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Abstract

Interferometric synthetic aperture radar (InSAR) is a radar remote sensing technique

primarily aimed at measuring terrain altitude. Relevant InSAR features are night-and-

day and all-weather operability. In particular, such features spurred InSAR based digital

elevation models (DEM) into a wide spread operational use.

Phase unwrapping is the inference of absolute phase from modulo-2π phase. This is a

critical step in the InSAR processing chain, yet still one of its most challenging problems;

this fact makes of phase unwrapping a crucial problem to InSAR based DEM production.

This thesis introduces a new energy minimization framework for phase unwrapping,

building on graph cuts based binary optimization techniques. We provide an exact mini-

mizer general algorithm, termed PUMF (Phase Unwrapping Max-Flow), considering con-

vex pairwise pixel interaction potentials; namely we solve exactly all the phase unwrapping

classical minimum Lp norm problems for p ≥ 1. A set of experimental results illustrates

the effectiveness of the proposed algorithm, and its competitiveness with state-of-the-art

algorithms.

Key Words: Phase unwrapping, interferometric synthetic aperture radar (InSAR), integer

optimization, graph cuts, image processing, remote sensing.
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Resumo

A Interferometria de Radar de Abertura Sintética (InSAR) é uma técnica de detecção

remota cujo principal objectivo é medir a altitude do terreno. A capacidade de operar in-

dependentemente da hora do dia ou noite, bem como das condições climatéricas, potenciou

o uso de modelos digitais do terreno (MDT) obtidos via InSAR.

As técnicas de Desenrolamento de Fase visam, dada uma imagem de fase módulo-2π,

inferir a correspondente imagem de fase absoluta. Tal procedimento, sendo um passo

cŕıtico na cadeia de processamento em InSAR, constitui também, reconhecidamente, um

dos seus problemas mais dif́ıceis; este facto faz do Desenrolamento de Fase um problema

crucial na produção de MDT baseados em InSAR.

Esta tese introduz uma nova abordagem a este problema, seguindo um paradigma de

minimização de energia e utilizando técnicas de optimização com grafos. É proposto um

algoritmo de minimização exacta, o PUMF (Phase Unwrapping Max-Flow), admitindo

quaisquer potenciais de interacção convexos entre pares de ṕıxeis. O PUMF resolve de

forma exacta todos os problemas de desenrolamento de fase de mı́nima norma Lp com

p ≥ 1. Um conjunto de resultados experimentais ilustra a eficácia do algoritmo proposto,

bem como o seu desempenho competitivo relativamente aos melhores algoritmos em De-

senrolamento de Fase.

Palavras chave: Desenrolamento de Fase, Interferometria de Radar de Abertura Sintética

(InSAR), Optimização Inteira, Cortes em Grafos, Processamento de Imagem, Detecção

Remota.
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Chapter 1

Introduction

This thesis presents a new energy minimization framework to phase unwrapping and

illustrates its relevance to interferometric synthetic aperture radar (InSAR) applications.

InSAR imaging comprises an ensemble of techniques that provide measurements on

surface topography and surface deformation. Other characteristics, such as land classifi-

cation or motion tracking, can also be obtained using InSAR. Capable of day and night, in

all weather, measurements, with an ever improving spatial resolution due to developments

in sensors and processing algorithms, InSAR is an increasingly popular remote sensing

technique [1], [2].

SAR interferometry1 utilizes two or more complex-valued images of the same scene

to infer the desired information. Those images must differ by a certain feature, like a

slight difference in the sensor flight track, difference in the acquisition time, or difference

in the used wavelengths. In spite of a possible resemblance with optical stereoscopy, SAR

interferometry works with pixel-to-pixel phase differences between the images, instead

of intensity (i.e., amplitude) values; this is a crucial distinction that calls for different

processing techniques, as well as a complementary set of applications [1].

Like several other imaging technologies, where the information lies in the phase rather

than amplitude, in SAR interferometry phase can be observed only in the principal interval

] − π, π]2, i.e., the acquisition system wraps the phase around that interval. A necessary
1Interferometric synthetic aperture radar (InSAR) and SAR interferometry are two terms used inter-

changeably throughout the text. SAR is the acronym for Synthetic Aperture Radar.
2In radians.
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operation is, therefore, the removing of the 2π-multiple ambiguity in order to recover the

true (i.e., absolute) phase from the wrapped phase: the phase unwrapping (PU) problem.

Although there is a quite extensive published literature, phase unwrapping cannot be

considered a mature field, but instead, an active research topic [3]. To deal with absolute

phase discontinuities and noise, is still an open question to which lots of ongoing research

efforts are being devoted. In radar interferometry, these discontinuities are a result of

well known identified situations, namely, steep slopes on the ground or typified bad SAR

geometries inducing, for instance, shadowing and layover [4]; noise, due to multiple sources,

is also an ubiquitous origin of phase discontinuities. Improvement on algorithms accuracy,

robustness, and speed is the aim of phase unwrapping research.

Being a critical step in the InSAR processing chain, phase unwrapping is also con-

sidered to be one of the most challenging problems for InSAR successful application [5].

With an ongoing wide research and operational set of InSAR applications, e.g., generation

of digital elevation models, measurements of glaciers flows, and mapping of earth quakes,

volcanoes and subsidence phenomena, phase unwrapping is a worthwhile problem to be

addressed in the geographical information science communities [1].

1.1 Proposed Approach

The framework herein presented considers phase unwrapping as an optimization problem.

For each pixel a certain 2π multiple is to be found, such that when added to the wrapped

phase, it renders, tentatively, the absolute phase. This estimation is achieved through

the minimization of a so-called energy function, using a sequence of binary optimizations,

inspired by the ZπM algorithm [6]. Each of these binary optimizations is solved via a

max-flow/min-cut formulation, using recent results on binary energy minimization [7].

Accordingly, the algorithm is termed PUMF, for Phase Unwrapping Max-Flow.

PUMF competes with state-of-the-art PU algorithms, in a series of shown benchmark-

ing representative problems. We exemplify its effectiveness by presenting applications

comprising hard artificial problems and synthesized InSAR data.
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1.2 Thesis Contextual Setting

The main ideas underlying PUMF are due to my advisor, José Bioucas-Dias; in fact, this

thesis benefited from more than a decade long of research activity on phase unwrapping

at the Communications Theory and Pattern Recognition Group of the Instituto de Tele-

comunicações at Instituto Superior Técnico, Portugal. In this context, the thesis aims at

helping to bridge the gap between geographical information systems and InSAR research

areas.

1.3 Dissertation Outline

Chapter 2 gives a basic background on radar interferometry and phase unwrapping, fol-

lowed by a quick review of the main phase unwrapping approaches and state-of-the-art

algorithms, in Chapter 3. Then, Chapter 4 presents the PUMF approach, with emphasis

on its theoretical support and on algorithm aspects, as well. Chapter 5 presents the exper-

imental results obtained with PUMF, as well as benchmarks against reference algorithms.

Finally, Chapter 6 draws conclusions from the work done, setting directions for future

work.
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Chapter 2

Background: SAR Interferometry

and Phase Unwrapping

In this chapter, we set the stage by giving some background on SAR interferometry and on

phase unwrapping. Without entering into the technicalities of SAR processing, we browse

through some of the main interferometry topics, and we emphasize the critical importance

of phase unwrapping for the generation of InSAR products. Next, we give a brief overview

of the phase unwrapping problem.

2.1 SAR Interferometry

2.1.1 SAR Concept

Remote sensing systems can be classified as either active or passive, according to whether

they provide their own energy source for illumination or not [8]. Most of the active type

systems are radar based1 systems [9], [4]. Radar operates at the microwave range of

frequencies (wavelengths between 1cm and 1m), which propagate through clouds, rain,

and fog practically without disturbance. Radar systems allow, thus, a 24 hours a day and

nearly all-weather operation [4].

Radar imaging spatial resolution is illustrated in Fig. 2.1 (a), which shows a radar

platform at velocity V illuminating the ground in a resolution cell having a ground range
1Radar is the acronym for RAdio Detection And Ranging.
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dimension ∆X and an azimuthal dimension ∆Y . In that sketch the sensor goes on,

transmitting radar pulses and retrieving their echoes, using a side looking geometry. Still

referring to Fig. 2.1 (a), range r (slant range in SAR jargon) is defined as the distance

from the antenna to the target and ground range x as its projection on the ground.

