 10 p = 15

HySime 3 5 10 15 3 5 10 15

HySimem 3 5 10 15 3 5 10 15
50 dB NWHFC (Pf = 10−3) 3 (3) 5 (5) 7 (7) 10 (11) 59 (3) 41 (5) 61 (10) 45 (10)

NWHFC (Pf = 10−4) 3 (3) 5 (5) 7 (7) 8 (8) 48 (3) 33 (5) 54 (10) 34 (10)
NWHFC (Pf = 10−5) 3 (3) 4 (4) 7 (6) 8 (8) 43 (3) 28 (5) 41 (9) 27 (10)

HySime 3 5 10 15 3 5 10 15

HySimem 3 5 10 15 3 5 10 15
35 dB NWHFC (Pf = 10−3) 3 (3) 4 (4) 7 (7) 9 (9) 9 (3) 10 (5) 12 (10) 10 (10)

NWHFC (Pf = 10−4) 3 (3) 4 (4) 7 (6) 8 (8) 9 (3) 9 (5) 11 (10) 8 (10)
NWHFC (Pf = 10−5) 3 (3) 4 (4) 6 (6) 8 (8) 7 (3) 7 (5) 10 (9) 8 (10)

HySime 3 5 10 14 3 5 10 15

HySimem 3 5 9 12 3 5 10 12
25 dB NWHFC (Pf = 10−3) 3 (3) 5 (5) 6 (6) 9 (8) 4 (3) 5 (5) 11 (10) 9 (11)

NWHFC (Pf = 10−4) 3 (3) 5 (5) 6 (6) 7 (7) 4 (3) 5 (5) 11 (10) 9 (10)
NWHFC (Pf = 10−5) 3 (3) 4 (4) 5 (5) 7 (7) 4 (3) 5 (5) 11 (9) 8 (10)

HySime 3 5 8 12 3 5 8 12

HySimem 3 3 6 8 3 3 5 8
15 dB NWHFC (Pf = 10−3) 3 (3) 5 (5) 5 (4) 5 (5) 4 (3) 5 (5) 11 (10) 10 (10)

NWHFC (Pf = 10−4) 3 (3) 4 (4) 3 (3) 3 (2) 4 (3) 5 (5) 11 (10) 8 (10)
NWHFC (Pf = 10−5) 3 (3) 4 (4) 3 (3) 2 (2) 4 (3) 5 (5) 11 (9) 8 (10)

Table 2.3: Signal subspace dimension k̂ as a function parameter η experiment 2 (few pure pixels)
with SNR = 35 dB.

Method (p = 8) η = 0 η = 1/18

HySime 8 7
HySimem 7 7
NWHFC (Pf = 10−3) 6 13
NWHFC (Pf = 10−4) 6 11
NWHFC (Pf = 10−5) 6 11
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Figure 2.6: Mean squared error versus k, with SNR = 35 dB, p = 8 (second experiment). HySime
method(solid line); HySimem method (dashed line); estimated number of endmembers (circles).

2.5 Experiments with Real Hyperspectral Data

In this section, the proposed methods (HySime and HySimem) are applied to real hyperspectral data

collected by the AVIRIS [168] sensor over Cuprite, Nevada1. Cuprite is a mining area in southern

Nevada with mineral and little vegetation [162]. The Cuprite test site, located approximately

200 Km northwest of Las Vegas is a relatively undisturbed acid-sulfate hidrothermal system near

highway 95. The geology and alteration were previously mapped in detail [1, 5]. A geologic summary

and a mineral map can be found in [162]. This site has been extensively used for remote sensing

experiments over the past years [59, 93] and it has become a standard test site for comparison of

unmixing and endmember extraction algorithms. This study is based on a subimage (250 × 190

pixels and 224 bands) of a data set acquired on the AVIRIS flight of June 19, 1997 [see Fig. 2.7(a)].

AVIRIS instrument covers the spectral region from 0.41µm to 2.45µm in 224 bands with a 10nm

bandwidth. Flying at an altitude of 20km, it has an IFOV of 20m and views a swath over 10km

wide.

1Available at http://aviris.jpl.nasa.gov/html/aviris.freedata.html
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Figure 2.7: (a) Band 30 (wavelength λ = 667.3nm) of the subimage of AVIRIS cuprite Nevada
data set; (b) percentage of energy in the subspace 〈E9:15〉.

The HySime method when applied to this data set estimates k̂ = 15, the alternative method

HySimem estimates k̂ = 21 [see Fig. 2.8(b)]. According to the ground truth presented in [162],

there are 8 materials in this area. These differences are due to i) the presence of rare pixels not

accounted for in [162] and ii) spectral variability. The bulk of spectral energy is explained by

a small number of eigenvectors. This can be observed from Fig. 2.8(a), where the accumulated

signal energy is plotted as a function of the eigenvalue index ordered by decreasing magnitude.

The energy contained in the first 8 eigenvalues is 99.95% of the total signal energy. This fact

is further confirmed in Fig. 2.7(b), which shows, in gray level and for each pixel, the percentage

of energy contained in the subspace 〈E9:15〉 = 〈[e9, . . . , e15]〉. Note that only a few (rare) pixels

contain energy in this subspace. Furthermore, these energies are a very small percentage of the

corresponding spectral vector energies (less than 0.14%).

The VD estimated by the NWHFC method [32] (Pf = 10−3) on the same data set yields k̂ = 20.

A lower value of Pf would lead to a lower number of endmembers. According to the ground truth

presented in [162], the estimates yielded by HySime and NWHFC methods overestimate the number
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Figure 2.8: (a) Percentage of signal energy as a function of the number of eigenvalues; (b) mean
squared error versus k for Cuprite data set: HySime method (solid line); HySimem method (dashed
line); estimated number of endmembers (circles).

of endmembers in the Cuprite data set. The mainly reason for this difference, as we have explained,

is the presence of rare pixels present in the data set not accounted for in [162]. A more thorough

evaluation of HySime, and NWHFC, would demand further field experiments.

2.6 Conclusions

The huge volumes and rates of data generated by hyperspectral sensors demand expensive proces-

sors with very high performance and memory capacities. Dimensionality reduction is, therefore, a

relevant first step in the hyperspectral data processing chain. In this chapter, a method to estimate

the dimensionality of hyperspectral linear mixtures is proposed. The HySime method estimates the

signal and the noise correlation matrices and then selects the subset of singular values that best

represents the signal subspace based on the minimum mean squared error criterium. An alternative

method, HySimem, exploits the fact that hyperspectral mixtures are nonnegative. This method

also estimates the signal and noise correlation matrices and then the signal subspace is selected

based on the best representation of the mean value of the hyperspectral image in a least square
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sense.

A comparison of the proposed method with NWHFC [32] is conducted. A set of experiments

with simulated and real data leads to the conclusion that the HySime algorithm is an effective and

useful tool, yielding comparable or better results than the state-of-the-art algorithms.
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Chapter 3

Vertex Component Analysis: A Fast
Algorithm to Unmix Hyperspectral
Data

3.1 Introduction

Hyperspectral vectors are mixtures of the spectral signatures of the endmembers present in the

scene. Linear spectral mixture analysis, or linear unmixing, aims at estimating the number of

endmembers, their spectral signatures, and their abundance fractions. Usually, this task embodies

two steps: endmember extraction to determine the spectral signatures of endmembers followed by

inversion to estimate the abundance fractions of each endmember. This chapter presents a new

fully automatic method for unsupervised endmember extraction from hyperspectral data, termed

vertex component analysis (VCA). The algorithm exploits two facts: i) the endmembers are the

vertices of a simplex and ii) the affine transformation of a simplex is also a simplex. Briefly,

VCA algorithm iteratively projects the spectral vectors onto a direction orthogonal to the subspace

spanned by the endmembers already determined. The new endmember signature corresponds to the

extreme of the projection, thus the name vertex component analysis. The algorithm iterates until

all endmembers are exhausted. VCA is a fully automatic algorithm and works with or without

dimensionality reduction. It is shown that VCA competes with state-of-the-art methods, while

having a computational complexity between one and two orders of magnitude lower than the best
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available method.

Under the linear mixing model, the observations from a scene are in a simplex whose vertices

correspond to the endmembers [19, 20]. Endmember abundance fractions are determined by the

position of the mixed pixel in the simplex. Several approaches have been developed to extract

endmembers from data exploiting this geometric feature of hyperspectral mixtures. A comparative

study of these algorithms is conducted in [139, 174].

For example, the minimum volume transform (MVT) algorithm [44] determines the simplex of

minimum volume containing the data. Convex cone analysis (CCA) [76] is based on the fact that

spectral signatures are nonnegative. Thus, CCA finds the boundary points of the convex region.

This approaches are complex from the computational point of view.

The method introduced in [10] uses the notion of bundles, i.e., each substance present in the

ground surface is represented by a set or bundle of spectra to account for the spectral variability. A

simulated annealing algorithm is used to derive the bundles of endmembers. The complexity of this

method is even higher than that of MVT type approaches, since the temperature of the simulated

annealing algorithm used therein follows a log(·) law [55] to ensure convergence (in probability) to

the desired solution.

Multiple endmember spectral mixture analysis (MESMA) [145] considers many possible mixture

models simultaneously in order to produce the lowest margin of root mean square (RMS) error when

compared to the apparent surface reflectance of the pixel. The major limitation of this approach

is the need of extensive libraries.

Automatic morphological endmember extraction (AMEE) [138] is an algorithm that makes

simultaneous use of the spatial and spectral information. The algorithm does not need previous

dimensionality reduction and uses the morphological operations erosion and dilatation with different

kernel sizes to select the endmembers.

48



The iterative error analysis (IEA) algorithm [130, 158] does not use dimensionality reduction

and is based on sequential constrained unmixing procedures to find the endmembers given by the

average score of the vectors with higher degrees of error.

The manual endmember selection tool (MEST) [8, 9] projects the spectral vectors onto a p-

dimensional space with PCA, providing the user with a means of exploration in the mixing space

to search for p + 1 spectra that are acceptable as the spectral signatures of ground components.

The supervised nature of the approach is its major limitation.

The exemplar selector module of ORASIS [25, 27] is used to select spectral vectors that best

represent the smaller convex cone containing the data. This vectors are then projected onto a lower

subspace and a simplex is found by an MVT process.

Aiming at a lower computational complexity, some algorithms such as the pixel purity index

(PPI) [19] and the N-FINDR [173] still search for the minimum volume simplex containing the data

cloud, but they assume the presence in the data of at least one pure pixel of each endmember. This

is a strong requisite that may not hold in some data sets. Note that the presence of pure pixels in

the data depends on the sensor spatial resolution and their existence cannot be detect visually. In

any case, these algorithms find the set of most pure pixels in the data.

PPI algorithm uses the MNF [21] as a preprocessing step to reduce dimensionality and to

improve the SNR. The algorithm then projects every spectral vector onto skewers (large number

of random vectors) [19, 98, 164]. The points corresponding to extremes, for each skewer direction,

are stored. A cumulative account records the number of times each pixel (i.e., a given spectral

vector) is found to be an extreme. The pixels with the highest scores are the purest ones. PPI

was, firstly, conceived as supervised tool to identify endmembers. Therefore, the most purest pixels

are loaded into a multi-dimensional visualization tool and then endmembers are identified visually

as the extreme pixels in the data cloud. Different methods to implement PPI aimed at reducing

algorithm complexity are proposed in [98, 164].
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N-FINDR [173] is a fully automated algorithm to identify endmembers in a hyperspectral data

set. It is based on the fact that in p spectral dimensions, the p-volume defined by a simplex formed

by the purest pixels is larger than any other volume defined by any other combination of pixels.

The N-FINDR algorithm first reduces the dimensionality of the original data using MNF transform.

Then a random choice of a set of pixels is done and the initial volume is calculated. Next, for each

pixel of the data set, a trial volume is calculated by replacing each endmember in the set by the

current one. If the replacement results in a volume increasing, the replacement is made effective.

N-FINDR and PPI are perhaps the most well known endmember extraction algorithms . These

algorithms are also implemented in commercial software packages, which have spread their use in

hyperspectral applications. In this chapter VCA is developed and compared with N-FINDR and

PPI. We conclude that for comparable performance VCA is faster between one and two orders of

magnitude.

The chapter is structured as follows. Section 3.2 describes the fundamentals of the proposed

method and Sections 3.3 and 3.4 evaluate the proposed algorithm using simulated and real data,

respectively. Section 3.5 ends the chapter by presenting some concluding remarks. Parts of the

VCA introduced here were published in [18, 120, 121, 123, 127].

3.2 Vertex Component Analysis Algorithm

Assuming the linear mixing scenario, introduced in Section 1.2.1, each pixel is an L× 1 vector (L

is the number of bands) given by

r = x + n

= M γα︸︷︷︸
s

+n, (3.1)

50



where M ≡ [m1,m2, . . . ,mp] is the mixing matrix (mj denotes the jth endmember signature and p

is the number of endmembers present in the covered area), s ≡ γα (γ is a scale factor modeling the

illumination variability due to surface topography), α = [α1, α2, . . . , αp]T is the abundance vector

containing the fractions of each endmember and n models the additive noise.

As mentioned before, owing to physical constraints, α ∈ ∆p, i.e., abundance fractions satisfy

the full additivity and the positivity constraints [see expression (1.4)]. Each pixel can be viewed as

a vector in an L-dimensional Euclidean space, where each channel is assigned to one axis of space.

Since the set ∆p is a simplex, the Sx = {x ∈ RL : x = Mα,α ∈ ∆p} is also a simplex. However, even

assuming that n = 0, the observed vector set belongs to Cp = {r ∈ RL : r = Mγα, α ∈ ∆p, γ ≥ 0}

which is a convex cone, owing to scale factor γ. For illustration purposes, a simulated scene was

generated according to the expression (3.1). Fig. 3.1(a) illustrates a simplex and a cone, projected

on a 2D-subspace, defined by a mixture of three endmembers. These spectral signatures (A -

Ammonioalunite, B - Biotite, and C - Carnallite) were selected from the U.S. geological survey

(USGS) digital spectral library [40]. The simplex boundary is a triangle whose vertices correspond

to these endmembers shown in Fig. 3.1(b). Small and medium dots are simulated mixed spectra

belonging to the simplex Sx (γ = 1) and to the cone Cp (γ > 0), respectively.