Range resolution can be defined as the shortest range distance, ∆r, for which two

point targets produce non-overlapping echoes. As illustrated in Fig. 2.1 (b), a pulse

with duration τ gives, therefore, a range resolution ∆r = cτ
2 , where c is the speed of

light. Fine range resolutions require, then, short pulses, which brings both a technological

and an economical problem. To overcome this, there exist signal processing techniques,

namely, chirp pulse compression which consists in transmitting long pulses (chirps), and

then compressing the echoes[10]. The ground range resolution is approximately given by

∆X ≈ c/2
B

1
sin(θ) , where c stands for light velocity, B for the chirp frequencies bandwidth,

and θ for the look angle [see Fig. 2.1 (a)]. The sin(θ) term accounts for the projection of

the range resolution on the ground [10], [4, Chap. 1], [11].

Concerning azimuthal resolution, it is a matter of how much the antenna is capable

of focusing the received and transmitted microwaves into a sharp beam. It is well known,

from antenna theory, that this depends on the antenna size or aperture2 [12]. Namely, we

have ∆Y ≈ λ
Dr, where λ stands for wavelength, D for the antenna aperture, and r for

range [4, Chap. 1], [11]. This expression for ∆Y tells us that, given the wavelength and the

range distance, we can get finer resolutions by increasing the antenna size. Considering,

e.g., a desired azimuthal resolution of 10 m, and a typical range distance of 800 km

(approximately the ERS-1/2 satellites range distances) for a C-band (λ = 5.6 cm) radar,

we must have an aperture D = 448 m, which is obviously a prohibitive antenna size to

put on-board any existing satellite.

The synthetic aperture technique was developed to overcome the antenna size limita-

tion on resolution. Commonly attributed to Carl Wiley (Goodyear Aircraft Corporation,

1951), its principle consists on letting the radar antenna fly over the length of the desired

aperture, collecting data, and later processing it as if it was obtained from a physically

large antenna (see Fig. 2.2). These signal processing algorithms thus synthesize an aper-

ture. SAR boosted the development of radar imaging applications, first military and then
2These two concepts are not rigorously equivalent but very similar in practice.
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Figure 2.1: (a) Radar spatial resolution cell. (b) Range resolution.

civilian. As an example, the TerraSAR-X satellite scheduled to be launched in 2006, will

provide SAR images of up to 1 m resolution [13].

2.1.2 InSAR: Milestones, Concepts and Applications

In this section and in part of the next one, we follow very closely the InSAR review papers

by Bamler et al. [2], and Rosen et al. [1].

Interferometric SAR evolved both from the development of SAR and of interferometric

techniques used in radio astronomy. The very first reported application of radar interfer-

ometry was made by Rogers and Ingalls [14], in a work on the mapping of the surface

reflectivity of Venus, in 1969. In 1972, Zisk published a work on measurements of the

moon topography [15], and two years later Graham first reported the first application

of InSAR to Earth observation [16]. Therein, he employed an airborne system with an

ensemble of two SAR antennas constituting a cross-track interferometer, with which he

obtained the first InSAR measurements of Earth topography. The collected data over

Puerto Rico served as proof-of-concept generation of topography mapping using InSAR.

6
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Figure 2.2: The synthetic aperture radar (SAR) principle.

Cross-track interferometry

DEM Generation Figure 2.3 sketches a typical InSAR cross-track interferometry (XTI)

configuration. In this mode, two or more SAR antennas separated by a certain cross-track3

baseline distance acquire images over the same area via slightly different directions. As

shown below, in Section 2.1.3, given the two ranges r1 and r2 and the two SAR anten-

nas locations, it is possible to recover, by triangulation, the 3-D position for each ground

resolution cell, and thus produce a digital elevation model (DEM). Unlike classical stereo

techniques, which involve the selection of sparse homologous points in the image pairs and

for which image contrast is needed, InSAR works by measuring phase differences on every

pixel. This can be so, because as SAR is a coherent system [17], it is possible to retrieve

the phase of the electromagnetic radar waves arriving at the sensors and, thus, produce

phase images. This fact additionally brings automation to the processes of registration

of the SAR images entering into the interferometric measurement, the retrieval of the in-

terferometric phase difference, and conversion of the results into digital elevation models

(DEM) of the terrain [1], which constitutes a benefit of the InSAR framework.

The most prominent application of spaceborne cross-track interferometry was made by

the Shuttle Radar Topography Mission4 (SRTM) in 2000. The Endeavour shuttle (NASA)
3We call baseline to the vector joining two platforms. A cross-track baseline, by definition, has a non

null projection in the plane perpendicular to the flight tracks or orbits.
4A joint mission of NASA (National Aeronautics & Space Administration), DLR (German Aerospace
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Figure 2.3: InSAR: XTI configuration.

was equipped with a main antenna mounted on the cargo bay, and an outboard antenna

at the end of a 60 m mast. In 10 days it covered the Earth surface between latitudes

60◦ North and 54◦ South. The global DEM produced, 30 m spatial sampling, complies

with DTED25 specifications which, namely, call for 16 m (90%) absolute vertical height

accuracy, and 20 m (90%) absolute horizontal circular accuracy6.

Motion Mapping - Differential Interferometry Besides the SRTM mission, inter-

ferometry with SAR satellites has been, to date, made on a repeat-pass basis, which means

that the acquisition of the image pair (or multiple) is not simultaneous, but made in suc-

cessive times of revisit to the ground spots at issue. During those time lags (e.g., the ERS

satellite revisit time is 35 days) propagation properties, as well as surface, may change. A

ground motion ∆r in the range direction translates into a differential phase shift of

φdiff = 2 × 2π
λ

∆r, (2.1)

Center), and ASI (Italian Spatial Agency).
5Digital Terrain Elevation Data level 2 specifications (http://www.nga.mil/ast/fm/acq/89020B.pdf).
6For accuracy definitions see, e.g., [18].
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where the factor 2 accounts for the two-way round trip of the radar pulse. However, a

measured differential phase shift may include, as well, the atmospheric contributions due

to change in propagation properties. The most employed technique to suppress those

unwanted contributions, relies on producing several independent interferograms (the im-

ages containing the phase shifts) and then to average them. This average filter can be

applied assuming that atmospheric properties evolve in an approximately random fashion.

Knowing ∆r and acquisition times, it is possible to infer the surface velocity (in the range

direction). Other changes in the ground point scattering properties, and noise, may also

contribute to temporal decorrelation; however, in many cases cm-accuracy is achievable

for ∆r measurements.

It should be noted that in practice, whether for spaceborne or airborne systems, the

platform does not repeat exactly the same path and, thus, introduces a non-zero cross-

track baseline. This brings in an ambiguity of motion versus topographic induced phases

that can be resolved, if either an accurate DEM or a set of different baseline interferograms

are available [19]. This ambiguity suppression must assume a certain kinematic model for

the ground motion [19].

Figure 2.4 shows a mapping of subsidence7 in Las Vegas (Nv, USA), between 1992 and

1997, using differential interferometry from ERS images [20].

Motion Mapping - Persistent Scatterers Interferometry Time changes of propa-

gation and surface properties tend to produce a decorrelation between the images acquired

at different times. Although this temporal decorrelation sets limits on the time spanned

between image acquisitions, to allow the production of meaningful interferograms, it has

been observed that some sparse ground scatterers present an outstanding time persistent

correlation. Persistent (or permanent) scatterers interferometry (PSInSAR) is a differ-

ential interferometry technique that makes use of this fact, to reach extremely accurate

displacement measurements, being able to produce maps of subsidence/uplift rates to an

accuracy of less than 1 mm/year. For that, a large number of phase images (30 − 100)

is required, ranging a period that is usually between 5 and 12 years. For each of these

persistent scatterers, PSInSAR algorithms can produce an individual displacement history
7Ground down lift.
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Figure 2.4: Differential InSAR derived subsidence in Las Vegas between 1992 and 1997.
Taken from [20].

sampled at each image acquisition epoch.

The major limitation of PSInSAR is the inhomogeneity of the persistent scatterers

spatial distribution, which gives predominance to urban man-made features, or natural

rocky areas.

Figure 2.5 shows a segment of an amplitude radar image covering an area along the

Tagus river near Lisboa, Portugal. Detected persistent scatterers are overlaid and rep-

resented by coloured dots that correspond to different subsidence rates; red means high

subsidence rates (around −12mm/year). These results were obtained in the framework

of the ESA/UE Terrafirma project.

Along-track interferometry

Some configurations employ two radar antennas displaced in the along-track direction,

following each other at a short distance, and usually mounted on the same platform. Time

delay between the two acquisitions is very often in the range 10− 100 ms, and in practice

the two antennas acquire images from the same position, such that phase topographic

signature is null. This so-called along-track interferometry (ATI) allows the measurement

10



Figure 2.5: Persistent scatterers near Lisbon, Portugal (data processed by TRE in the
framework of the ESA/EU Terrafirma project).

of fast surface displacements of the range of m/s, with rapid decorrelation properties.

Mostly used in airborne systems, SRTM remains one of the few spaceborne experiments

with ATI. In [21] the authors used the SRTM-ATI time lag of about 0.5 ms between the

acquisition pairs, to produce measurements on the currents of the Dutch Wadden Sea

(Fig.2.6).

2.1.3 InSAR Geometry

Digital elevation models generation is virtually the primal application of InSAR, whether

by defining a core concept in most InSAR applications, whether by being historically the

first operational product. In this section, we briefly browse the basics of the geometry of

the correspondent cross-track InSAR mode.

Let us use labels 1, 2 to identify two SAR sensors forming an interferometer8. The

phase φ1,2 arriving at a pixel on each sensor has the following contributions:

φ1,2 =
2π
λ

2r1,2︸ ︷︷ ︸
φ1,2

r

+φ1,2
scat + φ1,2

prop + φ1,2
noise, (2.2)

where φr is the phase due to the round trip propagation distance, λ is the used wavelength

(thus, 2π
λ is the wave number), 2r represents the round trip range distance (from the

sensor to the ground and back again), φscat stands for the change in phase due to ground
8Whether of the single-pass or repeat-pass type.
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Figure 2.6: Range direction current flow obtained by SRTM-ATI acquisition over the
Dutch Wadden Sea. Taken from [21].

scattering, φprop stands for atmospheric propagation delay9, and φnoise stands for a phase

shift due to noise10.

Neglecting time, spatial and geometrical decorrelation, we may assume that φ2
prop =

φ1
prop, and φ2

scat = φ1
scat. So, also neglecting noise, it comes for the phase difference

φ = φ2 − φ1 = φ2
r − φ1

r =
4π
λ

∆r, (2.3)

where ∆r = r2 − r1. We will refer in more detail to decorrelation and noise issues, in the

next section.

Let us now consider a general interferometric configuration as depicted in Fig. 2.711,

in which, for simplicity, we consider a flat earth. Sensor 1 and sensor 2 are, respectively,

at range distances r1 and r2 from a resolution cell in the ground, which is at a height a

from a reference level. B is the baseline distance between the two sensors, with B⊥ and

B‖ being its perpendicular and parallel components respectively. Range distances r1 and

r2 are much larger than B, so we have:
9The main influence is due to water vapour in the troposphere.

10Noise may have several sources, namely, thermal noise.
11Sketch taken from [22].
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Figure 2.7: InSAR geometry in a flat earth. Taken from [22].

r2 − r1 ≈ B‖ (2.4)

= B cos
(π

2
− γ + α

)
(2.5)

= B sin(γ − α). (2.6)

We are actually interested in obtaining the ground resolution cell height a. From Fig. 2.7

we have:

a = A− r1 cos(γ), (2.7)

and from (2.6)

γ = arcsin
(
r2 − r1

B

)
+ α, (2.8)

so, inserting (2.8) into (2.7) we get

a = A− r1 cos
[
arcsin

(
r2 − r1

B

)
+ α

]
. (2.9)

Finally, from (2.3) and noting that ∆r = r2 − r1, we get
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a = A− r1 cos
[
arcsin

(
φλ

4πB

)
+ α

]
. (2.10)

Expression (2.10) is a fundamental one, as it gives the ground cell height a from the

interferometric phase φ, and via the acquisition geometry parameters A, r1, B and α.

Computing the associated ground range x =
√

(r1)2 − (A− a)2, we are then able to

produce a digital elevation model.

2.1.4 Decorrelation and Quality Maps

Unlike most imagery, SAR image pixels are complex-valued. In fact, a complex number

is the natural representation of both the amplitude and the phase retrieved at each SAR

sensor cell.

A common model for the value of a certain pixel in the ith image entering into an

interferogram is given by, [6], [22, Chap.2]:

zi = Aie
jφi + ηi, (2.11)

where Ai = Aejψi is a random variable accounting for a complex amplitude, resulting

from the complex sum of the echoes backscattered from the various scatterers in the same

resolution cell,12 φi accounts for the round trip propagation for the pulse backscattered

at this cell, and ηi is a random variable accounting for electronic noise [6], [22, Chap.2].

Furthermore, considering that the ground surface is rough (comparing to the wavelength),

that on each resolution cell the scatterers are randomly spatially distributed, and that

none of the scatterers is predominant, then, Ai is a zero mean circular gaussian random

variable [23], [22]. For any two homologous pixels in images 1, 2, we have E(A1A
∗
2) =

ρ
√

E(|z1|2)E(|z∗2 |2) = ρθ2, where θ is the (common) standard deviation of random variables

A1, A2 and ρ is their correlation coefficient13.

It is trivial to show that, if the random variables A1 and A2 are totally correlated

(ρ = 1) and if noise is neglected, then the round trip phase difference φ = φ2−φ1 between
12On each ground resolution cell, there are a certain number of elementary scatterers, each of which is

located at a different distance from the sensor (besides possessing diverse scattering properties); the sensor
resolution cell “sees” the complex sum —the so-called coherent sum— of all these contributions.

13As usual, E stands for the expected value operator.
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the two images can be given by

φ = arg(z2z∗1), (2.12)

where arg(z) ≡ arctan
[

Im(z)
Re(z)

]
; φ is the so-called interferometric phase, which we will

simply refer to as phase, whenever that is not misleading; z2z∗1 is usually referred to as the

interferogram. However, besides noise, there are in practice other decorrelation sources,

from which we emphasize:

• Spatial decorrelation: results from misregistration between the images entering into

the interferogram. This is, in practice, a delicate issue, as if the SAR system has a

narrow enough impulsive response, then it can be sensible even to misregistration at

the subpixel level.

• Geometric decorrelation: results from variations in phase of targets inside a resolu-

tion cell due to different incidence angles.

• Temporal decorrelation: results from time dependent phase fluctuations due to

ground motion, ground scattering properties, or propagation conditions.

Thus, in the presence of decorrelation and noise, expression (2.12) is useless and some kind

of statistical inference is used instead. A commonly used one is through the maximum-

likelihood estimator, which can be shown [24], [25] to be given by

φ̂ = arctan
[
Im(

∑
k z1z

∗
2)

Re(
∑

k z1z
∗
2)

]
, (2.13)

where
∑

k extends over a window with k pixels, over the images, where φ is assumed to

be constant.

A last note about the so-called quality maps is worthy. These maps are ancillary images

that give information on the quality of the retrieved interferometric phase φ. The usually

preferred criterion to measure quality is the absolute value of the correlation coefficient,

the so-called coherence:

α = |ρ| =

∣∣∣∣∣ E(z1z∗2)√
E(|z1|2)E(|z∗2 |2)

∣∣∣∣∣ . (2.14)

Generally, coherence is low for pixels having high decorrelation or original phase disconti-

nuities. When available, quality maps carry very useful information to some of the existing
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phase unwrapping processing algorithms. We will cover the basics of phase unwrapping in

the following section.

2.2 Phase Unwrapping

2.2.1 What is Phase Unwrapping?

We have shown above that phase holds the quested InSAR information on ground height.