The projective projection of the convex cone Cp onto a properly chosen hyperplane is a simplex

with vertices corresponding to the vertices of the simplex Sx. This is illustrated in Fig. 3.2. The

simplex Sp = {y ∈ RL : y = r/(rTu), r ∈ Cp} is the projective projection of the convex cone Cp

onto the plane rTu = 1, where the choice of u ensures that there are no observed vectors orthogonal

to it.

After identifying Sp, the VCA algorithm iteratively projects data onto a direction orthogonal

to the subspace spanned by the endmembers already determined. The new endmember signature

corresponds to the extreme of the projection. Fig. 3.2 illustrates the two iterations of the VCA

algorithm applied to the simplex Sp defined by the mixture of two endmembers. In the first
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iteration, data is projected onto the first direction f1. The extreme of the projection corresponds to

endmember ma. In the next iteration, endmember mb is found by projecting data onto direction f2,

which is orthogonal to ma. The algorithm iterates until the number of endmembers is exhausted.

3.2.1 Dimensionality Reduction

Although VCA can be applied to data sets without dimensionality reduction, this pre-processing

step is usually implemented. Since the dimensionality of data (number of endmembers) is usually

much lower than the number of bands, dimensionality reduction leads to significant savings in

computational complexity and to SNR improvements. Hysime, introduced in Chapter 2, is a

dimensionality reduction method oriented to hyperspectral data.

To illustrate the role of dimensionality reduction, a simulated scene is generated according

to expression (3.1) with the three spectral signatures presented in Fig. 3.1(b). The abundance

fractions follow a Dirichlet distribution, parameter γ is set to 1, and the noise is zero-mean white

Gaussian with covariance matrix σ2IL, where σ = 0.045 leading to a SNR = 20 dB [see expression

(2.4)]. Fig. 3.3(a) presents a scatter-plot of the simulated spectral mixtures without projection

(bands λ = 827nm and λ = 1780nm). Two triangles whose vertices represent the true endmembers

(solid line) and the estimated endmembers (dashed line) by the VCA algorithm are also plotted.

Fig. 3.3(b) presents a scatter-plot (same bands) of projected data onto the estimated affine set of

dimension 2 inferred by the HySime method. Note that by using the HySime method the noise is

clearly reduced, leading to a visible improvement on the VCA results.

As discussed before, in the absence of noise, the observed vectors r lie in a convex cone Cp

contained in the subspace 〈Ep〉 spanned by the columns of matrix Ep ≡ [e1, . . . , ep], where the

singular vectors, ej , are ordered by the decreasing magnitude of the respective singular values.

The VCA algorithm uses the HySime method to identify the subspace 〈Ep〉 and then it projects

the observed vectors in Cp onto the simplex Sp by computing y = r/(rTu) (see Fig. 3.2). This
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Figure 3.3: Scatter-plot (bands λ = 827nm and λ = 1780nm) of the three endmembers mixture:
(a) unprojected data; (b) projected data using HySime. Solid and dashed lines represent simplexes
computed from original and estimated endmembers (using VCA), respectively.

simplex is contained in an affine set of dimension p − 1. Note that the rational underlying the

VCA algorithm is still valid if the observed data set is projected onto any subspace 〈Ed〉 ⊃ 〈Ep〉 of

dimension d, for p ≤ d ≤ L; i.e., the projection of the cone Cp onto 〈Ed〉 followed by a projective

projection is also a simplex with the same vertices. Of course, the SNR decreases as d increases.

Note, however, that as the SNR decreases the rescaling r/(rTu), to remove the topographic

modulation factor, amplifies the noise. Thus, it is preferable to identify directly the affine space

of dimension p − 1 by using the PCA in the HySime algorithm. This phenomenon is illustrated

in Fig. 3.4, where data clouds (noiseless and noisy) generated by two signatures are shown. Affine

spaces 〈Ap−1〉 and 〈A′
p−1〉 identified by PCA of dimension p − 1 and SVD of dimension p, re-

spectively, followed by projective projection are schematized by straight lines. In the absence of

noise, the direction of ma is better identified by projective projection onto 〈A′
p−1〉 (m̂a better than

̂̂ma); in the presence of strong noise, the direction of ma is better identified by orthogonal pro-

jection onto 〈Ap−1〉 ( ̂̂ma better than m̂a). As a conclusion, when the SNR is higher than a given

threshold SNRth, data is projected onto 〈Ep〉 followed by the rescaling r/(rTu); otherwise data is

projected onto 〈Ap−1〉. Based on experimental results, the threshold SNRth = 15 + 10 log10(p) dB
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Figure 3.4: Illustration of the noise effect on the dimensionality reduction.

is proposed. Since for zero-mean white noise SNR = E
[
xTx

]
/(Lσ2), then we conclude that at

SNRth, E
[
xTx

]
/(pσ2) = 101.5L; i.e., the SNRth corresponds to the fixed value L×101.5 of the SNR

measured with respect to the signal subspace.

3.2.2 VCA Algorithm Description

The pseudo-code for the VCA method is shown in Algorithm 3.1. Symbols [M̂]:,j and [M̂]:,i:k stand

for the jth column of M̂ and for the ith to kth columns of M̂, respectively. Symbol M̂ stands for

the estimated mixing matrix.

Step 2 estimates the number of endmembers with the HySime method developed in Chapter 2.

Note that in the simulated data experiments this step is optional since the number of endmembers

is known and can be an input of VCA.

Step 4 test if the SNR is higher than SNRth in order to decide whether the data is to be projected
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Algorithm 3.1 :Vertex Component Analysis (VCA)
1: INPUT R ≡ [r1, r2, . . . , rN ]
2: p := HySime(R); {the number of endmembers is estimated with HySime algorithm}
3: SNRth := 15 + 10 log10(p) dB;
4: if SNR > SNRth then
5: d := p;
6: X := UT

d R; {Ud obtained by SVD}
7: u := mean (X); {u is a 1× d vector}
8: [Y]:,j := [X]:,j/([X]T:,ju); {projective projection}
9: else

10: d := p− 1;
11: [X]:,j := UT

d ([R]:,j − r); {Ud obtained by PCA}
12: κ := arg maxj=1...N ‖[X]:,j‖;
13: κ := [κ |κ | . . . |κ]; {κ is a 1×N vector}
14: Y :=

[
X

κ

]
;

15: end if
16: A := [eu |0 | . . . |0]; {eu := [0, . . . , 0, 1]T and A is a p× p auxiliary matrix}
17: for i := 1 to p do
18: w := randn (0, Ip); {w is a zero-mean random Gaussian vector of covariance Ip}
19: f := (Ip−AA#)w

‖(Ip−AA#)w‖ ; {f is a vector orthonormal to the subspace spanned by [A]:,1:i.}
20: ν := fTY;
21: k := arg maxj=1,...,N |[ν]:,j |; {find the projection extreme.}
22: [A]:,i := [Y]:,k;
23: [indice]i := k; {stores the pixel index.}
24: end for
25: if SNR > SNRth then
26: M̂ := Ud[X]:,indice; {M̂ is a L× p estimated mixing matrix}
27: else
28: M̂ := Ud[X]:,indice + r; {M̂ is a L× p estimated mixing matrix}
29: end if

56



onto a subspace of dimension p or p− 1. In the first case the projection matrix Ud is obtained by

SVD from RRT /N . In the second case the projection is obtained by PCA from (R−r)(R−r)T /N

(recall that r is the sample mean of [R]:,i, for i = 1, . . . , N).

Steps 6 and 11 ensure that the inner product between any vector [X]:,j and vector u is non-

negative, a crucial condition for the VCA algorithm to work correctly. The chosen value of

κ = arg maxj=1...N ‖[X]:,j‖ ensures that the colatitude angle between u and any vector [X]:,j is

between 0◦ and 45◦, then avoiding numerical errors that otherwise would occur for angles near 90◦.

Step 16 initializes the auxiliary matrix A, which stores the projection of the estimated end-

members signatures. Assume that there exists at least one pure pixel of each endmember in the

input sample R (see Fig. 3.2). Each time the loop for is executed, a vector f orthonormal to the

space spanned by the columns of the auxiliary matrix A is randomly generated and y is projected

onto f . Knowing that pure endmembers occupy the vertices of a simplex, then a ≤ fT [Y]:,i ≤ b,

for i = 1, . . . , N , where values a and b correspond only to pure pixels. The endmember signature

corresponding to max
([ |a| |b| ]) is stored. The next time loop for is executed, f is orthogonal to

the space spanned by the signatures already determined. Since f is the projection of a zero-mean

Gaussian independent random vector onto the orthogonal space spanned by the columns of [A]:,1:i,

then the probability of f being null is zero. Note that the underling reason for generating a random

vector is only to get a non null projection onto the orthogonal space generated by the columns of

A. Fig. 3.2 shows the input samples and the chosen pixels, after the projection ν = fTY. Then

a second vector f orthonormal to the endmember a is generated and the second endmember is

stored. Finally, steps 26 and 28 compute the columns of matrix M̂, which contain the estimated

endmembers signatures in the L-dimensional space.
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3.3 Evaluation of VCA with Simulated Data

In this section, a comparison of VCA, PPI, and N-FINDR algorithms is conducted. N-FINDR and

PPI were implemented according to [173] and [19], respectively. Regarding PPI, the number of

skewers must be large [21, 26, 138, 139, 164]. Based on Monte Carlo runs, it is concluded that the

minimum number of skewers beyond which there is no unmixing improvements is about 1000. All

experiments are based on simulated scenes from which the signature endmembers and their abun-

dance fractions are known. The estimated endmembers are the columns of M̂ ≡ [m̂1, m̂2, . . . , m̂p]

and the estimated abundance fractions are given by Ŝ = M̂#[r1, r2, . . . , rN ].

To evaluate the performance of the three algorithms, the following vectors of angles are com-

puted: εm ≡ [εm1 , εm2 , . . . , εmp ]T and εs ≡ [εs1 , εs2 , . . . , εsp ]T with,

εmi ≡ arccos
(

(mi)
T m̂i

‖mi‖ ‖m̂i‖
)

, (3.2)

εsi ≡ arccos
(

([S]i,:)
T [Ŝ]i,:

‖[S]i,:‖ ‖[Ŝ]i,:‖

)
, (3.3)

i.e., εmi is the angle between vectors mi and m̂i (ith endmember signature estimate) and εsi is

the angle between vectors [S]i,: and [Ŝ]i,: (vectors of RN formed by the ith rows of matrices Ŝ and

S ≡ [s1, s2, . . . , sN ], respectively). The symmetric Kullback distance [95], a relative entropy-based

distance, is another error measure used to compare the similarity between signatures, also known

as spectral information divergence (SID) [30]. SID is given by

SIDmi , bmi
≡ DKL(mi |m̂i) + DKL(m̂i |mi), (3.4)
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where DKL(mi |m̂i) is the relative entropy of mi with respect to m̂i given by

DKL(mi |m̂i) ≡
L∑

j=1

pj log
(

pj

qj

)
, (3.5)

and pj = mij/
∑L

k=1 mik and qj = m̂ij/
∑L

k=1 m̂ik.

Based on εm, εs, and εSID ≡ [SIDm1 , bm1
, SIDm2 , bm2

, . . . , SIDmp , bmp
]T , the following root

mean square error distances are estimated:

rmsSAE =
(

1
p
E

[‖εm‖2
])1/2

, (3.6)

rmsSID =
(

1
p
E

[‖εSID‖2
])1/2

, (3.7)

rmsAFAE =
(

1
p
E

[‖εs‖2
])1/2

. (3.8)

The first two quantities measure distances between m̂i and mi, for i = 1, . . . , p; the third is similar

to the first, but for the estimated abundance fractions. Herein the subscripts SAE and AFAE

stand for signature angle error and abundance fraction angle error, respectively. Mean values in

expressions (3.6), (3.7), and (3.8) are approximated by sample means based on one hundred of

Monte Carlo runs.

In all experiments, the spectral signatures are selected from the U.S. geological survey (USGS)

digital spectral library [40]. Fig. 3.1(b) shows three of these endmember signatures. Abundance

fractions are generated according to a Dirichlet distribution given by expression (2.2), parameter

γ is Beta (β1, β2) distributed, i.e.,

pbeta(γ) =
Γ(β1 + β2)
Γ(β1)Γ(β2)

γβ1−1(γ − 1)β2−1, (3.9)

which is also a Dirichlet distribution with just one component. The expected value and the variance
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of γ are µγ = E[γ] = β1/(β1 + β2) and σ2
γ = β1β2/

(
(β1 + β2)2(β1 + β2 + 1)

)
, respectively. The

Dirichlet density, besides enforcing positivity and full additivity constraints, displays a wide range

of shapes, depending on the parameters of the distribution. This flexibility underlies its choice in

these simulations.

The results next presented are organized into five experiments: in the first experiment, the

algorithms are evaluated with respect to the SNR and to the absence of pure pixels, where the

SNR is defined in expression (2.4),

SNR ≡ 10 log10

E
[
xTx

]

E
[
nTn

] .

In the case of zero-mean noise with covariance σ2IL and Dirichlet abundance fractions, one obtains

SNR = 10 log10

tr
[
MKsMT

]

Lσ2
, (3.10)

where

Ks ≡ σ2
γE

[
ααT

]
= σ2

γ

θθT + diag (θ)(∑p
i=1 θi

)(
1 +

∑p
i=1 θi

) , (3.11)

and θ =
[
θ1 . . . θp

]T . For example, assuming abundance fractions equally distributed, SNR '

10 log10 σ2
γ

∑p
i=1

(∑p
j=1 m2

ij/p
)
/(Lσ2) for θp ¿ 1 and SNR ' 10 log10 σ2

γ

(∑p
i=1

(∑p
j=1 mij

)2
/p2

)
/(Lσ2)

for θp À 1 are obtained after some algebra.