After acquiring two SAR images S1 and S2, and producing the correspondent interfero-

gram I = S1S
∗
2 , the interferometric phase can finally be obtained according to expression

(2.12). This procedure encloses, however, an ambiguity that is intrinsic to the SAR phase

acquisition systems [10]. Instead of the absolute (i.e, the true) phase, only its principal

value, which is defined as the remainder of phase after the subtraction of the maximum

2π-multiple that is less or equal than the phase value, plus a further subtraction of a π

quantity, can be detected and stored. Correspondingly the principal interval, which is the

set of all possible principal values, is ]−π π]14. Accordingly, the ambiguity is also present

in the interferometric phase given by (2.12)15. In mathematical terms, the principal value

of the phase is also known as, basically, its modulo-2π value, which can be seen as the

outcome of wrapping the phase around a 2π length interval (2π radians corresponds to a

full wavelength cycle), resulting in the so-called wrapped phase. Phase unwrapping (PU)

is the inverse process: the recovery of the absolute phase from the wrapped phase. Its

goal is, then, to remove the 2π-multiple ambiguity.

Phase unwrapping is an ill-posed problem [26], if no further information is added. In

fact, given any wrapped phase image, there is an infinite number of possible corresponding

unwrapped phase images16. This lack of uniqueness for the unwrapping of an image per

se, is illustrated in Fig. 2.8 with a toy example using 3×3 size images with pixels values in

principal interval units. In Fig. 2.8 (a) a modulo-2π wrapped image is shown, together with

a corresponding mesh rendering. Figures 2.8 (b) and 2.8 (c) present two different possible
14Without loss of generality any 2π-length interval could have been defined as the principal interval.
15It could, in principle, be argued that, even so, the (absolute) interferometric phase could fall within

the principal value, in which case there would be no ambiguity. Nevertheless, the travel path difference
between the two sensors always amounts, at least, to some tens of meters, and according to (2.3) the
interferometric phase magnitude, then, far exceeds the 2π value.

16In other words, given any image, there is an infinite number of images that are 2π-congruent with it.
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Figure 2.8: (a) Modulo-2π wrapped image and its mesh rendering. (b) Possible unwrapped
solution and its mesh rendering. (c) A second possible unwrapped solution and its mesh
rendering. All the values are in principal interval units.

corresponding unwrapped images, along with their mesh renderings which emphasize how

different those solutions are.

2.2.2 The Itoh Condition

The Itoh Method

An assumption taken by most phase unwrapping strategies, is that the absolute value of

phase differences between neighbouring pixels is less than π, the so-called Itoh condition

[27]. If this assumption is not violated, it eliminates the ill-posedness of the problem,

allowing the absolute phase image to be easily determined up to a constant. Introducing

some simple notation, let us define the wrapper operator W(·) by

W : R �−→ ] − π π]

φ ↪→ φ− 2πk,
(2.15)

where k ∈ Z is such that (φ − 2πk) ∈] − π π]. The operator W, thus, wraps any phase

φ into the principal interval ] − π π], which, as referred previously, is a zero centred, 2π

length interval, that is, in essence, the modulo-2π operator, with no loss of generality by
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subtracting π radians. Let us also consider a sequence {φn} of neighbouring pixels values

over an absolute phase image, and define a corresponding sequence of linear differences by

∆φn = φn − φn−1. (2.16)

Hereafter, φ will be denoting an absolute (i.e., unwrapped) phase, and ψ a wrapped phase;

the ∆ operator definition will hold, irrespective of phase being an absolute or a wrapped

one.

The Itoh condition can be expressed as

|∆φn| ≤ π, (2.17)

and from (2.16), it comes immediately

m∑
n=1

∆φn = φm − φ0, (2.18)

as the intermediate sequence values cancel out each other. Now, from (2.15) we have

W(φn) = φn − 2πkn (kn ∈ Z) and so,

∆W(φn) = φn − φn−1 − 2π(kn − kn−1), (2.19)

where kn, kn−1 ∈ Z. We can, thus, introducing (2.16), write

W [∆W(φn)]︸ ︷︷ ︸
a

= ∆φn−2π(kn − kn−1) − 2πk︸ ︷︷ ︸
b

, (2.20)

where kn, kn−1, k ∈ Z, and 2πk is the proper 2π multiple to bring a into the principal

interval. From (2.17) and knowing that by definition |a| ≤ π, we have necessarily b = 0,

which allows us to write,

W [∆W(φn)] = ∆φn. (2.21)
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Finally, introducing (2.21) into (2.18) we obtain:

φm =
m∑
n=1

W [∆W(φn)] + φ0, (2.22)

which gives us a procedure for obtaining the unwrapped phase on any pixel, φm, from the

wrapped phase values along any path linking that pixel to another, for which the absolute

phase value, φ0, is known: the Itoh method. By covering the image with a path, it allows

us to unwrap an entire image up to a constant (the absolute phase value for one pixel in

the image) given that the Itoh condition is satisfied.

A Smoothness Assumption

Again referring to Fig. 2.8, the image in Fig. 2.8 (b) clearly verifies the Itoh condition,

while image in Fig. 2.8 (c) does not. These two images claim very different absolute

solutions, the first one showing the smoothness assumption that Itoh condition holds for

the absolute images. This is, in fact, the case in many InSAR applications, where the

ground topography is very often smooth or, at least, piecewise smooth (at the range of

scales that InSAR deals with).

It is instructive to note that the Itoh condition can also be understood as a version of

the Nyquist sampling theorem. Nyquist’s theorem states that a continuous, bandwidth-

limited, signal17 can be completely reconstructed from a sampling made, almost every-

where, at a frequency greater or equal than its higher frequency component w [28]. This

means that, the “minimum” sampling must have a 2w frequency, for which the samples

present a phase difference less or equal than π radians, which is exactly the Itoh condition

(2.17). Furthermore, as stated in Nyquist’s theorem, Itoh condition can be relaxed just

to be satisfied almost everywhere in the image.

Itoh condition lies at the heart of most phase unwrapping techniques, hence the em-

phasis we have put on it in this section. In the following one, we will briefly review the

main phase unwrapping approaches and representative state-of-the-art algorithms.

17A continuous function whose Fourier transform power spectrum is limited [28].

19



Chapter 3

Main Phase Unwrapping

Approaches and

State-Of-The-Art Algorithms

We have seen that Itoh condition immediately provides a phase unwrapping method,

which, as explained in the previous chapter, employs a path following concept. Never-

theless, it is unrealistic to expect it to be applicable everywhere, as terrain topography

can present a very rich geometry, and therefore induce phase discontinuities, i.e., neigh-

bour pixels phase differences larger than π radians, which constitute violations to the Itoh

condition. Moreover, decorrelation and noise also introduce phase discontinuities.

In this scenario, the phase unwrapping problem is rather more difficult and a great

number of solving techniques (exact or approximate) have been proposed in the literature.

In this chapter, we succinctly overview the main approaches and highlight some of the

representative algorithms.

3.1 Path Following Methods

Path following methods directly apply the concept, introduced in the Itoh algorithm, of

discrete phase integration along a path. Given a starting pixel, for which the absolute

phase is known, Itoh method prescribes on how to compute the absolute phase on any
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Figure 3.1: (a) Wrapped image. (b) A possible unwrapped solution. (c) Another possible
unwrapped solution.

other pixel, without restricting the path linking the two whatsoever. A basic question

arises, though, on whether this discrete integration is, in general, path independent. The

answer to this question is negative, as is illustrated in Fig. 3.1, where a very simple

counter-example is given. There, we depict an elementary wrapped image [Fig. 3.1 (a)]

along with the unwrapped solutions obtained by employing the Itoh condition using two

distinct paths linking the start pixel (represented by a hollow square) and the end pixel

[Figs. 3.1 (b) and (c) respectively]. In what follows, we call parallel paths to any two

(or more) paths sharing the same start and end pixels. As can be seen, in this case the

integration is path dependent.

3.1.1 Residues

This path dependence phenomena in 2D phase unwrapping was first reported by Ghiglia

et al. in [29]. There, furthermore, the authors observed that these inconsistencies were

restricted to some regions on the phase image.

We note here that path integration dependence among two parallel1 paths, can be

tested by reverting the direction of one of them, and then integrating along the resultant

closed loop path. Clearly, there is path dependence if and only if that quantity does not

evaluate to zero.

Accordingly, to identify in full detail the inconsistencies locations in the image, Ghiglia

et al. devised the (natural) strategy of path integrating the phase around every elementary

2× 2 loop; whenever that sum is not zero, it signals an inconsistency located precisely on
1By definition, path integration dependence is to be tested between parallel paths.
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Figure 3.2: (a) An elementary closed loop having a residue. The path integration always
sums up to a 2π multiple, and in this case the residue charge is positive. (b) Any closed
loop can be given as composition of elementary closed loops. In this sketch each pair
of cancelling elementary path components is signalled by a red ellipse. The remaining
components constitute the original outer closed path.

that loop. Later, the term residue2, instead of inconsistency, was introduced by Goldstein

et al. in [30], and became the standard term ever since. By convention, residues are com-

puted using counter-clockwise closed loops, the absolute value of the sum is always a 2π

multiple3, as illustrated in Fig. 3.2(a), and its signal defines the residue charge sometimes

also termed residue polarity. It should be noted that a 2×2 loop is elementary, in the sense

that it is the shortest closed path that we may define and, accordingly, any closed path

can be given by a composition of all such elementary loops that it encloses; Fig. 3.2(b)

illustrates this. Therefore, given two parallel paths and considering again the correspon-

dent closed loop, the sum of the enclosed residues is an effective criterion for inconsistency

detection. We must remark at this point that, as above referred, while a residue implies

a phase discontinuity existence, the converse implication does not hold. Therefore, addi-

tional information is very often, even if implicitly, introduced, as will become apparent in

the next sections.

3.1.2 Branch Cuts Algorithms

A natural strategy to overcome path dependence in path following phase unwrapping

methods, is to connect opposite charge residues with certain lines with which integration
2In a clear resemblance with complex analysis.
3It can be easily shown [31, Chap.2].
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(a) (b)

Figure 3.3: Example of residues and respective possible branch cuts configurations (Taken
from [31]). Positive charged residues are represented by black dots and negative charged
ones by white dots. (a) Ill branch cuts configuration. (b) Minimum length branch cuts
configuration.

paths are not allowed to have cross-overs. In this way, the net charge of possible residues

that may be enclosed on any path, is necessarily zero and, as argued in the previous

section, there is no path dependence phenomena. Those lines are the so-called branch

cuts4; other valid branch cuts are those linking a residue to a border of the image (it

makes it impossible for any path to encircle the residue). From the many PU algorithms

of the branch cuts type published in the literature, we emphasize the one proposed by

Goldstein, Zebker, and Werner in 1988 [30], one of the earliest to be reported in the 2D

phase unwrapping literature.

Choosing the placement for the branch cuts is a critical task, as illustrated in Fig.

3.3 taken from [31]. In Fig. 3.3(a) we show a set of opposite charges residues and a

certain branch cuts configuration. Clearly, that is an ill choice, as there are large isolated

regions which will always remain so5, and the lengthy branch cuts almost isolate other

huge regions as well. The proposed configuration in Fig. 3.3(b) is clearly better, suggesting

the minimization ot the total branch cuts length as a criterion to the choice of the cuts

configuration.

To minimize the total branch cuts length is, by itself, a very difficult problem. That

is why Golsdstein’s algorithm only solves it approximately. Besides being seminal in the

phase unwrapping literature, Goldstein’s algorithm still is competitively fast and does not
4Also termed residue cuts by some authors.
5As integration paths cannot traverse branch cuts.
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restrict itself to creating dipoles, but also residues clusters6. Other branch cuts algorithms

include, e.g., [32], [33].

3.1.3 Quality Guided Algorithms

This class of algorithms employs quality maps to guide the integration paths. By noting

that residues tend to be located in low quality regions of the image [31, Chap.4], they

use the additional information, typically decorrelation maps, to avoid residues-originated

path dependence without, however, explicitly identifying those residues. In fact, they

constitute an attempt to overcome the possible misplacement of branch cuts which, as

previously referred, is a difficult problem.

Many of these techniques basically adopt the criterion of letting the quality values to

define the order by which phase is unwrapped, giving priority to high quality phase pixels

[34], [35].

A further development is the conception of algorithms using quality maps to delin-

eate the branch cuts [36], [37], [38]. In doing so, they attempt to employ the additional

information contained in the quality maps, as well as retaining the branch cuts guaran-

tee of path integration independence. When a good quality map is lacking, Goldstein’s

algorithm performance is found to be superior [31, Chap. 4].

Next we will briefly address the minimum norm methods.

3.2 Minimum Norm Methods

In the previous section, we introduced a key phase unwrapping class of methods which

rely in path following concepts. Now, we will overview the other major approach to phase

unwrapping: the minimum norm methods. As will become apparent in what follows,

they rely on a completely different concept. While path following methods are local in

nature, minimum norm methods adopt a global perspective, addressing the problem via

optimization procedures that involve the image as a whole.
6More complex structures in which same charge residues are linked together forming charged clusters.

The opposite charged clusters are then connected by a branch cut to balance charge.
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3.2.1 The Minimum Lp Norm

Minimum norm methods try to find an absolute phase image solution Φ for which the

Lp norm7 of the difference (horizontal and vertical, respectively) between absolute phase

derivatives and wrapped phase derivatives is minimized. We recall here that in digital im-

age processing, the terms derivative and linear difference can be considered interchange-

ably8. This kind of methods, thus, look for unwrapped phase images whose local deriva-

tives match the measured derivatives, in a certain sense that is given by the particular Lp

norm chosen. So, in fact, they can be considered as surface fitting processes.

More formally, this minimization goal is to yield an unwrapped image solution Φ̂, and

can be expressed by

Φ̂ = arg min
Φ

E(Φ), (3.1)

with E(Φ) being the above referred Lp norm which is given by

E(Φ) =
M∑
m=1

N−1∑
n=1

∣∣∣∆hφm,n − ∆hψm,n

∣∣∣p +
M−1∑
m=1

N∑
n=1

|∆vφm,n − ∆vψm,n|p , p ≥ 0 (3.2)

and

∆hφm,n ≡ φm,n+1 − φm,n, ∆vφm,n ≡ φm,n+1 − φm,n,

∆hψm,n ≡ W (ψm,n+1 − ψm,n) , ∆vψm,n ≡ W (ψm,n+1 − ψm,n) ,

where, Φ is a possible unwrapped image9, Ψ is the wrapped image, M and N denote,

respectively, the images number of lines and columns, ∆h(·) and ∆v(·) denote the hori-

zontal and vertical derivatives, respectively, and W is the wrapper operator introduced in

expression (2.15). Let us note here that the presence of the wrapper operator is, again, a

way of applying the Itoh condition10. We emphatically stress that this is an optimization
7This is an analogy with norms defined in Lp spaces, which are measure theory concepts. For further

reading see, e.g., [39].
8The term linear difference is employed here as the difference between neighbour pixels values.
9When referring to a whole image, instead of one of its pixels, we employ boldface types.

10To illustrate the importance of operator W in this formula, let us consider two neighbour pixels with
phase values π−0.1 and π+0.1, respectively. Their correspondent derivative is ∆ = 0.2. On the other hand,
their wrapped counterparts are π − 0.1 and −π + 0.1 respectively, and accordingly, their correspondent
derivative is ∆ = −2π + 0.2. Obviously, it is desirable to fit the derivative of the unwrapped solution to
the true ∆ = 0.2 and not to ∆ = −2π + 0.2. It is, therefore, convenient to apply the wrapper operator to
annihilate the erroneous introduced 2π ambiguity in the latter derivative value.

25



problem constrained to integers, the constraints being given by Φ = Ψ + 2kπ, where k is

an integer image, which is the difference between the unwrapped and the wrapped images,

Φ and Ψ respectively.

Furthermore, when a quality map (see Section 2.1.4) Q is available it is possible to

derive horizontal and vertical quality measures [40] Qh and Qv, respectively11, and it can

be defined a weighted Lp norm analogous to (3.2):

E(Φ) =
M∑
m=1

N−1∑
n=1

qhm,n

∣∣∣∆hφm,n − ∆hψm,n

∣∣∣p +
M−1∑
m=1

N∑
n=1

qvm,n |∆vφm,n − ∆vψm,n|p , p ≥ 0.

(3.3)

In regions where it is known to exist absolute phase discontinuities, or noise corruption,

we can set qm,n to lower or zero values and, so, reduce the bad quality phase influence on

the unwrapped solution [31, Chap. 4].

Expressions (3.1), (3.2), and (3.3) clearly highlight the global character of these tech-

niques, in the sense that all the observed phases are used to compute a solution. Distinct

exponent p values in Lp norms, yield distinct properties in the unwrapping performance;

usually only p ≤ 2 values are employed and namely p = 0, 1, 2 are the most representative.

We will next quickly refer to some of the correspondent algorithms for these p values.