In the second experiment, the performance is measured as a function of the parameter γ, which

models fluctuations on the illumination due to the surface topography. In the third experiment,

the number of pixels of the scene varies with the size of the covered area: as the number of pixels

increases, the likelihood of having pure pixels also increases, improving the performance of the

unmixing algorithms. In the fourth experiment, the algorithms are evaluated as a function of the

number of endmembers present in the scene; finally, in the fifth experiment, the number of floating
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Figure 3.5: Performance measures as a function of SNR, for N = 1000, p = 3, L = 224, θ1 = θ2 =
θ3 = 1/3, β1 = 20,and β2 = 1: (a) rmsSID as a function of SNR; (b) rmsSAE as a function of SNR;
(c) rmsAFAE as a function of SNR.

point operations (flops) is measured, to compare the computational complexity of the VCA, N-

FINDR, and PPI algorithms.

Experiment I

In this experiment, the hyperspectral scene has one thousand pixels and the abundance fractions

are Dirichlet distributed with θj = 1/3, for j = 1, 2, 3; parameter γ is Beta distributed with β1 = 20

and β2 = 1 implying E[γ] = 0.952 and σγ = 0.05.
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Fig. 3.5 shows the performance results as a function of the SNR. As expected, the presence

of noise degrades the performance of all algorithms. In terms of rmsSID, VCA and N-FINDR

algorithms have identical performances, whereas PPI displays the worst result. In terms of rmsSAE

and rmsAFAE, shown in Fig. 3.5(b) and Fig. 3.5(c), when SNR is less than 20 dB, the VCA algorithm

exhibits the best performance. Note that for noiseless scenes, only VCA has rmsSAE = 0.

Fig. 3.6 shows the performance results as a function of the SNR in the absence of pure pixels.

Spectral data without pure pixels is obtained by rejecting pixels with any abundance fraction

smaller than 0.2. Fig. 3.6(a) shows the obtained scatter plot. VCA and N-FINDR display similar

results, being both better than PPI. Note that the performance is almost independent of the SNR

and is uniformly worse than that displayed with pure pixels and SNR = 5 dB in the first experiment.

We conclude that this family of algorithms is more affected by the lack of pure pixels than by low

SNR.

Since rmsSID, rmsSAE, and rmsAFAE disclose similar pattern of behavior, only rmsSAE is pre-

sented in the remaining experiments.

Experiment II

In this experiment, abundance fractions are generated as in the first one, the SNR is set to

20 dB, and the parameter γ is Beta distributed with β2 = 1 and β1 in the interval {2, . . . , 28}.

This corresponds to vary E[γ] from 0.66 to 0.96 and σγ from 0.23 to 0.03. By varying parame-

ter β1, the severity of topographic modulation is also modified. Fig. 3.7 illustrates the effect of

topographic modulation on the performance of the three algorithms. When β1 grows (σγ reduces)

the performance improves. This is expected, since the simplex identification is more accurate

when the topographic modulation is smaller. PPI algorithm displays the worst performance for

σγ < 0.1. VCA and N-FINDR algorithms have identical performances when β1 takes higher values

(σγ < 0.045), otherwise VCA algorithm has the best performance. VCA is more robust to topo-
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Figure 3.6: Illustration of the absence of pure pixels, for N = 1000, p = 3, L = 224, θ1 = θ2 = θ3 =
1/3, β1 = 20, and β2 = 1: (a) Scatter-plot (bands λ = 827nm and λ = 1780nm), with abundance
fraction smaller than 0.2 rejected and γ = 1; (b) rmsSID as a function of SNR; (c) rmsSAE as a
function of SNR; (d) rmsAFAE as a function of SNR.
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Figure 3.8: rmsSAE as a function of the number of pixels in a scene, for p = 6, L = 224, θ1 = θ2 =
θ3 = 1/3, SNR = 20dB, β2 = 20, and β2 = 1.

graphic modulation, because it seeks for the extreme projections of the simplex, whereas N-FINDR

seeks for the maximum volume, which is more sensitive to fluctuations of γ.

Experiment III

In this experiment, the number of pixels is varied, the abundance fractions are generated as

in the first one, and the SNR = 20 dB. Fig. 3.8 shows that VCA and N-FINDR exhibit identical

results, whereas, the PPI algorithm displays the worst result. Note that the behavior of the three

algorithms is quasi-independent of the number of pixels.
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Figure 3.9: Impact of the number of endmembers, for N = 1000, L = 224, θ1 = θ2 = θ3 = 1/3,
SNR = 30dB, β2 = 20, and β2 = 1: (a) rmsSEA as a function of the number of endmembers; (b)
rmsSEA as a function of the SNR with p = 10.

Experiment IV

In this experiment, the number of signatures vary from p = 3 to p = 21, the scene has one

thousand pixels, and the SNR = 30dB. Fig. 3.9(a) shows that VCA and N-FINDR performances

are comparable, while PPI displays the worst result. The rmsSAE increases slightly as the number

of endmembers present in the scene increases. The rmsSAE as a function of the SNR with p = 10

is also plotted, see Fig. 3.9(b). Compared with Fig. 3.5(b) it is concluded that when the number

of endmembers increases the performance of the algorithms slightly decreases.

Experiment V

In this experiment, the number of floating point operations is measured, in order to compare

the computational complexity of the VCA, PPI, and N-FINDR algorithms. Herein, the scenarios

of the second and third experiments are used. Table 3.1 presents approximated expressions for

the number of floating point operations used by each algorithm. These expressions do not account

for the computational complexities involved in the computations of the sample covariance (R −

r)(R− r)T /N , nor in the eigendecomposition. The reason is that these operations, compared with
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Table 3.1: Computational complexity of VCA, N-FINDR, and PPI algorithms.

Algorithm Complexity (flops)

VCA 2p2N

N-FINDR pδ+1N

PPI 2psN

the remaining steps of VCA, PPI, and N-FINDR algorithms, have a negligible computational cost

since:

1. The computation of (R−r)(R−r)T /N has a complexity of 2NL2 flops. However, in practice

one does not need to use the complete set of N hyperspectral vectors. If the scene is noiseless,

only p− 1 linearly independent vectors would be enough to infer the exact subspace 〈Ep−1〉.

In the presence of noise, however, a larger set should be used. For example in a 1000× 1000

hyperspectral image, it was found that only 1000 random samples are enough to get a very

good estimate of 〈Ep−1〉. Even a sample size of 100 leads to good results in this respect.

2. Concerning the eigendecomposition of (R−r)(R−r)T /N (or the SVD of RRT /N), one only

needs to compute p− 1 (or p) eigenvectors corresponding to the largest p− 1 eigenvalues (or

p single values). For these partial eigendecomposition, the PCA algorithm is used [82], (or

SVD analysis [149]) whose complexity is negligible compared with the remaining operations.

The VCA algorithm projects all data (N vectors of size p) onto p orthogonal directions. N-

FINDR computes pN times the determinant of a p × p matrix, whose complexity is pδ, with

2.3 < δ < 2.9 (see, e.g., [84]). Assuming that N À p > 2, the VCA complexity is lower than that

of N-FINDR. Concerning PPI, given that the number of skewers (s) is much higher than the usual

number of endmembers, the PPI complexity is much higher than that of VCA. The conclusion is

that the VCA algorithm has always the lowest complexity.

Fig. 3.10 plots the flops for the three algorithms after data projection. On Fig. 3.10(a), the
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Figure 3.10: Computational complexity measured in number of floating point operations (flops):
(a) as a function of the number of sources; (b) as a function of the number of pixels.

abscissa is the number of endmembers in the scene, whereas on Fig. 3.10(b), the abscissa is the

number of pixels. Note that for five endmembers, the VCA computational complexity is one order

of magnitude lower than that of the N-FINDR algorithm. When the number of endmembers is

higher than 15, the VCA computational complexity is, at least, two orders of magnitude lower than

PPI and N-FINDR algorithms.

The results presented in this section are based on abundance fractions with symmetric Dirichlet

distribution. The same pattern of behavior was, however, found for any other abundance fraction

distribution tested. Fig. 3.11 shows the results for abundance fractions αj = xβ
j /

∑p
l=1 xβ

i for

j = 1, . . . , p, with xj uniformly distributed in [0, 1] and β = 1/2 (a), β = 1 (b), β = 2 (c), and

β = 3 (d). Dirichlet density with θ1 = θ2 = θ3 = 1/3 is included (e) for comparison purposes. The

VCA algorithm display always the lowest rmsSAE. The performance increases for all algorithms as

β increases, because the likelihood of having pure pixels increases with β.
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Figure 3.11: rmsSAE as a function of different abundance fractions distributions with N = 1000,
p = 3, L = 224, SNR = 20dB, β2 = 20, and β2 = 1. From left to right: (a) β = 1/2; (b) β = 1; (c)
β = 2; (d) β = 3; (e) Dirichlet density (θ1 = θ2 = θ3 = 1/3).

3.4 Experiments with Real Hyperspectral Data

In this section, the VCA algorithm is applied to real hyperspectral data collected by the AVIRIS

sensor over Cuprite, Nevada (see Section 2.5 for more details). In order to compare results with a

signature library, the reflectance image after atmospheric correction is used.

To estimate the number of endmembers present in the processed area, the HySime algorithm is

applied to the data set. The study conducted in Section 2.5 leads to the conclusion that the bulk

of spectral energy is due to 8 materials.

To determine the type of projection applied by VCA, an estimate of the SNR is computed

SNR ' 10 log10

PRp − (p/L)PR

PR − PRp

, (3.12)

where PR ≡ E
[
rT r

]
and PRp ≡ E

[
rTUdUT

d r
]

in the case of SVD and PRp ≡ E
[
rTUdUT

d r
]
+ rT r

in the case of PCA.

A visual comparison between VCA results on the Cuprite data set and the ground truth pre-

sented in [161], shows that the first component [see Fig. 3.12(a)] is predominantly Alunite, the

second component [see Fig. 3.12(b)] is Sphene, the third component [see Fig. 3.12(c)] is Bud-
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dingtonite, the fourth component [see Fig. 3.12(d)] is Montmorillonite, the fifth, seventh, and the

eighth components [see Fig. 3.12(e), 3.12(g), and 3.12(h)] are Kaolinite, the sixth component [see

Fig. 3.12(f)] is predominantly Nontronite.

To confirm the classification based on the estimated abundance fractions, a comparison be-

tween the estimated VCA endmember signatures and the laboratory spectrum [40] is presented

in Fig. 3.13. The signatures provided by VCA are scaled by a factor in order to minimize the

mean square error between them and the respective library spectra. The estimated signatures are

close to the laboratory spectra. The larger mismatches occur for Buddingtonite and Kaolinite (#1)

signatures, but only on a small percentage of the total bands.

Table 3.2 compares the spectral angles between extracted endmembers and laboratory re-

flectances for the VCA, N-FINDR, and PPI algorithms. The first column shows the laboratory

substances with smaller spectral angle distance with respect to the signature extracted by the VCA

algorithm; the second column shows the respective angle. The third and the fourth columns are

similar to the second one, except when the closest spectral substance is different from the corre-

spondent VCA one. In these cases, the name of the substance is presented. The displayed results

follow the pattern of behavior shown in the simulations, where VCA performs better than PPI and

better or similarly to N-FINDR.

Table 3.2: Spectral angle distance (in degrees) between extracted endmembers and laboratory
reflectances for VCA, N-FINDR, and PPI algorithms.

Substance VCA N-FINDR PPI

Alunite or Montmorillonite 3.9 3.9 4.3
Sphene 3.1 Barite (2.7) Pyrope (3.9)
Buddingtonite 4.2 4.1 3.9
Montmorillonite 3.1 3.0 2.9
Kaolinite #1 5.7 5.3 Dumortierite (5.3)
Nontronite or Kaolinite 3.4 4.8 4.7
Kaolinite #2 3.5 Montmor. (4.2) 3.5
Kaolinite #3 4.2 4.3 5.0
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Figure 3.12: Eight abundance fractions estimated with VCA algorithm: (a) Alunite or Montmo-
rillonite; (b) Sphene; (c) Buddingtonite; (d) Montmorillonite; (e) Kaolinite #1; (f) Nontronite or
Kaolinite; (g) Kaolinite #2; (h) Kaolinite #3.

70



0.5 1 1.5 2 2.50

0.2

0.4

0.6

0.8

1

λ (µm)

re
fle

cta
nc

e 

(a)

0.5 1 1.5 2 2.50

0.2

0.4

0.6

0.8

1

λ (µm)

re
fle

cta
nc

e 

(b)

0.5 1 1.5 2 2.50

0.2

0.4

0.6

0.8

1

λ (µm)

re
fle

cta
nc

e 

(c)

0.5 1 1.5 2 2.50

0.2

0.4

0.6

0.8

1

λ (µm)

re
fle

cta
nc

e 

(d)

0.5 1 1.5 2 2.50

0.2

0.4

0.6

0.8

1

λ (µm)

re
fle

cta
nc

e 

(e)

0.5 1 1.5 2 2.50

0.2

0.4

0.6

0.8

1

λ (µm)

re
fle

cta
nc

e 

(f)

0.5 1 1.5 2 2.50

0.2

0.4

0.6

0.8

1

λ (µm)

re
fle

cta
nc

e 

(g)

0.5 1 1.5 2 2.50

0.2

0.4

0.6

0.8

1

λ (µm)

re
fle

cta
nc

e 

(h)

Figure 3.13: Comparison of the extracted signatures (dotted line) with the U.S.G.S spectral library
(solid line): (a) Alunite or Montmorillonite; (b) Sphene; (c) Buddingtonite; (d) Montmorillonite;
(e) Kaolinite #1; (f) Nontronite or Kaolinite; (g) Kaolinite #2; (h) Kaolinite #3.
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3.5 Conclusions

In this chapter a new algorithm to unmix linear mixtures of hyperspectral sources, termed vertex

component analysis (VCA) has been proposed. VCA algorithm is unsupervised and is based on the

geometry of hyperspectral data sets. It exploits the fact that endmembers occupy the vertices of a

simplex.

VCA assumes the presence of pure pixels in the data and iteratively projects data onto a

direction orthogonal to the subspace spanned by the endmembers already determined. The new

endmember signature corresponds to the extreme of the projection. The algorithm iterates until

the number of endmembers is exhausted. The number of endmembers is determined by the Hysime

method introduced in Chapter 2.