3.2.2 L2 Norm Algorithms

With p = 2, we have a least squares problem. We remark here that the minimization

of an Lp norm, as defined above, even just for p = 2 is a discrete minimization problem

which is very demanding from the computational point of view [31, Chap. 5]. As such, the

great majority of the existing algorithms are approximate ones. In addition, a drawback

of the L2 norm based criterion is that it tends to smooth discontinuities, unless they are

provided as binary weights.

Fried and Hudgin were the first to propose least squares type phase unwrapping ap-

proximate algorithms [41], [42]. Since then, many algorithms have been published, from

which we highlight (due to popularity) those approximating the least squares solution by

relaxing the discrete domain Z
MN to R

MN12. In doing so, they intend to overcome the
11We can always define Qh ≡ Qv, in case we do not possess any further information.
12M and N denote the number of lines and columns, respectively.
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complexity introduced by the discrete nature of the problem. It can be shown that in

the continuous domain, the problem is equivalent to solving a Poisson partial differential

equation [31, Chap. 5]. This has been solved by applying techniques using fast Fourier or

cosine transforms, and then coming back to discrete domain [43]. An exact solution to least

squares is developed as a step of the ZπM algorithm in [6], using network programming

techniques.

3.2.3 L1 Norm Algorithms

L1 norm performs better than L2 norm in what discontinuity preserving is concerned.

Such a criterion has been solved exactly by Flynn [40] and Costantini [44], using network

programming concepts. We here highlight with a little more detail Flynn’s algorithm, as

it is somehow closer to our own proposed algorithm.

Flynn’s Minimum Discontinuity Algorithm

As introduced in Sections 2.2.1 and 2.2.2, phase unwrapping is an inverse problem with

relation to the wrapping process, which in turn, by definition, creates discontinuities in

the wrapped image. Given that the discontinuities in the unwrapped image should be

limited to noisy areas and to the true absolute image discontinuities, which often can be

identified in quality maps, Flynn’s algorithm [40] fundamental idea consists in choosing

between the possible unwrapped images (Section 2.2.1), the one which minimizes disconti-

nuities. Basically, this algorithm operates by applying iteratively an elementary procedure

of partitioning the image in two connected regions and, then, adding a 2π phase to one of

them, such that the weighted sum of discontinuities decreases.

Introducing, succinctly, the notation used by Flynn in [40], let us define, respectively,

vertical and horizontal jump counts by:

vm,n =
⌊
φm,n − φm−1,n + π

2π

⌋
, (3.4)

zm,n =
⌊
φm,n − φm,n−1 + π

2π

⌋
, (3.5)

where (m,n) represents the usual pixel indexing, and �x	 is the largest integer less or
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equal than x. A jump count is, then, the multiple of 2π that is required to annihilate

a discontinuity (we recall that a discontinuity exists when two neighbouring pixels phase

difference is greater than π). The goal of Flynn’s algorithm is, thus, to minimize

E =
∑

wvm,n |vm,n| + wzm,n |zm,n| , (3.6)

where wvm,n and wzm,n denote vertical and horizontal weights, respectively, which are de-

rived from quality maps. It should be noted that the minimization procedure is guaranteed

to reach the global minimum [40].

3.2.4 Low p Valued Lp Norm Algorithms

With 0 ≤ p < 1 the discontinuity preserving ability of the minimum Lp norm algorithms

is further increased at stake, however, of highly complex algorithms [45]. In particular,

L0 norm is generally accepted as the most desirable in practice. The minimization of L0

norm is, however, an NP-hard problem13 [46], [45], for which approximate algorithms have

been proposed in [31, Chap. 5] and [47].

3.3 Bayesian and Parametric Methods

The Bayesian approach relies on a data-observation mechanism model, as well as a prior

knowledge of the phase to be modelled. This is a probabilistic approach to phase unwrap-

ping, where data-observation mechanism is modelled by a conditional probability density

function P (Ψ|Φ) and the a priori knowledge by the so-called prior probability density

function P (Φ). Here Φ is the unwrapped image and Ψ the wrapped image. Using the

Bayes theorem

P (Φ|Ψ) =
P (Ψ|Φ)P (Φ)

P (Ψ)
, (3.7)

we can get the a posteriori probability density function and, from there, to infer the

unwrapped image Φ.

For instance in [48], a non-linear optimal filtering is applied, while in [49] an InSAR

observation model is considered, taking into account not only the image phase, but also
13For algorithmic complexity theory issues see, e.g., [46].
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the backscattering coefficient and correlation factor images, which are jointly recovered

from InSAR image pairs. Work [50] proposes a fractal based prior.

Finally, parametric algorithms constrain the unwrapped phase to a parametric surface.

Low order polynomial surfaces are used in [51]. Very often in real applications just one

polynomial is not enough to describe accurately the complete surface. In such cases the

image is partitioned and different parametric models are applied to each partition [51].
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Chapter 4

The PUMF Approach

In this chapter we propose a new phase unwrapping method. Our approach is an energy

minimization one that generalizes the classical minimum Lp norm formulation introduced

in Section 3.2.

By changing into a more formal gear, we rigorously formulate the problem to be solved,

develop the theoretical backgrounds of the proposed solution and, finally, present and

discuss our phase unwrapping algorithm.

4.1 Problem Formulation

Figure 4.1 shows a site (i, j) ∈ Z0 ≡ {(k, l) : k = 1, . . . ,M, l = 1, . . . , N} (Z0 is the usual

image pixel indexing 2D grid) and its first-order neighbours along with the variables hij

and vij signalling horizontal and vertical discontinuities, respectively; i.e. hij , vij ∈ {0, 1}
and hij , vij = 0 signals a discontinuity.

Let us define the energy

E(k|ψ) ≡
∑
ij∈Z1

V
(
∆φhij

)
vij + V

(
∆φvij

)
hij , (4.1)

where k ≡ {kij : (i, j) ∈ Z0} is an integer image defined in Z, of 2π multiples, the so-called

wrap-count image, ψ ≡ {ψij : (i, j) ∈ Z0} is the observed wrapped phase image, V (·) is

the clique potential, a real valued function, and (·)h and (·)v denote pixel horizontal and
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Figure 4.1: Representation of the site (i, j) and its first order neighbours along with the
variables hij and vij signalling horizontal and vertical discontinuities respectively.

vertical differences given by

∆φhij ≡
[
2π(kij − kij−1) − ∆ψhij

]
, k ∈ Z (4.2)

∆φvij ≡ [
2π(kij − ki−1j) − ∆ψvij

]
, k ∈ Z (4.3)

∆ψhij ≡ ψij−1 − ψij (4.4)

∆ψvij ≡ ψi−1j − ψij , (4.5)

and Z1 = {(i, j) : i = 2, . . . ,M, j = 2, . . . , N}.
Our goal is to find the integer image k that minimizes energy (4.1), k being such that

φ = 2πk + ψ, where φ is the estimated unwrapped phase image. As will be seen in the

next section, this energy minimization approach yields the classical minimum Lp norm

formulation or a more general one, depending on the clique potential V .

We should stress that the variables hij and vij , conveying discontinuity information,

are introduced when available. In SAR jargon these images are the quality maps, briefly

addressed in Section 2.1.4. These maps can also be used as continuous variables in [0, 1],

expressing prior knowledge on phase variability. Nevertheless, in practice, quality maps

are often very noisy or unavailable, implying blind handling of discontinuities.

Although energy (4.1) was introduced deterministically in a natural way, it can also

be derived under a Bayesian perspective, using a Markov random field as a prior; for more

details see [6] and references therein.
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4.2 Energy Minimization by a Sequence of Binary Opti-

mizations

In this section, we present in detail the PUMF algorithm. We show that for convex po-

tentials V , the minimization of E(k|ψ) can be achieved through a sequence of binary

optimizations; each binary problem is mapped onto a certain graph and a binary mini-

mization obtained by computing a max-flow/min-cut on it. Finally, we address a set of

potentials tailored to phase unwrapping.

4.2.1 An Existence Theorem for Energy Minimization

The following theorem is an extension of Lemma 1 taken from [6], which in turn is inspired

by Lemma 1 of [40]. Assuming a convex clique potential V , it assures that if the minimum

of E(k|ψ) is not yet reached, then, there exists a binary image δk (i.e., the elements of δk

are all 0 or 1) such that E(k + δk|ψ) < E(k|ψ). The assumption of convexity is relaxed,

in a certain sense, in Section 4.2.4.

Theorem 1 Let k1 and k2 be two wrap-count images such that

E(k2|ψ) < E(k1|ψ). (4.6)

Then, if V is convex, there exists a binary image δk such that

E(k1 + δk|ψ) < E(k1|ψ). (4.7)

Proof 1 See the Appendix.

According to Theorem 1, we can iteratively compute kt+1 = kt+δk, where δk ∈ {0, 1}MN

minimizes1 E(kt + δk|ψ), until the the minimum energy is reached.
1Or at least decreases.
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4.2.2 Mapping Binary Optimizations onto Graph Max-Flows

Let kt+1
ij = ktij + δkij be the wrap-count at time t + 1 and pixel (i, j). Introducing kt+1

ij

into (4.2) and (4.3), we obtain, respectively,

∆φhij =
[
2π(kt+1

ij − kt+1
ij−1) − ∆ψhij

]
(4.8)

∆φvij =
[
2π(kt+1

ij − kt+1
i−1j) − ∆ψvij

]
. (4.9)

After some simple manipulation, we get

∆φhij =
[
2π(δkij − δkij−1) + ah

]
(4.10)

∆φvij = [2π(δkij − δki−1j) + av] , (4.11)

where

ah ≡ 2π(ktij − ktij−1) − ∆ψhij (4.12)

av ≡ 2π(ktij − kti−1j) − ∆ψvij . (4.13)

Now, introducing (4.10) and (4.11) into (4.1), we can rewrite energy E(kt + δk|ψ) as

a function of the binary variables δkij ∈ {0, 1}, i.e,

E(kt + δk|ψ) =
∑
ij∈Z1

V
[
2π(δkij − δkij−1) + ah

]
vij︸ ︷︷ ︸

Eij
h (xij−1,xij)

+V [2π(δkij − δki−1j) + av]hij︸ ︷︷ ︸
Eij

v (xi−1j ,xij)

,

(4.14)

where xij ≡ δkij . Occasionally, and for the sake of notational simplicity, we use the

representation,

E(kt + x|ψ) =
∑
ij∈Z1

Eij(xi, xj), (4.15)

where indices i, j correspond now to the lexicographic column ordering2 of Z0, xi ∈ {0, 1},
and x = {xi} ∈ {0, 1}MN . Notice that with this representation some terms Eij stand for

2Lexicographic ordering corresponds to the dictionary ordering. More formally: Given A and B, two
ordered sets, the lexicographical order in the cartesian product A×B is defined as (a, b) ≤ (a′, b′) iff a′ <
a′, or a = a′ and b′ ≤ b′.
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horizontal clicks whereas others stand for vertical ones (e.g., E12 and E1(M+1) represent

vertical and horizontal clicks, respectively).

The minimization of (4.14) with respect to δk is now mapped onto a max-flow problem.

Since the seminal work of Greig et al. [52], a considerable amount of research effort has

been devoted to energy minimization via graph methods (see, e.g., [7], [53], [54], [55],

[56], [57]). Namely, the mapping of a minimization problem into a sequence of binary

minimizations, computed by graph cut techniques, has been addressed in works [53] and

[54]. Nevertheless, these two works assume the potentials to be either a metric or a semi-

metric, which is not the case for the clique potentials that we are considering: from (4.14),

it can be seen that Eij 
= Eji as a consequence of the presence of ah and av terms3. For

this reason, we adopt the method proposed in [7], which generalizes the class of binary

minimizations that can be solved by graph cuts. Furthermore, the graph structures therein

proposed are simpler.

At this point a reference to work [57] should be made: it introduces an energy mini-

mization for convex potentials also by computing a max-flow/min-cut on a certain graph.

However, for a general convex potential that graph can be huge, imposing in practice,

heavy computational and storage demands.

Following, then, [7], we now exploit a one-to-one map existing between the energy

function (4.14) and cuts on a directed graph G = (V, E) (V and E denote the set of vertices

and edges, respectively) with non-negative weights. The graph has two special vertices,

namely the source s and the sink t. An s− t cut C = S, T is a partition of vertices V into

two disjoint sets S and T , such that s ∈ S and t ∈ T . The number of vertices is 2+M×N
(two terminals, the source and the sink, plus the number of pixels). The cost of the cut is

the sum of costs of all edges between S and T .

Using the notation introduced in (4.15), we have

Eij(0, 0) = V (a) dij ,

Eij(1, 1) = V (a) dij ,

Eij(0, 1) = V (−2π + a) dij ,

Eij(1, 0) = V (2π + a) dij ,

(4.16)

3By definition both a metric and a semi-metric satisfy the symmetry property.
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where a represents ah or av and dij represents hij or vij . Energy E(kt+x|ψ) is a particular

case of the F2 class of functions addressed in [7], with zero unary terms. A function of F2

is graph representable, i.e., roughly speaking4, there exists a one-to-one relation between

configurations x ∈ {0, 1}MN [i.e., points in the domain of E(kt + x|ψ)] and s− t cuts on

that graph, if and only if Eij(0, 0) + Eij(1, 1) ≤ Eij(0, 1) + Eij(1, 0).

In the proof of Theorem 1 (see the Appendix), we derived the inequality

V (a) + V (c) − V (b) ≥ V (a+ c− b), (4.17)

for any real triplet a, b, c such that min(a, c) ≤ b ≤ max(a, c). So, in particular,

V (−2π + a) + V (2π + a) − V (a) ≥ V [2π + a+ (−2π + a) − a] (4.18)

V (−2π + a) + V (2π + a) ≥ 2V (a) (4.19)

[V (−2π + a) + V (2π + a)] dij ≥ 2V (a)dij , (4.20)

which, in terms of Eij [see expression (4.16)], can be stated as

Eij(0, 0) + Eij(1, 1) ≤ Eij(0, 1) + Eij(1, 0). (4.21)

So, our binary function is graph-representable.

The structure of the graph is as follows: first build vertices and edges corresponding

to each pair of neighbouring pixels, and then join these graphs together based on the

additivity theorem also given in [7].

So, for each energy term Eijh and Eijv [see expression (4.14)], we construct an “el-

ementary” graph with four vertices {s, t, v, v′}, where {s, t} represents source and the

sink, common to all terms, and {v, v′} represents the two pixels involved [v being the

left (up) pixel and v′ the right (down) pixel]. Following very closely [7], we define a

directed edge (v, v′) with the weight E(0, 1) + E(1, 0) − E(0, 0) − E(1, 1). Moreover, if
4As defined in [7], a function E of n binary variables is called graph-representable if there exists a graph

G = (V, E) with terminals s and t and a subset of vertices V0 = {v1, . . . , vn} ⊂ V −{s, t} such that, for any
configuration x1, . . . , xn, the value of the energy E(x1, . . . , xn) is equal to a constant plus the cost of the
minimum s-t-cut among all cuts C = S, T in which vi ∈ S, if xi = 0, and vi ∈ T , if xi = 1 (1 ≤ i ≤ n).
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Figure 4.2: (a) Elementary graph for a single energy term, where s and t represent source
and sink, respectively, and v and v′ represent the two pixels involved in the energy term.
In this case E(1, 0) − E(0, 0) > 0 and E(1, 0) − E(1, 1) > 0. (b) The graph obtained at
the end results from adding elementary graphs.

E(1, 0) −E(0, 0) > 0, we define an edge (s, v) with the weight E(1, 0) −E(0, 0) or, other-

wise, we define an edge (v, t) with the weight E(0, 0)−E(1, 0). In a similar way for vertex

v′, if E(1, 1) − E(1, 0) > 0, we define an edge (s, v′) with weight E(1, 1) − E(1, 0) > 0 or,

otherwise, we define an edge (v′, t) with the weight E(1, 0) −E(1, 1). Figure 4.2(a) shows

an example where E(1, 0)−E(0, 0) > 0 and E(1, 0)−E(1, 1) > 0. Figure 4.2(b) illustrates

the complete graph obtained at the end.
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4.2.3 Energy Minimization Algorithm

In this section we propose an algorithm that implements the PUMF approach.