A comparison of VCA with PPI and N-FINDR algorithms is conducted. Several experiments

with simulated data lead to the conclusion that VCA performs better than PPI and better than or

similar to N-FINDR. However, VCA has the lowest computational complexity among these three

algorithms1. Savings in computational complexity ranges between one and two orders of magnitude.

This conclusion has great impact when the data set has a large number of pixels. VCA was also

applied to real hyperspectral data. The results achieved show the effectiveness of VCA on the

unmixing procedure.

1After this study, a fast iterative implementation of PPI [34, 140] and an improved version of N-FINDR [141] were
proposed in order to reduce the computational complexity of those algorithms.
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Chapter 4

The Role of Independent Component
Analysis on Hyperspectral Data
Unmixing

4.1 Introduction

In Chapter 3 the linear unmixing problem was addressed under a geometrical point of view. The

approach therein proposed, termed VCA, unmixes hyperspectral mixtures exploiting the fact that

the endmembers correspond to the vertices of the simplex containing the hyperspectral vectors.

Implicit in VCA, as in other geometrical approaches, is the assumption that there are at least one

pure pixel per endmember in the data. This is a strong requisite that may not hold in many data

sets. In any case, VCA finds the set of most pure pixels in the data.

Under the linear mixing model and assuming that the number of endmembers and their spec-

tral signatures are known, hyperspectral unmixing is a linear problem, which can be addressed, for

example, under the ML setup [151], the constrained least squares approach [31], the spectral signa-

ture matching [112], the spectral angle mapper (SAM)[176], and the subspace projection methods

[31, 35, 68]. The maximum a posteriori (MAP) probability framework [133] and the projection

pursuit [77, 81] have also been applied to hyperspectral data.

In most cases the number of endmembers and their signatures are not known. Independent

component analysis (ICA) is an unsupervised source separation process that finds a linear decom-
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position of the observed data yielding statistically independent components. It has been applied

with success to blind source separation, to feature extraction, and to unsupervised recognition

[41, 74].

Given that hyperspectral data are, under given circumstances, linear mixtures, ICA comes to

mind as a possible tool to unmix this class of data. In fact, the application of ICA to hyperspectral

data has been proposed in [11], where endmember signatures are treated as sources and the mixing

matrix is composed by the abundance fractions, and in [24, 36, 38, 50, 86, 88, 89, 103, 133, 165],

where sources are the abundance fractions of each endmember. The first approach faces two

difficulties: i) The number of samples are limited to the number of channels; ii) The process of pixel

selection, playing the role of mixed sources, is not straightforward. The second approach also faces

difficulties since the sum of the abundance fractions is constant, implying statistical dependence

among abundances (i.e., among sources). This dependence violates a key assumption of ICA,

which is the source statistical independence. The applicability of ICA to hyperspectral images is

thus compromised. In addition, hyperspectral data are immersed in noise, which degrades the ICA

performance.

Independent factor analysis (IFA) [6, 117] was introduced as a method for recovering indepen-

dent hidden sources from their observed noisy mixtures. IFA implements two steps: first, source

densities and noise covariance are estimated from the observed data by ML; second, sources are

reconstructed by an optimal nonlinear estimator. Although IFA is a well suited technique to un-

mix independent sources under noisy observations, the dependence among abundance fractions in

hyperspectral imagery compromises, as in the ICA case, the IFA performance.

This chapter addresses the impact of the source dependence on unmixing hyperspectral data

with ICA and IFA algorithms. It is shown that these algorithms do not correctly unmix hyperspec-

tral data. We put in evidence that the unmixing matrix minimizing the mutual information might

be very far from the true one. Nevertheless, some abundance fractions might be well separated,
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mainly in the presence of strong signature variability, large number of endmembers, and high SNR.

At the end of the chapter, a method based on the source entropy is proposed, to sort the output of

ICA or IFA algorithms according to the likelihood of being correctly separated. Chapter 5 presents

a new direction to blindly unmix hyperspectral data, where abundance fraction dependence is taken

into account.

The chapter is organized as follows. Section 4.2 presents a brief overview of the ICA and IFA

algorithms. Section 4.3 illustrates the performance of IFA and of some well known ICA algorithms

with simulated hyperspectral data. Section 4.4 studies the ICA and IFA limitations in unmixing

hyperspectral data. Section 4.5 presents results of ICA based on real data. Section 4.6 concludes

the chapter with some remarks. Parts of this chapter were published in [118, 119, 122, 124, 128].

4.2 Independent Component Analysis and Independent Factor

Analysis

ICA [41, 73, 74] is an unsupervised source separation process, which has been applied to linear

blind separation problems [12, 29, 75]. The goal of ICA is to recover independent sources, given

only sensor observations that are unknown linear mixtures of the unobserved independent sources.

Let r be an L× 1 observation vector, such that

r = Ms, (4.1)

where M is an unknown L×p (L ≥ p) mixing matrix and s ≡ [s1 s2 ... sp]T is an unknown random

data vector of mutually independent sources with unknown distributions, although, at most, one

can be Gaussian distributed. ICA finds a p× L separating matrix W, such that

y = Wr = PGs, (4.2)
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where y is a vector of independent components and P and G are permutation and scale matrices,

respectively.

ICA looks for a linear representation that maximizes a nongaussianity measure [100]. A

commonly objective function used in ICA algorithms is the mutual information [41] of vector

y ≡ [y1 y2 . . . yp]T given by

I(y1, y2, . . . , yp) ≡
∑

j

H(yj)−H(y)

=
∫

p(y) log
p(y)∏
j p(yj)

dy. (4.3)

From expression (4.3), we can see that the mutual information of a vector y is the Kullback-

Leibler distance between the densities p(y) and
∏

j p(yj). This distance is zero if and only if y has

independent components [95].

Assume that the spectral vectors are in a subspace of dimension p and that W is a nonsingular

matrix. Then

I(y1, y2, . . . , yp) =
∑

j

H(yj)−H(r)− log |detW|, (4.4)

where H(yj), H(y), and H(r) are the entropy of random variable yj , of random vector y, and of

random vector r, respectively (see [12, 29]).

Most ICA algorithms find the separating matrix by minimizing expression (4.4), or an equivalent

objective function, with respect to W. The Negentropy (see [75, 100]), an entity closely related

with the mutual information, which is also used as an objective function to obtain W, is defined as

J(y) ≡ H(ygauss)−H(y), (4.5)

where ygauss is a Gaussian random vector with the same mean and covariance as y [43]. Negentropy
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is nonnegative and is equal to zero if, and only if, y has Gaussian distribution. Assuming that

components yj , for j = 1, . . . , p, are uncorrelated, it follows that

I(y1, y2, . . . , yp) = J(y)−
∑

j

J(yj), (4.6)

which means that finding maximum of Negentropy directions (i.e., maximizing
∑

j J(yj) with re-

spect to W), is equivalent to minimize the mutual information.

Well known ICA methods are FastICA [75], Jade [29], and the Bell and Sejnowski algorithm [12].

FastICA is based on a fixed-point procedure and uses the absolute value of kurtosis as a measure

of nongaussianity, while Jade uses the fourth-order cross-cumulants of the data to separate sources.

The Bell and Sejnowski algorithm uses the stochastic gradient ascent learning rule to minimize the

mutual information.

IFA [6] was proposed as a method for recovering independent hidden sources from their observed

mixtures immersed in additive noise. IFA implements two steps: first, source densities and noise

covariance are estimated from the observed data by ML; second, sources are reconstructed by an

optimal nonlinear estimator. IFA assumes the observation model

r = Ms + n, (4.7)

where sources are independent with unknown distributions (at most one is Gaussian) and n is

Gaussian noise with covariance Cn, a matrix not necessarily diagonal. To make the model an-

alytically tractable each source density is modeled by a mixture of Gaussians (MOG) [117]. An

expectation-maximization (EM) algorithm [46, 113] is applied to compute the ML estimate of the

noise covariance and the Gaussian mixture parameters.

The classical PCA [82] seeks for a linear decomposition that best represents the data in the

least-squares sense. PCA finds a linear transformation y = Wr, where each row vector of W
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corresponds to the normalized orthogonal eigenvector of the data covariance matrix. While PCA

only uses the second-order statistics, ICA looks for components that are statistically independent

rather than uncorrelated; thus, it requires statistics of orders higher than the second [100].

It is known that, owing to physics of the acquisition process, the abundance fractions are

dependent (αj ∈ ∆p). Thus the application of ICA and IFA in hyperspectral unmixing yields

incorrect results. To shed light into the limitation of ICA/IFA approach, let us compute the ML

estimate of W:

WML = arg min
([W]i,:)y∈∆p

1
N

N∑

i=1

log p(y|W) (4.8)

' arg min
([W]i,:)y∈∆p

∫
p(y|W0) log

p(y|W0)
p(y|W)

dy, (4.9)

where W0 stands for the true unmixing matrix and the weak law of large numbers [171] has been

used in (4.9). Note that, according to expression (4.9), W0 is given by the minimization of the

Kullback-Leibler distance between p(y|W0) and p(y|W). This is similar to ICA rationale, although

with a remarkable difference: the minimization is constrained and p(y|W) is not independent.

There is no hope, therefore, that W given by (4.9) and (4.8) are equivalent. However, due to

degradation mechanisms normally found in hyperspectral data sets, namely, signature variability,

abundance constraints, topography modulation, and additive noise, the constraint ([W]i,:)y ∈ ∆p

is no longer valid, and a much more complex and difficult model shall be considered.

The application of ICA to hyperspectral data, proposed in several works [11, 24, 36, 38, 50, 86,

88, 89, 103, 133, 165], relies on the fact that those degradations mechanisms might attenuate the

source dependence on hyperspectral data. For example, signature variability introduces randomness

among sources and thereby attenuates their statistical dependencies. This can be understood by

computing the correlation factor between sources si = ψiαi and sj = ψjαj . Assuming that ψi is
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independent from ψj and that ψ is independent from α, the magnitude of the correlation factor

between si and sj is given by

|%sisj | =

∣∣E[ψi]E[ψj ]
∣∣ ∣∣Cαiαj

∣∣
√

E[ψ2
i ]E[α2

i ]− E2[ψi]E2[αi]
√

E[ψ2
j ]E[α2

j ]− E2[ψj ]E2[αj ]

≤
∣∣E[ψi]E[ψj ]

∣∣
√

E[ψ2
i ]E[ψ2

j ]

∣∣Cαiαj

∣∣
σαiσαj

(4.10)

≤ |%αiαj |, (4.11)

where E[ψ2
k] ≥ E2[ψk] was invoked to obtain the right-hand side of expressions (4.10) and (4.11).

We conclude then that signature variability does not increase source correlation. Of course, decor-

relation does not imply independence. It is, however, plausible that increasing decorrelation means

increasing independence. In the next section we give experimental evidence that hyperspectral

sources are not independent even in presence of strong degradations mechanisms.

4.3 ICA and IFA Evaluation with Simulated Data

In this section ICA (FastICA, Jade, and Bell and Sejnowski) and the IFA algorithms are applied to

simulated data. The study consider that hyperspectral observations are described by the generative

model presented in (1.8), here reproduced,

r = M γψα︸ ︷︷ ︸
s

+ γ

p∑

j=1

αjηj + n′

︸ ︷︷ ︸
n

= Ms + n. (4.12)

This model takes into account the degradation mechanisms normally found in hyperspectral appli-

cations, namely, signature variability [69, 152, 166], abundance constraints, topography modulation,

and noise. Four experiments are conducted: the first models a canonical ICA scenario, where the
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abundance fractions are independent; the second models an ideal hyperspectral scenario, where

only constraints (1.4) are enforced, meaning that abundance fractions are dependent; the third

models a real hyperspectral scenario, where abundance fractions are generated according to (4.12),

thus modeling abundance fraction dependence, signature variability, topography modulation, and

noise; the fourth model sources according to (4.12) and the mean magnitude of the cross-correlation

factor between sources and their estimates by FastICA algorithm is evaluated as a function of the

SNR, of the signature variability, and of the number of sources. The cross-correlation factor is

adopted as a performance measure because ICA and IFA unmixes abundance fractions up to a

constant factor.

In all experiments, the scene dimension is of 30 × 30 pixels and endmember signatures were

extracted from a hyperspectral subimage of the Indian Pine Test Site in northwestern Indiana,

acquired by an AVIRIS instrument in June 19921. Noisy channels and water absorption channels

were removed (channels 1 − 4, 107 − 113, and 150 − 166). Concerning atmospheric correction,

this image has been processed in order to remove the path radiance and the light scattered by the

interaction between the surface and the atmosphere.

Table 4.1 presents the name of the substances extracted and the angle between pairs of sig-

natures, i.e., φij = arccos
(

(mi)
T mj

‖mi‖ ‖mj‖

)
. The lowest and the highest angles are, approximately, 4◦

(between second and seventh signatures) and 48◦ (between fourth and ninth signatures), respec-

tively. Endmember 9 has the highest angle with respect to the closest endmember. In the first

three experiments, three endmembers were selected (see Fig. 4.1); in the fourth experiment, the

number of endmembers is varied from three to ten.

1Available at http://dynamo.ecn.purdue.edu/˜biehl/MultiSpec/
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Table 4.1: Substances extracted from the data set and angle between pairs of radiance spectrum
(in degrees).

substance number 1 2 3 4 5 6 7 8 9 10

Corn-notill 1 0
Grass/Trees 2 31 0
Oats 3 19 12 0
Grass/Pasture 4 36 6 17 0
Hay-windrowed 5 18 17 7 22 0
Wheat 6 27 5 8 10 13 0
Bldg-Grass-Tree-drives 7 34 4 14 4 19 7 0
Stone-steel towers 8 5 35 23 40 22 31 38 0
House roof 9 15 43 32 48 31 39 45 11 0
Steel 10 6 29 18 35 16 26 32 9 17 0
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Figure 4.1: Radiance spectrum of the first second and fifth substances used in experiments I, II,
and III.
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Experiment I

In this experiment, the abundance fractions are mutually independent, each one following a Beta

distribution given by expression (3.9). Mean values are set to µ1 = 0.4, µ2 = 0.3, and µ3 = 0.3.

In the remaining experiments, abundance fractions follow a joint Dirichlet distribution given by

expression (2.2), which constrains the abundance fractions to be in the simplex ∆p. On the other

hand, as noted in [116], the Dirichlet density is adjusted to model proportions.

Table 4.2 presents the sample mean of the cross-correlation coefficients between the abundance

fractions and their estimates and the sample cross-correlation coefficients between the endmember

signatures and their estimates. These coefficients are computed from 256 Monte Carlo runs. It

can be seen that under this condition (independent abundance fractions) IFA, FastICA, and Jade

algorithms work very well, whereas the Bell and Sejnowski algorithm performs a little worse.

Experiment II

In this experiment, abundance fractions are dependent, following a Dirichlet distribution with

parameters θ1 = 0.4, θ2 = 0.3, and θ3 = 0.3. It is clear that none of the algorithms correctly

unmixes the original dependent data. IFA and FastICA algorithms only estimate two abundance

fractions because they implement a pre-processing step to whiten the observed data and to reduce

the dimension (note that the data is in the simplex ∆p due to constraint
∑

j αj = 1).

Experiment III

In this experiment, abundance fractions are dependent following a Dirichlet distribution with

parameters θ1 = 0.4, θ2 = 0.3, and θ3 = 0.3 for each endmember. Scale ψi, controlling signature

variability, is uniformly distributed with in the interval [0.9 , 1.1]; parameter γ is Beta distributed

with parameters β1 = 1, β2 = 0.8. Noise in expression (4.12) is zero-mean white Gaussian with

variance σ2 in each band such that the SNR [defined in expression (2.4)] is set to 30 dB. As in
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Table 4.2: Sample cross-correlation between abundance fractions and the correspondent estimates
(%α) and sample cross-correlation between endmember signatures and the correspondent estimates
(%m). Results based on 256 Monte Carlo runs.

Algorithm IFA FastICA Jade Bell Sejnowski

source %α %m %α %m %α %m %α %m

1 0.9767 0.9725 0.9978 0.9971 0.9994 0.9997 0.7817 0.7119
Experiment I 2 0.9926 0.9777 0.9970 0.9921 0.9985 0.9952 0.8553 0.7071

3 0.9797 0.9765 0.9895 0.9921 0.9911 0.9954 0.5738 0.5803
1 - - - - 0.1978 0.1623 0.3332 0.8836

Experiment II 2 0.8310 0.9259 0.7902 0.7123 0.4778 0.5794 0.8352 0.9812
3 0.4913 0.9144 0.3281 0.7366 0.2482 0.5529 0.4490 0.9815
1 0.9755 0.4534 0.8780 0.6432 0.9304 0.6965 0.9727 0.7843

Experiment III 2 0.9670 0.8619 0.9641 0.7631 0.9752 0.7668 0.9692 0.7830
3 0.9065 0.8618 0.8454 0.7729 0.8981 0.7645 0.8778 0.6238

the previous experiment, ICA and IFA algorithms do not correctly unmix the three abundance

fractions. IFA, however, yields the best results being able to approximately unmix two abundance

fractions.

Experiment IV

In this experiment, the cross-correlation factor between abundance fractions and their estimates

is computed as a function of the SNR, the number of endmembers, and the signature variability.

Two abundance fraction distributions are considered: i) symmetric Dirichlet distributions (θk =

1/p, k = 1, . . . , p); ii) asymmetric Dirichlet distributions
[
θk = 5/(p + 8), k = 1, 2; θk = 1/(p + 8),

k = 3, . . . , p
]
. Signature variability is controlled by the distribution of the scale random vector ψi.

In this experiment it is assumed that ψi is uniformly distributed within the interval [η, 1], where

η ≥ 0. Thus η = 1 means absence of variability, whereas η = 0 means maximum variability.

Although IFA was conceived to recover independent sources from linear mixtures immersed in

noise, this algorithm is not considered in this experiment, because IFA computational complexity

increases exponentially with the number of endmembers. In this experiment only the FastICA

algorithm is applied.
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Figure 4.2: Mean magnitude of the cross-correlation factors between abundance fractions and their
estimates %α as a function of the SNR, for p = 10 and η = 0.8 (results are based on 256 Monte
Carlo runs).

Fig’s. 4.2, 4.3, and 4.4 present the sample mean cross-correlation factors, %α, between each

abundance fraction and the correspondent estimate based on 256 Monte Carlo runs.

Fig. 4.2 shows an increasing %α as a function of the SNR = {15, 20, 25, 30, ∞}dB, for p = 10

and η = 0.8. Asymmetry of abundance fraction distributions affects little the unmixing re-

sults. Fig. 4.3(a) shows %α as a function of the number of endmembers, for p = 3, . . . , 10, SNR

= {30, ∞}dB, and η = 0.6. As the number of endmembers increases, the statistical dependence

among sources decreases and a better performance of ICA algorithms is expected. This trend can

be observed in Fig. 4.3(a) at least for high SNR. On Fig. 4.3(b) the sample mean of the magnitude

of the cross-correlation factor is shown for each source separately, with SNR = 30dB, η = 0.6,

and symmetric source distribution. In this figure, it can be seen that there is always endmem-

bers correctly unmixed and others incorrectly unmixed, regardless of the number of endmembers.

Fig. 4.4(a) shows %α as a function of signature variability, for SNR = {30, ∞}dB, and p = 10.

The unmixing performance is quasi-constant for 0.1 < η < 0.6 and takes higher values in noiseless

scenes. As η approaches to 1, meaning smaller signature variability and higher statistical depen-

dence among sources, ICA performance decays as expected. Fig. 4.4(b) presents the %α for each

source separately, with SNR = 30 dB, p = 10, and asymmetric source distribution. Second, fifth,
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Figure 4.3: Mean magnitude of the cross-correlation factors between abundance fractions and their
estimates (results are based on 256 Monte Carlo runs): (a) %α as a function of the number of
endmembers p in the scene for η = 0.6; (b) %α as a function of p, for each individual source
(η = 0.6, symmetric sources, SNR = 30dB).
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Figure 4.4: Mean magnitude of the cross-correlation factors between abundance fractions and their
estimates (results are based on 256 Monte Carlo runs): (a) %α as a function of parameter η, for
p = 10; (b) %α as a function of parameter η, for all sources (p = 10 , asymmetric sources, SNR
= 30 dB).
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and seventh endmembers are clearly incorrectly unmixed. Note that with respect to table 4.1,

endmember 7, which jointly with endmember 2 form the closest pair, shows the worst unmixing

result, whereas endmember 9, which has the highest angle with respect to the closest endmember,

shows a good unmixing result.

The pattern of behavior exhibited in experiments I to IV was systematically replicated regardless

of the source statistics. The conclusions are the following:

1. the accuracy of ICA applied to hyperspectral data tends to increase with the signature vari-

ability, the number of sources, and the SNR;

2. there are, however, always endmembers incorrectly unmixed, regardless of the unmixing sce-

nario. [124].

In the next sections the estimation of the unmixing matrix is considered. This study is based on

the minimization of the mutual information, which gives some evidence on the reasoning underlying

ICA and IFA limitations in unmixing hyperspectral data.

4.4 Limitations of ICA and IFA in Unmixing Hyperspectral Data

In this section, ICA and IFA limitations in unmixing hyperspectral data are studied. To this

end, the behavior of the mutual information in the neighborhood of the true unmixing matrix is

characterized. The aim is to show that when sources are dependent, minimizing mutual information

might lead to a unmixing matrix far from the true unmixing matrix.

A brief introduction to ICA and IFA was presented in Section 4.2. Given an unknown linear

mixture of the unobserved independent sources r = Ms, ICA and IFA look for a matrix W that

maximizes a nongaussianity measure of the vector y = Wr. An objective function commonly used

in ICA algorithms is the mutual information [41].
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Assuming that the det(W) is constant, the minimization of the mutual information reduces to

finding [see expression (4.3)]

Ŵ = arg min
W

I(y1, y2, . . . , yp,W) = arg min
W

∑

j

H(yj), (4.13)

where

H(yj) ≡ −
∫ +∞

−∞
pYj (u) log pYj (u) du, (4.14)

and pYj is the probability density function of yj . To compute expression (4.14), pYj , for j = 1, . . . , p,

needs to be estimated. Herein this estimate is obtained by fitting a MOG to samples of yj [114]:

pYj (yj) =
Kj∑

qj=1

εqj

(
2π det(Σqj )

)−1/2 exp
[
−1

2
(yj − µqj )

T Σ−1
qj

(yj − µqj )
]
, (4.15)

where Kj is the number of Gaussian modes to fit the jth source and εqj , µqj , and Σqj are the weight,

the mean, and the covariance of the qjth Gaussian mode, respectively. The number of Gaussian

modes, and respective parameters (means, covariances and weights) are obtained via the minimum

description length (MDL) based EM algorithm [49]. The entropy (4.14) is computed via numerical

integration.

Fig. 4.5 shows an example of a Rayleigh probability density function fitted with a Gaussian

mixture using the MDL-EM algorithm [49]. Fig. 4.5(a),(b), and (c) presents the probability den-

sity functions obtained with, respectively, the initial parameters, the solution, and the solution

constrained to three Gaussian modes.

The maxima of I(y1, y2, . . . , yp,W) with respect to W is not very sensitive to the shape of pYj

(see Chap. 9, [74]). For example [6] uses only three Gaussian modes to fit any density shape.
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Figure 4.5: Rayleigh probability density function (dashed line) fitted with a Gaussian mixture
(solid line) using the MDL-EM algorithm [49]: (a) initial parameters (ten Gaussian modes); (b)
solution with five Gaussian modes; (c) solution constrained to three Gaussian modes.

Herein, however, all modes given by the MDL-EM algorithm [49] are used, because the interest is,

not only in the unmixing matrix W, but also in computing the mutual information I(y1, y2, . . . , yp,W)

as a function of W.

4.4.1 Experimental Results

In the next experiments, the behavior of the mutual information I(y1, y2, . . . , yp,W) is studied for

W in the neighborhood of the true unmixing matrix W = M−1. In all experiments the constraint

det(W) = 1 is assumed. This setting does not constraint the unmixed results, as they are defined

up to a constant.

Experiment I

The first experiment considers independent abundance fractions with uniform distribution to

test the setup under canonical mixing conditions. This experiment assumes p = 3 (number of

endmembers), L = 3 (number of bands), M = Ip, ψ = Ip, γ = 1, and n = 0L.

Fig. 4.6(a) shows the mutual information as a function of φ1 and φ2 in a gray scale (φ1 and φ2

define a rotation in R3). This angles are termed as azimuth and elevation angles, respectively. The

minimum is global and occurs for φ1 = 0 and φ2 = 0, i.e., W = Ip.
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As mentioned above, abundance fractions in hyperspectral data are not independent. In order

to test ICA with this constraint, in the next experiment, the abundance fractions are generated

according to a Dirichlet distribution [see expression 2.2] parameterized with µ1 = 1/3, µ2 = 1/3,

and µ3 = 1/3 (recall that µj is the expected value of the jth abundance fraction).

Experiment II

In this experiment the following settings are considered: p = 3, L = 3, M = Ip, ψ = Ip, γ = 1,

n = 0L.

In Fig. 4.6(b) the mutual information as a function of angles φ1 and φ2 is presented. No ICA

algorithm could ever correctly unmix the original dependent data, since (φ̂1 ' −π/4 , φ̂2 ' −π/5),

far from the true unmixing matrix, i.e., (φ1 = 0 , φ2 = 0).

Experiment III

In this experiment the abundance fractions are dependent and Dirichlet distributed (µ1 = 1/3,

µ2 = 1/3, µ3 = 1/3). The remaining parameters are p = 3, L = 3, M = Ip, n = 0L, ψi uniformly

distributed in the interval [0.9 , 1.1], and γ Beta distributed with parameters β1 = 1 and β2 = 0.8.

Fig. 4.6(c) presents the mutual information as a function of angles φ1 and φ2. Although there is

a local minimum at φ1 = 0 and φ2 = 0, the absolute minimum occurs at φ̂1 ' −π/4 and φ̂2 ' −π/5.

Experiment IV

This experiment is similar to experiment III, but now the zero-mean white Gaussian noise is

added. Herein, three scenarios are considered: SNR = {15, 20, 25}dB.

Fig. 4.6 [(d), (e), and (f)] shows the obtained mutual information for SNR = {25, 20, 15}dB, re-

spectively. The surface exhibits a random pattern as the noise level increases. The global minimum

occurs at φ̂1 ' −π/5, φ̂2 ' −π/4 for SNR = 25 dB (see Fig. 4.6(d)), φ̂1 ' 10π/36, φ̂2 ' −10π/36

for SNR = 20 dB (see Fig. 4.6(e)), and φ̂1 ' 10π/36, φ̂2 ' −2π/9 for SNR = 15 dB (see Fig. 4.6(f)).
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Figure 4.6: Mutual information as a function of parameters φ1 (azimuth angle) and φ2 (elevation
angle): (a) three independent sources; (b) dependent sources; (c) dependent sources with illumina-
tion perturbations and signature variability; (d) noisy scene (SNR = 25 dB); (e) noisy scene (SNR
= 20 dB); (f) noisy scene (SNR = 15 dB).

All these global minima are far from (φ1 = 0, φ2 = 0). Note, however, that the presence of a local

minimum at φ̂2 ' 0 and φ̂2 ' 0.

Experiment V

This experiment considers ten endmembers with asymmetric Dirichlet distributions (µ1 = 5/18,

µ2 = 5/18, µk = 1/18; k = 3, . . . , 10). The remaining parameters are M = Ip, n = 0L, ψi uniformly

distributed in the interval [0.9 , 1.1], and γ Beta distributed with parameters β1 = 1 and β2 = 0.8.

The mixture is immersed in zero-mean white Gaussian noise, corresponding to SNR = 20 dB.
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Figure 4.7: Ten dependent components are mixed with noise added: (a) Mutual information (up
to a constant) as a function of rotation angle φ12 angle between first and second components; (b)
Mutual information (up to a constant) as a function of rotation angle φ24 angle between second
and fourth components.

Fig. 4.7(a) shows the mutual information (up to a constant) as a function of the rotation matrix

W =




cosφ12 sinφ12 0

− sinφ12 cosφ12

1

. . .

0 1




,

where φ12 stands for the angle between first and second components. Note that the minimum occurs

at φ̂12 ' 0, which means that first and second component could be correctly unmixed; Fig. 4.7(b)

shows the mutual information as a function of φ24. It can be observed a local minima at the origin

but the global minimum is at φ̂24 ' −π/4. The conclusion is that, under these conditions, although

might exist local minima corresponding to the true unmixing matrix, the global minimum of the

mutual information might be very far from true one.
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The pattern of behavior described in experiments II, III, IV, and V was systematically observed

in a series of experiments with different abundance fraction distributions. The conclusion is that in

linear hyperspectral data unmixing, the unmixing matrix W minimizing the mutual information

might be very far from the true one, at least for a few number of endmembers. This is in agreement

with conclusions drawn in Section 4.3.

4.5 FastICA Algorithm Applied to Real Hyperspectral Data

In this section, a subimage of the hyperspectral data set from the Indian Pine Test Site in north-

western Indiana acquired by an AVIRIS in June 1992 is considered. The data set is composed of 220

spectral channels with 10nm bandwidth acquired in the 0.4− 2.5µm region. It contains 145× 145

pixels (21, 025 pixels) with a ground pixel resolution of 17 meters [70]. This region contains a

mixture of agriculture and forestry. However, due to the early season date of data collection, the

cultivated land appears to have very little canopy cover. There is a major dual lane highway (U.S.

52 and U.S. 231), a rail line crossing near the top, a major secondary road (Jackson Highway)

near the middle, several other county roads, and houses (Fig. 4.8(a) shows band 29 of the data

set). The ground truth of the region [96] classifies the ground covered area into sixteen classes and

ignores many small variations within fields that can be seen in the image data [see Fig. 4.8(a)].

With respect to atmospheric correction, this data set has been processed to remove path radiance

and the light scattered by interaction between surface and the atmosphere. The corrected image is

still, however, in radiance units.

A PCA pre-processing step was implemented to whiten the observed data and to reduce the

dimension: every pixel vector r is transformed into a vector of dimension 16 with zero-mean and

identity covariance matrix: x = U16

(
r − E[r]

)
, such that E[x] = 0 and E[xxT ] = I, where I the

identity matrix.
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Fig. 4.8 presents the first sixteen components extracted by the FastICA algorithm. The first,

second, fourth, tenth, and eleventh components correspond to houses or man made materials that

exist in a few locations in the scene
[
see Fig’s. 4.8(c), 4.8(e), 4.8(k), and 4.8(l)

]
. Note that the

maximum contrast of sources occurs in house locations, stone-steel towers, Jackson highway, and

rail line. The third and fifth components are a mixture of grass with pasture and trees, respectively

[
see Fig’s. 4.8(d) and 4.8(f)

]
. The sixth component

[
see Fig. 4.8(g)

]
represents a mixture of

grass, soybeans, and corn. Apparently, the seventh component is hay-windrowed
[
see Fig. 4.8(h)

]
.

The ninth component represents vegetation mowed
[
see Fig. 4.8(j)

]
. Components presented in

Fig’s. 4.8(b), 4.8(i), 4.8(m), and 4.8(n) do not represent any class of the available ground truth

[96]. Fig’s. 4.8(o), 4.8(p), and 4.8(q) are mainly noise. The conclusion is that only six sources are

unmixed and the other ten are a mixture of several materials present in the scene or are manly

noise. This is in accordance with the main findings based on simulated data.

A pertinent question is, What sources are correctly unmixed? To address this question, the

entropy of each component is computed, normalized to unit variance, following the procedure

described in Section 4.4. The underlying idea is that a mixed source tends to exhibit higher entropy,

the maximum value being Hmax = 1.419 nats achieved by a Gaussian source. Table 4.3 shows the

entropy for each component shown in Fig. 4.8 b)-q). By inspection of Table 4.3, two subsets can be

identified: the first, with smaller values of entropy, corresponds to components correctly unmixed

[see Fig’s. 4.8 c)-h)]; the second, with larger values of entropy, corresponds to components with

mixed sources [see Fig’s. 4.8 b) and i)-q)]. The larger values, near Hmax, correspond to the last

three components which are mostly noise.
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Figure 4.8: (a) Subimage of Indiana Pines test site, band 29 (λ = 667.3nm) and independent
components extracted from data set, with FastICA algorithm: (b) not classified; (c)houses; (d)
grass/pasture; (e) stone steel towers, rail line, and highways; (f) grass/trees; (g) grass, soybeans,
and corn; (h) hay-windrowed; (i) not classified; (j) vegetation mowed; (k) houses; (l) houses; (m)
not classified; (n) not classified; (o) noise; (p) noise; (q) noise.
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Table 4.3: Entropy of each component extracted with FastICA algorithm.

Component b) c) d) e) f) g) h) i)

Entropy 1.4020 1.3290 1.1834 1.2002 1.3399 1.1300 1.2811 1.4031

Unmixed ? ? ? ? ? ?

Component j) k) l) m) n) o) p) q)

Entropy 1.3781 1.3945 1.3842 1.4069 1.4172 1.4188 1.4187 1.4189

Unmixed

4.6 Conclusions

Blind hyperspectral linear unmixing aims at estimating the number of reference substances (also

called endmembers), their spectral signatures, and their fractions at each pixel (called abundance

fractions), using only the observed data (mixed pixels). Geometric approaches have been used

whenever pure pixels are present in data [19, 44, 120, 164, 173]. In most cases, however, pure pixels

cannot be found in the data. In such cases, unmixing procedures become a difficult task.

In the recent past, ICA has been proposed as a tool to unmix hyperspectral data [11, 24, 36,

38, 86, 88, 103, 133, 165]. ICA consists in finding a linear decomposition of data into statistically

independent components. IFA extends ICA concepts when noise is present. Crucial assumptions of

ICA and IFA are that abundance fractions are independent and that each pixel is a linear mixture

of endmember signatures weighted by the correspondent abundance fractions. Concerning hyper-

spectral data, the second assumption is valid whenever the multiple scattering among the distinct

endmembers is negligible and the surface is partitioned according to the abundance fractions. The

first assumption, however, is not valid due to physical constraints on the acquisition process.

This chapter addresses the impact of the abundance fraction (sources) dependence on unmix-

ing hyperspectral data with ICA/IFA. The study considers simulated and real hyperspectral data,

where hyperspectral observations are described by the generative model (1.8) that includes degra-

dation mechanism such as signature variability, abundance constraints, topography modulation,

and noise.
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IFA and three well known ICA algorithms were tested on simulated data. The main findings in

the Chapter are the following:

i) ICA/IFA performance increases with the SNR;

ii) ICA/IFA performance tends to increase with the signature variability and/or with the number

of endmembers. The underlying reason is that by increasing the signature variability and/or

the number of endmembers the statistical dependence among endmembers is attenuated;

iii) There are always endmembers incorrectly unmixed, regardless the unmixing scenario.

In order to assess the impact of hyperspectral abundance fraction dependence on the ICA/IFA

algorithms, the behavior of the mutual information of the unmixed sources is studied in the neigh-

borhood of the true unmixed data. The conclusion is that in hyperspectral linear unmixing, the

unmixing matrix minimizing the mutual information might be very far from the true one, at least

for a few number of endmembers.

Finally ICA and IFA algorithms are tested in a subimage of the hyperspectral data set from the

Indian Pine test site in northwestern Indiana acquired by an AVIRIS in June 1992. According to

the available ground truth of the region, only 6 sources are correctly unmixed and 10 are incorrectly

unmixed. This is in line with the conclusion drawn from simulated data. A method based on the

source entropy to sort the output of ICA or IFA algorithms according to the likelihood of being

correctly separated was proposed.
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Chapter 5

Dependent Component Analysis

5.1 Introduction

The previous chapter addressed the impact of the source dependence on unmixing hyperspectral

data with ICA/IFA concepts. It was therein shown that the most well known blind source separation

algorithms do not correctly unmix hyperspectral data. It was also concluded that the unmixing

matrix minimizing the mutual information might be very far from the true one.

This chapter presents a new direction to blindly unmix hyperspectral data, termed dependent

component analysis (DECA), where abundance fractions are modeled by a mixture of Dirichlet

densities, thus enforcing source nonnegativity and additivity constraints. DECA is in the vein

of works [6, 117] replacing independent sources represented by MOGs with mixtures of Dirichlet

(MODs) sources. Compared with the geometric-based approaches, the advantage of DECA is that

there is no need to have pure pixels in the observations.

This chapter is organized as follows. Section 5.2 presents the algorithm to estimate the Dirichlet

parameters of a MOD. Section 5.3 describes the fundamentals of the proposed method (DECA).

Section 5.4 and Section 5.5 illustrate aspects of the performance of DECA approach with exper-

imental data and real data, respectively. Section 5.6 concludes the chapter with some remarks.

Parts of the approach presented in this chapter were published in [17, 128].

97



5.2 Learning Dirichlet Sources

This section describes the algorithm introduced in [47] to compute the ML estimates of the pa-

rameters of a Dirichlet density and of a MOD densities. An approach based on the majorization

maximization (MM) [131] perspective leading to a similar algorithm can bee found in [116].

5.2.1 Dirichlet Parameters Estimation

Let S = [S1, . . . , Sp]T be a p-dimensional random variable, with s = [s1, . . . , sp]T representing one

particular outcome S. Lets assume that S follows the Dirichlet distribution

D(s|θ) =
Γ(

∑p
j=1 θj)∏p

j=1 Γ(θj)

p∏

j=1

s
θj−1
j , (5.1)

where θ = [θ1, . . . , θp]T is the density parameter vector, si ≥ 0, and
∑

i si = 1. Given a set of N

i.i.d. samples S = {s(1), . . . , s(N)}, the normalized log-likelihood of θ is

LN (θ) ≡ 1
N

log DS(S|θ)

=
1
N

log DS(s(1), s(2), . . . , s(N)|θ)

=
1
N

log

(
N∏

i=1

DS(s(i)|θ)

)

=
1
N

N∑

i=1

log DS(s(i)|θ)

= T [log DS(s|θ)] , (5.2)

where T[x] ≡ 1/N
∑N

i=1 x(i) (i.e., T[x] is the sample average of x). The ML estimates θ̂ =

arg maxθ LN (θ) cannot be found analytically. The usual choice for obtaining the ML estimates

of the parameters is the EM framework [46, 113], which relies on the so-called incomplete data and

missing data. Let us denote S as incomplete data and denote Z =
{
z(1), . . . , z(N)

}
as the missing

data, which we assume to be i.i.d. and independent of S. Further assume that z(i) ∈ R is Gamma
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distributed, i.e.,

p(z) =
βα

Γ(α)
zα−1e−βz, (5.3)

with the inverse scale parameter β = 1 and the shape parameter α =
∑p

j=1 θj . The complete

log-likelihood is, therefore,

LC(θ) =
1
N

log [pS,Z(S,Z|θ)]

= −
p∑

j=1

log Γ(θj) + T




p∑

j=1

(θj − 1) log sj


 + T




( p∑

j=1

θj − 1
)

log z − z


 . (5.4)

The EM algorithm iterates between the E-step and the M-step [46, 113].

• E-step:

Computes the conditional expectation of the complete log-likelihood, given the samples and

the current estimate θ̂(t). The result is the so-called Q-function

Q(θ, θ̂
(t)

) ≡ E
[
log pS,Z(S,Z|θ)| S, θ̂

(t)
]

= −
p∑

j=1

log Γ (θj) + T




p∑

j=1

(θj − 1) log sj




+T




( p∑

j=1

θj − 1
)

E[log z| θ̂(t)
]︸ ︷︷ ︸

psi
�Pp

j=1
bθ(t)
j

�


 + c, (5.5)

where c is a constant not depending on θ and psi(·) is the logarithmic derivative of the Gamma

function, also know as the digamma function.

• M-step: Updates the parameter estimates according to

θ̂
(t+1)

= arg max
θ

{
Q

(
θ, θ̂

(t)
)}

. (5.6)
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Figure 5.1: Dirichlet parameters estimation.

Maximization of expression (5.6) is still a hard optimization problem. Instead of computing

θ(t+1), we maximize Q(θ, θ̂
(t)

) with respect to θj , for j = 1, . . . , p. Thus, we have

for j = 1 to p

θ̂
(t+1)
j = arg max

θj

{
Q

(
θ, θ̂

(t)
)}

= psi−1

(
psi

(
p∑

l=1

θ̂
(t)
l

)
+ T

[
log ŝ

(t)
j

])

end, (5.7)

where psi−1(·) denotes the inverse of the psi function. Computation details of function psi−1(·)

are described in Appendix B.

The resulting algorithm is of the generalized expectation-maximization class (GEM) [46, 113],

as Q is not maximized but only increased.

The obtained algorithm works very well for all range of θ. To illustrate its behavior, we

generated 105 samples of random variable s = [s1, s2, s3]T with θ = [2, 5, 7]. The ML estimates

θ̂
(0)

was randomly initialized. Fig. 5.1 illustrates the evolution of θ as function of the number of

iterations. Very accurate estimates are obtained after fifty iterations.
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5.2.2 MOD Parameters Estimation

The previous section describes the ML estimation of the parameters of a Dirichlet distribution given

a set of samples. Herein, we address the estimation of the parameters of a MOD distribution.

Let the random variable S = [S1, . . . , Sp]T follow a K-component Dirichlet finite mixture given

by

pS(s|θ) =
K∑

q=1

εqD(s|θq), (5.8)

where ε1, . . . , εK are the mixing probabilities satisfying
∑K

q=1 εq = 1 and εq ≥ 0 for q = 1 . . . , K, and

θq is the set of parameters defining the q-component. The complete set of parameters θ needed

to specify the mixture includes the mixing probabilities ε1, . . . , εK and the Dirichlet parameters

θq = {θq1, . . . , θqp}, for q = 1, . . . ,K, i.e., θ = {ε1, . . . , εK , θ1, . . . ,θK}.

Given a set of N i.i.d. samples S = {s(1), . . . , s(N)}, the log-likelihood of θ is

LN (θ) =
1
N

log pS(s|θ)

= T


log

K∑

q=1

εqD(s|θq)


 . (5.9)

As in the previous section, we resort to the EM framework because the ML estimate of complete set

of parameters θ can not be found analytically [114]. In this setup, S denotes the incomplete data

and denote Z =
{
z(1), . . . , z(N)

}
the missing data, a set of N labels indicating which component

has produced each sample. Each label z(i) = [z(i)
1 , . . . , z

(i)
K ] is a binary K-vector, where only one

zi
q is set to one, indicating which component produced the i-sample. The complete log-likelihood

is then

LC(θ) =
1
N

log [pS,Z(S,Z|θ)]

= T




K∑

q=1

zq log εqD(s|θq)


 . (5.10)
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The E-step of the EM algorithm computes the Q-function given by

Q(θ, θ̂
(t)

) ≡ E
[
log pS,Z(S,Z|θ)| S, θ̂

(t)
]

= T




K∑

q=1

E
[
zq| s, θ̂(t)

]

︸ ︷︷ ︸
β

(t)
q (s)

log
[
ε(t)q D(s|θ(t)

q )
]

 , (5.11)

where

β(t)
q (s) ≡ E

[
zq| s, θ̂(t)

]

=
ε̂
(t)
q D

(
s|θ̂(t)

q

)

∑K
l=1 ε̂

(t)
l D

(
s|θ̂(t)

l

) . (5.12)

The M-step, updates the parameter estimates according to

θ̂
(t+1)

= arg max
θ

{
Q

(
θ, θ̂

(t)
)}

. (5.13)

As in the previous section, we resort to a GEM approach resulting in the following learning rules

for the mixing probabilities and for the mixture of Dirichlet source parameters:

ε(t)q = T
[
β(t)

q (s)
]
, (5.14)

θ̂
(t+1)
qj = psi−1


psi

(
p∑

l=1

θ̂
(t)
ql

)
+
T

[
β

(t)
q (s) log ŝ

(t)
j

]

T
[
β

(t)
q (s)

]

 , (5.15)

for q = 1 . . . , K and j = 1 . . . , p, respectively. The learning rule (5.14) maximizes Q-function with

respect to ε
(t)
q whereas expression (5.15) ensures that the Q-function does not decrease (see [47] for

details).

Section 5.4 illustrates aspects of this algorithm with simulated data.
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5.3 Statistical Modeling and Unmixing Algorithm

Assuming a noiseless linear observation model (r = Ms), the spectral vectors are in a (p − 1) −

dimensional simplex in RL, due to the abundance constraints, i.e., s ∈ ∆p [see expression (1.4)]. As

mentioned before, if p ¿ L, it is worthy to project the observed spectral vectors onto the subspace

signal. Let Ep be a unitary matrix spanning the signal subspace. The coordinates of x with respect

to Ep are

x ≡ ET
p r

= ET
p Ms

= As, (5.16)

where A is a p× p square mixing matrix and x = [x1, x2, . . . , xp]T is a p× 1 vector.

Herein, we assume that signature variability and topographic modulation are absent. Then, the

full additivity constraint implies that sp = 1 −∑p−1
j=1 sj , i.e. only p − 1 components of s are free.

Recall that s = [s1, . . . , sp]
T ∈ ∆p.

Let’s assume that W ≡ A−1 exists. Then, the abundance estimates is ŝ = Wx. Consider

that each pixel x represents one particular outcome of a p-dimensional random variable X =

[X1, . . . , Xp]T . Given a set of N i.i.d. samples X = {x(1), . . . ,x(N)}, then, we may write the

likelihood of W and θ as

LN (W, θ) ≡ 1
N

log pX(X|W,θ)

= T [log pX(x|W, θ)]

= T [log pS(s|θ)] + log |detW|, (5.17)

where we have used the fact that pX(x) = pS(s)| det(W)|. Assuming that the abundance fractions
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follow a K-component Dirichlet finite mixture given by expression (5.8), it follows that

LN (W, θ) = T


log

K∑

q=1

εqD(s|θq)


 + log(| detW|). (5.18)

Again, the ML estimate of
(
Ŵ, θ̂

)
= arg maxW,θ LN (W,θ) can not be found analytically.

5.3.1 Unmixing and Mixture Estimation with the EM Framework

Herein, as in Section 5.2.2, the EM framework is adopted to infer the parameters of a mixture. Let

X and Z denote the incomplete and missing data, respectively. Thus the complete log-likelihood is

LC(W, θ) =
1
N

log [pX,Z(X ,Z|θ)]

= T




K∑

q=1

zq log εqD(s|θq)


 + log (| detW|) . (5.19)

The E-step of the EM algorithm computes the Q-function

Q(θ, θ̂
(t)

) ≡ E
[
log pX,Z(X ,Z|θ)| X , θ̂

(t)
]

= T




K∑

q=1

E
[
zq| s, θ̂(t)

]

︸ ︷︷ ︸
β

(t)
q

log
[
ε(t)q D

(
s|θ(t)

q

)]



+ log (| detW|) , (5.20)

where β
(t)
q is given by expression (5.12) and the M-step estimates the parameters according to

expressions (5.14) and (5.15).

Since ∂Q/∂W = 0 is not a linear equation and cannot be solved analytically, an iterative

gradient type learning rule is derived for the unmixing matrix W:

W(t+1) = W(t) + τ (t)

(
∂Q

∂W

)(t)

, (5.21)
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where τ (t) determines the learning rate on iteration t and

(
∂Q

∂wj

)(t)

= T




K∑

q=1

[
β(t)

q

(θ̂(t)
qj − 1)

ŝj
xT − β(t)

q

(θ̂(t)
qp − 1)
ŝp

xT

]


+
[
W−T

]
j,:
− [

W−T
]
p,:

, (5.22)

where wj , for j = 1, . . . , p− 1 denotes the jth row of matrix W and
[
W−T

]
j,:

denotes the jth row

of the inverse of W transposed. Rule (5.22) is of the type considered by Lee et al. in [100] and by

Attias in the IFA framework [6]. The term
[
W−T

]
j,:
− [

W−T
]
p,:

in expression (5.22) results from

the constraint

ŝp = 1−
p−1∑

j=1

ŝj , (5.23)

which is equivalent to

ŵpx = wmx−
p−1∑

j=1

ŵjx, (5.24)

where wm is a 1× p vector obtained from p linear independent samples {x(1), . . . , x(p)}, i.e.,

wm =
([

x(1) . . . x(p)
]−T

1p

)T

. (5.25)

Algorithm 5.1 presents the pseudo-code aimed at the maximization of the rule (5.19). It imple-

ments a cyclic maximizer algorithm, which splits the estimation of W and θ into block maximization

operations. The estimation of W uses a gradient ascendent method with adaptative steps. The

estimation of θ is based on the algorithm [47] described on Section 5.2. The resulting scheme is

in the vein of works [6, 117], replacing independent sources represented by MOGs with mixture of

Dirichlet sources.

Given the set of N observations x, W is initialized such that ŝ
(i)
j = wjx(i) > 0, for j = 1, . . . , p

and i = 1, . . . , N .
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Algorithm 5.1 :DECA

1: initialize τ , Ŵ, θ̂, and Lbest

2: while LN − Lbest > threshold do
3: ŝ := Ŵ(t)x;
4: for q := 1 to K do

5: D
(
ŝ|θ̂(t)

q

)
:=

Γ
�Pp

j=1
bθ(t)
qj

�

Qp
j=1 Γ

�bθ(t)
qj

� ∏p
j=1 ŝ

bθ(t)
qj −1

j ;

6: β
(t)
q :=

bε(t)q D
�
bs|bθ(t)

q

�

PK
l=1 bε(t)l D

�
bs|bθ(t)

l

� ;

7: ε̂
(t)
q := T

[
β

(t)
q

]
;

8: end for
9: for j := 1 to p do

10: θauxqj := psi−1

(
psi

(∑p
l=1 θ̂

(t)
ql

)
+
T
h
β

(t)
q log bs(t)

j

i

T
h
β

(t)
q

i

)
;

11:
∂Q
∂wj

:= T

[
∑K

q=1

(
β

(t)
q

�bθ(t)
qj −1

�

bsj
xT − β

(t)
q

�bθ(t)
qp−1

�

bsp
xT

)]
+

[
Ŵ−T

]
j
−

[
Ŵ−T

]
p
;

12: end for
13: Waux := Ŵ(t) + τ ∂Q

∂W ;

14: LN := T
[
log

∑K
q=1 ε̂

(t)
q D(s|θauxq)

]
+ log (|detWaux|);

15: if Lbest < LN then
16: Lbest = LN ;
17: Ŵ(t+1) := Waux;

18: θ̂
(t+1)

:= θaux;
19: increment τ ;
20: else
21: decrement τ ;
22: end if
23: end while
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Figure 5.2: (a) Endmembers signatures used in the simulated experiments; (b) image regions.

5.4 Evaluation with Simulated Data

In this section DECA is tested in simulated scenes. The data is generated according to expression

(5.16). Three spectral signatures were selected from the USGS digital spectral library [40] (see

Fig. 5.2(a)). The scene is composed by 105 pixels partitioned into two regions, region A has

the half size of the region B, as schematized in Fig. 5.2(b). The abundance fractions follows a

Dirichlet distribution with θa = [9, 2, 9] and θb = [2, 15, 7] for region A and region B of the scene,

respectively. Pure pixels were removed from the data set in order to illustrate the robustness of

DECA in the absence of pure pixels.

In this experiment the number of modes is set to K = 5, the Dirichlet parameters are randomly

initialized, and the mixing probabilities are set to εq = 1/K, for q = 1, . . . , K. This setting

reflects a situation in which no knowledge of the size and the number of regions in the scene exists.

Fig. 5.3(a) presents a scatterplot (bands λ = 827nm and λ = 1780nm) of the simulated scene,

where dots represent the pixels. It can be seen the two different clouds corresponding to the region

A and B, respectively. It is also presented in the same figure, the true endmembers (circles), the

endmembers estimation (diamonds), and for comparison purposes the endmembers estimation by

VCA (triangles). Estimates provided by the DECA algorithm are close to the true endmembers.
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Figure 5.3: (a) Scatterplot (bands λ = 827nm and λ = 1780nm) of the three endmembers mixture:
true endmembers (circles); VCA estimate (triangles); DECA estimate (diamonds); (b) Dirichlet
mixing probabilities.

The algorithm searches for the smallest simplex that contains all data. Whereas, VCA finds the

most pure pixels in data (see triangles in Fig. 5.3(a)). Since there is no pure pixels in data, VCA

performs worse than DECA.

Fig 5.3(b), presents the evolution of the Dirichlet mixing probabilities (εq, for q = 1, . . . , K)

as function of the number of iterations of the algorithm. Note that three modes tend to zero and

the remaining modes have the values of 0.65 and 0.33, corresponding to the weight of the region B

and region A respectively. Table 5.1 presents the Dirichlet parameters and their estimates of the

two modes. Although the estimated values are near from the true parameter values, we note that

this does not have to happen necessarily, since the same distribution can be modeled with different

MODs. Note that the main purpose of the DECA algorithm is the estimation of the unmixing

matrix W and not the MOD parameters.

The result of the separation process is illustrated trough the product of the unmixing matrix

W and square mixing matrix A which is, in an ideal scenario, the identity matrix Ip, apart from
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Table 5.1: Estimated Dirichlet parameters.

region A region B

9 2
2 15
9 7

region A region B

9.0 2.5
2.2 14.8

10.0 9.7

a permutation. In this experiment the obtained product is

WA =




0.97 0.02 −0.02

0.03 0.93 −0.02

0.00 0.04 1.03




. (5.26)

Fig. 5.4 presents the estimated signatures with the proposed method which shows a good agree-

ment with the true data.

5.5 Experiments with Real Hyperspectral Data

In this section, the proposed method, DECA, is applied to real hyperspectral data collected by the

AVIRIS sensor over Cuprite, Nevada (see Section 2.5 for more details). Fig. 5.5 presents the subim-

age (50 × 90 pixels and 224 bands) for this experiment. Due to several degradation mechanisms

normally found in hyperspectral applications (namely, signature variability, topography modula-

tion, and noise), the observed data is not on a simplex. To obtain a simplex, a projective projection

of data onto a hyperplane yTu = 1 is implemented as a pre-processing step (see Section 3.2 for more

details). The choice of u ensures that there is no observed vectors orthogonal to the hyperplane.

A visual comparison between the abundance fractions estimates on the cuprite data set and

the ground truth presented in [162] shows that first, second, and third extracted endmembers

are predominantly Alunite, Kaolinite, and Montmorillonite, respectively (see Fig. 5.6). Note that

this results are in accordance with the VCA estimates (see Fig.s 3.12(a), 3.12(g), and 3.12(d),
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Figure 5.4: Comparison of the endmember signature (solid line) with the DECA estimated signa-
tures (dashed line): (a) Rivadavite; (b) Chlorite; (c) Dumortierite.
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Figure 5.5: Band 30 (wavelength λ = 667.3nm) of the subimage of AVIRIS cuprite Nevada data
set (rectangle denotes the image fraction used in the experiment).

(a) (b) (c)

Figure 5.6: Abundance fractions of three endmembers extracted from cuprite Nevada data set: (a)
Alunite; (b) Kaolinite; (c) Montmorillonite.

respectively).

A comparison of the estimated endmember signatures with laboratory spectrum is presented

in Fig. 5.7. The signatures provided by DECA are scaled in order to minimize the mean square

error between them and the respective library spectra. The estimated signatures are close to the

laboratory spectra reflectances. This results are in agreement with the VCA estimates (see Fig.s

3.13(a), 3.13(g), and 3.13(d)).

Fig. 5.8 presents a 3-dimensional visualization of the Cuprite data set in the reduce dimension.

It shows that DECA algorithm estimates the smallest simplex (triangle) that contains all data

points (dots).
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Figure 5.7: Comparison of the DECA estimated signatures (dotted line) with the U.S.G.S spectral
library (solid line): (a) Alunite; (b) Kaolinite; (c) Montmorillonite.
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Figure 5.8: 3-dimensional visualization: Cuprite data set (dots); diamonds: DECA estimates;
triangles: VCA estimate.
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5.6 Conclusions

Blind hyperspectral linear unmixing aims at estimating the number of endmembers, their spectral

signatures, and their abundance fractions at each pixel, using only the observed data (mixed pixels).

Geometric approaches have been used whenever pure pixels are present in data. In most cases,

however, pure pixels can not be found in data. In such cases, unmixing procedures become a

difficult task. ICA has been proposed has a tool to unmix hyperspectral data, however, the source

dependence present in hyperspectral data compromises the unmixing results. We show in Section

4.3 that the most well known ICA and IFA algorithms do not correctly unmix hyperspectral data.

In chapter paper, a new method is proposed to blindly unmix hyperspectral data, where abun-

dance fractions are modeled as Dirichlet sources. This model forces abundance fractions to be

nonnegative and to have constant sum on each pixel. The mixing matrix is inferred by a EM type

algorithm. The main advantage of this model is that there is no need to have pure pixels in the

observations.

The performance of the proposed model is illustrated with simulated and real hyperspectral

data. Comparisons with pure pixel estimation methods are conducted. The results achieved shows

the effectiveness of DECA on hyperspectral data unmixing. In future work, the proposed algorithm

shall be improved in order to account for sensor noise.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

Unmixing hyperspectral data is the decomposition of the hyperspectral data into a collection of

endmembers spectra and their corresponding abundance fractions, thus indicating the proportion

of each endmember present in the scene. This thesis introduces new methodologies to perform the

different steps involved in the blind unmixing of hyperspectral imagery.

• We adopt a linear mixture model, i.e., each pixel is a linear combination of the endmembers

spectra present in the scene. The thesis starts by describing a linear model which accounts

for the degradations mechanisms normally found in hyperspectral data, namely, signature

variability, topographic modulation, and sensor noise.

• Many hyperspectral data processing and analysis procedures, in particular the unmixing

ones, have a dimensional reduction preprocessing step. This operation has a great impact

since it reduces the amount of data, implying computational savings in the unmixing step

and improvements in the signal-to-noise ratio (SNR).

This thesis introduces the hyperspectral signal identification by minimum error (HySime)

method, which is a new mean squared error based approach to infer the signal subspace of

hyperspectral data sets. The method first estimates the signal and noise correlations matrices
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and then it selects the subset of eigenvalues that best represents the signal subspace in the

least square sense.

An alternative method is also proposed, exploiting the structure of hyperspectral mixtures,

namely, the fact that spectral vectors are nonnegative.

A set of experiments with simulated and real data leads to the conclusion that the Hysime

method is an useful tool in hyperspectral data analysis, yielding comparable or better results

than the current state-of-the-art methods.

• Under the linear mixing model, hyperspectral pixels are in a simplex whose vertices correspond

to the endmembers present in the scene. Endmember abundance fractions are determined by

the position of the mixed pixel in the simplex.

This thesis introduces the vertex component analysis (VCA), which is a new fast method to

unmix hyperspectral data exploiting this geometric feature of hyperspectral mixtures. VCA

is an unsupervised method that works with project and unprojected data. VCA exploits

two facts: i) the endmembers are the vertices of a simplex and ii) the affine transformation

of a simplex is also a simplex. Briefly, the VCA algorithm iteratively projects data onto a

direction orthogonal to the subspace spanned by the endmembers already determined. The

new endmember signature corresponds to the extreme of the projection. The algorithm

iterates until all endmembers are exhausted.

VCA algorithm competes with current state-of-the-art methods, while having a computational

complexity between one and two orders of magnitude lower than the best available method.

• In the recent past, several works applied ICA as a tool to unmix hyperspectral data. IFA

extends ICA concepts when noise is present. These works are based on the fact that hyper-

spectral data are, in given circumstances, linear mixtures of endmember signatures weighted

by the correspondent abundance fractions. However, these abundance fractions are not inde-
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pendent due to physical constraints on the acquisition process.

This thesis addresses the impact of the abundance fraction (sources) dependence on unmixing

hyperspectral data with independent component analysis (ICA) and with independent factor

analysis (IFA). The study is based on the behavior of the mutual information of the unmixed

sources in the neighborhood of the true unmixed data. The main findings are the following:

1. In hyperspectral linear unmixing, the unmixing matrix minimizing the mutual informa-

tion might be far from the true one;

2. ICA/IFA performance increases with the SNR;

3. ICA/IFA performance tends to increase with the signature variability and/or with the

number of endmembers. The underlying reason is that by increasing the signature vari-

ability and/or the number of endmembers the statistical dependence among endmembers

is attenuated;

4. There are always endmembers incorrectly unmixed, regardless of the unmixing scenario.

A method based on the source entropy to sort the output of ICA or IFA algorithms according

to the likelihood of being correctly separated is proposed.

• Finally, a new direction to blindly unmix hyperspectral data, termed dependent component

analysis (DECA), using mixtures of Dirichlet (MOD) to model abundance fractions is pro-

posed. The method uses a expectation maximization (EM) algorithm to estimate the unmix-

ing matrix and to estimate the Dirichlet parameters. Compared with the geometric based

approaches, its advantage is that there is no need to have pure pixels in the observations.
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6.2 Future Work

This thesis addressed hyperspectral linear unmixing. Among the different methods proposed,

DECA is perhaps the one offering more extension possibilites, namely:

• Noise modeling: DECA is developed to unmix noiseless hyperspectral mixtures. An extension

of this approach can be derived to account for additive Gaussian noise. This direction is in

the vein of Attias work [6].

• Model selection: An important issue is the selection of the number of MOD modes: too many

modes lead to overfitting densities; too few modes may not be flexible enough to approximate

the source densities. The extension of DECA in order to estimate the number of modes would

lead to performance improvements and possible computational savings.

• Parameter initialization: The initialization of the parameters in DECA is by itself an opti-

mization problem that is important to be addressed. The EM framework used in DECA leads

to a nonconvex optimization problem, thus sensitive to the initialization. DECA is initialized

by an unmixing matrix based on the VCA solution. A better initialization would certainly

lead to better results.

Another direction is the exploitation of the nonlinear unmixing. The linear mixture model

is simple and well suited to model the many hyperspectral scenarios. However, there are some

hyperspectral images where the effects of multiple scattering is not negligible. Thus, it would be

useful to derive extensions of DECA to nonlinear mixture. This extensions somehow parallels the

extensions of the ICA method to nonlinear ICA.
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Appendix A

Atmosphere Correction

Hyperspectral remote sensing exploits the fact that all the materials reflect electromagnetic energy,

at specific wavelengths, in distinctive patterns related to their physical and chemical composition

[66]. Hyperspectral sensors acquire spectra from the visible region through the near-infrared and

mid-infrared (0.4µm − 2.5µm), in hundreds of narrow contiguous bands (10nm). Thus, hyper-

spectral imagery makes possible the remote identification of substances based on their spectral

signatures, i.e., their reflectances.

However, when an Earth scene image is acquired by a satellite or an aircraft hyperspectral

sensor, the reflectance of the surface substances is only one of the factors that contributes to the

radiance acquired by the sensor.

Due to the effects of the illumination source and of the atmosphere, the radiance spectra ob-

tained by an hyperspectral sensor cannot be directly compared to either laboratory spectra or

spectra collected at other times or places. To overcome this obstacle, many hyperspectral im-

agery applications work with the reflectance spectra, which indicates the portion of incident energy

which is reflected as a function of wavelength. Thus, one of the most critical steps in most hy-

perspectral remote sensing imagery is the atmospheric correction, i.e., the method to retrieve the

surface reflectance spectra from the observed radiance. Note that if no comparison with laboratory

reflectances whatsoever are needed then this step is not required.
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Figure A.1: Example of a typical solar spectrum at the top of the atmosphere. Courtesy of
Microimages Inc. (TNTmipsr product) available on www.microimages.com

A.1 Atmosphere and Illumination Factors

In a passive remote sensing system, the primary source of illumination is the sun. Solar spectrum is

defined as the distribution of the suns emitted energy as a function of wavelength. Fig. A.1 shows

a typical solar spectra at the top of the atmosphere. In order to convert sensor measurements to

reflectance values, the solar spectrum must be known or estimated. Thus, when a remote image is

acquired, the sun angle, the time, the season, and the location of the surveyed area must be known.

As solar energy propagates through the atmosphere, downward and upward (after reflected by

the ground), this energy is differently absorbed and scattered depending on the wavelength [63].

Fig. A.2 shows an example of the atmosphere transmittance. Herein it is also shown some gases

that contribute to reduce the transmittance in certain wavelengths. Absorption by atmospheric

gases is dominated by water vapor with smaller contributions from aerosols, carbon dioxide (CO2),

ozone (O3), carbon monoxide (CO), methane (CH4), oxygen (O2), nitrous oxide (N2O) and other

gases [53, 58]. Strong atmospheric water absorption bands make the atmosphere opaque in many
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Figure A.2: Example of a typical atmosphere transmittance. Courtesy of Microimages Inc.
(TNTmipsr product) available on www.microimages.com

regions (for example in the 1.4 and 1.9 µm regions). Note that, as the solar illumination angle,

and the viewing angle varies, the path also vary and the atmospheric transmittance as well. The

location, the time, and season must be known to derive the atmospheric conditions (water vapor,

aerosols, etc).

In addition to atmospheric absorption and scattering, several other important effects have in-

fluence on hyperspectral imaging, these effects include

• the angle of the sun and solar spectrum which varies with location, time, and season;

• the viewing angle of the sensor;

• path radiance (upwelling solar radiance scattered by the atmosphere, which never reached

the ground);
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• skylight (solar radiation scattered by the atmosphere that reach the ground, acting as a

secondary illumination);

• adjacency effect (adjacent objects that reflect or scatter the sunlight onto the scene;

• shadowing effects, due to clouds or surface topography.

A.2 Atmospheric Compensation Methods

Over the recent past, several methods and models have been developed to correct atmospheric and

illumination effects on hyperspectral imagery. Most of these methods can be classified either as

scene-based statistical methods or physics-based modeling methods.

The simplest method to compensate the atmospheric effects is to place a calibration panel, with

known reflectance in the scene, in an open area, and use the observed radiance spectrum from the

panel to develop statistical relationships between the sensor observations and the known surface

reflectance (gain and offset corrections for each waveband of interest). Other methods have been

developed, in order to estimate the gain and offset correction terms when calibration panels can

not be pre-positioned in the scene. These methods use certain naturally occurring objects in the

scene to estimate the gain and offset terms.

The empirical line method (ELM) is a statistics-based model to compensate atmospheric effects

[42, 90, 146]. The ELM creates a linear regression equation for each band that provides the gain

and the offset of equation

ρ(λ) =
Ls(λ)− b(λ)

a(λ)
(A.1)

This method use at least to large and uniform ground target areas with widely different brightness.

These selected objects are carefully selected or constructed to provide relatively constant reflectance

over the spectral bands of interest. Fig. A.3 shows the principle of this method, where the two lines

respect to different wavelengths. This process is equivalent to remove the solar spectral irradiance
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Figure A.3: Schematic of the empirical line method.

modulated by the two-way atmospheric transmittance and the atmospheric path radiance. ELM

usually provides accurate estimates, but it does not take into account the topography effects in the

scene.

Internal average relative reflectance (IARR) [91, 94] and flat field correction (FFC) [59, 147] are

image-based techniques that only take into account the multiplicative gain, i.e., they assume that

the atmospheric path radiance is minimal. FFC requires that the image include an uniform area

that has a relatively flat and bright spectral reflectance curve. The mean spectrum of that area

would be mostly affected by the solar irradiance and atmospheric scattering and absorption. The

reflectance image is obtained by dividing the radiance image by the flat field mean spectrum at

each band. IARR method also normalizes the radiance image by a mean spectrum. This method

derives the mean spectrum from the entire image. The radiance image is first normalized to remove

topographic shadows.

However, the dependence upon the presence of suitable reference objects in a scene to perform

atmospheric compensation is often limiting. Even if such objects can be found, the implied as-

sumption of atmospheric homogeneity across the scene is often violated. For these reasons, physics

based models have been developed to provide atmospheric compensation.

Atmospheric removal (ATREM) [52] and fast line of sight atmospheric analysis of spectral hy-
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percubes (FLAASH) [3] are two commonly used methods to model atmospheric effects which apply

the radiative transfer theory. The atmospheric compensation used on these two methods are dif-

ferent but both use the three band ratio techniques to account for the effects of the water vapor

[51, 53]. The Second Simulation of the Satellite Signal in the Solar Spectrum (6S) [169, 170] is a

recent simulator of the atmospheric effects. It enables to simulate plane observations, to account for

elevated targets, non Lambertian surface boundary conditions, and Rayleigh and aerosol scattering

effects. Moderate Resolution Transmittance (MODTRAN) is a complete package of transmittance

and scattering methods, including a full accounting for adjacency effects (the scattering from adja-

cent pixels into the current pixel sensor line of sight) associated with atmospheric scattering [14, 15].

A detailed discussion, comparison and evaluation of these physics based atmospheric compensation

techniques and their implementation differences are described in more detail in [63, 64, 111].
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Appendix B

Inversion of the Psi Function

This appendix describes a Newton procedure [116] to compute x = psi−1(y), i.e., the inverse of the

psi function, also know as the digamma function, and given by the logarithmic derivative of the

gamma function:

y = psi(x) ≡ d (log Γ(x))
dx

, (B.1)

where x must be real and nonnegative. The Newton’s method can be used to find the solution of

psi(x)− y = 0. The update rule is

x(t+1) = x(t) − psi(x)− y

psi′(x)
, (B.2)

where psi′(x) is the trigamma function, i.e., the first derivative of the psi function, and t denotes

the current Newton’s iteration. The starting value of x is set to

x(0) '
{

ey + 0.5 , y ≥ 2.22

− 1
y+γ , y < 2.22

, (B.3)

based on the following asymptotic expressions of psi(x):

psi(x) '
{

log(x− 0.5) , x ≥ 0.6

− 1
x − γ , x < 0.6

, (B.4)
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where γ is the Euler constant (γ = psi(1) ' 0.577). An accuracy of fourteen digits is achieved with

just only five iterations of the Newton’s method.
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