Algorithm 1 PUMF: Graph cuts based phase unwrapping algorithm.
Initialization: k ≡ k′ ≡ 0, possible improvement ≡ 1
1: while possible improvement do
2: Compute E(0, 0), E(1, 1), E(0, 1), and E(1, 0) {for every horizontal and vertical pixel

pair}.
3: Construct elementary graphs and merge them to obtain the main graph.
4: Compute the max-flow/min-cut (S, T ) {S- source set; T -sink set}.
5: for all pixel (i, j) do
6: if pixel (i, j) ∈ S then
7: k′

i,j = ki,j + 1
8: else
9: k′

i,j = ki,j {remains unchanged}
10: end if
11: end for
12: if E(k′|ψ) < E(k|ψ) then
13: k = k′

14: else
15: possible improvement = 0
16: end if
17: end while

Algorithm 1 shows the pseudo-code for the Phase Unwrapping Max-Flow (PUMF) al-

gorithm. It solves a sequence of binary optimizations until no energy decreasing is possible.

An essential question is whether the number of binary optimizations is finite, and so the

algorithm terminates. Consider that the sequence kt takes values in C = {0, . . . , kmax}MN ,

where kmax is the maximum admitted wrap-count. Since the set {k : k ∈ C} is finite, then,

necessarily any strictly energy decreasing path on C does have a finite length, and PUMF

does have a finite number of steps, i.e., it terminates.

Concerning computational complexity, PUMF takes Nbopt × Nmf flops (measured in

number of floating point operations), where Nbopt and Nmf stand for number of binary

optimizations and number of flops per max-flow computation, respectively.

Although the number of binary optimizations depends on the specific problem at hand,

we have found out empirically that Nbopt � �(maxij(φij) − minij(φij)) /(2π)5. Assuming

that the initial phase is zero everywhere, a crude explanation for this number is that after
5Where φij stands for the unwrapped image.
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k binary optimization steps, the algorithm correctly finds any wrap-count less or equal

than k.

In the results presented in section 5, we have used the augmenting path type max-

flow/min-cut algorithm proposed in [58]. The worst case complexity for augmenting path

algorithms is O(n2m) [59], where n and m are the number of vertices and edges, respec-

tively. However, in a huge array of experiments conducted in [58], authors systematically

found out a complexity that is inferior to that of the push-relabel algorithm [60], with the

queue based selection rule, which is O(n2√m). Thus, we herein take this bound.

Given that in our graphs m � 3n and Nbopt does not depend on n, the worst case

complexity of the PUMF algorithm is bounded above by O(n2.5). In section 5, we run a

set of experiments where the worst case complexity is roughly O(n). This scenario has

systematically been observed.

4.2.4 Clique Potentials

So far, we have assumed the clique potentials to be convex. This is central in the two

main results in the thesis: the Theorem 1 and the regularity of energy (4.1). Both are

implied by the inequality (A.11)

V (a) + V (c) − V (b) ≥ V (a+ c− b), (4.22)

shown in Appendix, where min(a, c) ≤ b ≤ max(a, c).

What if we apply a function θ to the arguments of V ? Using the notation θ(x) = x′,

we get the proposition:

V (a′) + V (c′) − V (b′) ≥ V [(a+ c− b)′]. (4.23)

Now, noting that, by construction6, a, b and c differ from each other by multiples of 2π, if

we choose θ(x) = P(x) + αx, where P is any 2π-periodic real valued function and α ∈ R,
6Stated in the proof of Theorem 1.
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proposition (4.23) becomes,

V (a′) + V (c′) − V (b′) ≥ V [P(a+ c− b) + α(a+ c− b)] (4.24)

= V [P(a) + α(a+ c− b)] (4.25)

= V [(P(a) + αa) + (P(a) + αc) − (P(a) + αb)] (4.26)

= V (a′ + c′ − b′). (4.27)

Since any 2π-sampling of θ is a monotone sequence, it is guaranteed that min(a′, c′) ≤
b′ ≤ max(a′, c′); so, proposition (4.27) follows from expression (4.22). Therefore we have

the following result:

Proposition 1 The set of clique potentials considered in Theorem 1 can be enlarged by

admitting functions of the form V ≡ C ◦ (P + L), where C is a convex function, P is a

2π-periodic function, and L is a linear function.

It should be stressed that for such a potential, the regularity condition (4.21) is also

satisfied; it follows directly from (4.27). We can thus conclude that the PUMF algorithm

is valid for this broader class of clique potential functions. We next give two examples of

possible clique potentials.

The classical Lp norm

This norm, corresponds, by far, to the most widely used phase unwrapping methods;

recalling section 3.2, we can see that it is given by V (∆φ) = |∆φ−W(∆ψ)|p, where W(x)

is the wrapper operator defined by (2.15) and, thus, W(x) ∈] − π π]. Since ∆φ and ∆ψ

differ by a multiple of 2π, then |∆φ − W(∆ψ)|p = |∆φ − W(∆φ)|p. Therefore, in our

setting, we identify immediately C(x) = |x|p, P(x) = −W(x), and A(x) = x.

Again recalling section 3.2, methods using this clique potential find a phase solution

φ for which Lp norm of the difference between absolute phase differences and wrapped

phase differences (so a second order difference) is minimized.

From above, we see that C(x) is convex given that p ≥ 1. Therefore, we conclude that,

for this range of p values, PUMF exactly solves the classical minimum Lp norm phase

unwrapping problem.
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Figure 4.3: (a) The convex function C(x) = |x|1.4; (b) Q2π(x) = x − W(x); (c) The
classical L1.4 norm potential given by V2π(x) = C[Q2π(x)].

We refer to Q2π(x) ≡ −W(x)+x as the 2π-quantization function and denote V2π(x) ≡
V [Q2π (x)].

Figure 4.3 plots the potential C(x) = |x|1.4, the quantization function Q2π(x), and the

classical L1.4 norm given by V2π(x) = |Q2π(x)|1.4.

Convex potential

Choosing any convex C(x), P (x) = 0 and L(x) = x, we obviously get back to the convex

potential case. For example, the quadratic clique potential V (x) = x2 was used in work

[6], under a Bayesian approach and a Markovian prior for the absolute phase. As already

said, this potential tends to wash out phase discontinuities.
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Chapter 5

PUMF Performance

In this chapter we illustrate the PUMF performance on a set of representative phase

unwrapping problems. The data employed is distributed with book [31] and is widely

adopted as a testbed for PU algorithms performance evaluation. In addition, we also

benchmark PUMF against the main state-of-the-art algorithms.

The results presented for PUMF were obtained with MATLAB coding (max-flow al-

gorithm is implemented in C++1), and using a PC workstation equipped with a 1.7 Ghz

Pentium-IV CPU. The benchmark algorithms are coded in C and also distributed with

[31].

5.1 Gaussian Hills

Figures 5.1 (a) and 5.1 (b) display two phase images (100 × 100 pixels) to be unwrapped;

they are synthesized from an original absolute phase surface formed by a Gaussian ele-

vation with a height of 14π rad, and standard deviations σi = 10 and σj = 15 pixels, in

the horizontal and vertical dimensions, respectively. The wrapped images are generated

according to an InSAR observation statistics (see, e.g., [6]), producing an interferometric

pair, with correlation coefficient 1.0 and 0.95, respectively. This corresponds to an in-

terferometric noise standard deviation of 0◦ and 50.5◦, respectively. The wrapped phase

images are obtained (for each pair), by computing the product of one image by the com-
1Code made available at http://www.cs.cornell.edu/People/vnk/software.html by V. Kolmogorov.

See [58] for more details.
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plex conjugate of the other, and finally taking the argument. The noise standard deviation

of 50.5◦ is large enough to induce a huge number of residues, making the unwrapping a

hard task. Figures 5.1 (c) and 5.1 (d) show the corresponding unwrapped surfaces by

PUMF using a non-quantized (see section 4.2.4) L2 norm potential. We can see that, even

with low-correlation induced discontinuities, PUMF successfully accomplishes a meaning-

ful unwrapping. Figures 5.1 (e) and 5.1 (f) show the energy evolution along the nine

iterations taken by the algorithm to perform the unwrapping. It is noticeable a major

energy decreasing in the first few iterations. We point out that it was not supplied any

discontinuity information to the algorithm.

As referred in Section 4.2.3, we have observed approximately an O(n) complexity

(where n is the size of the input image) in the experiences we have run with PUMF.

Figure 5.2 illustrates this for the unwrapping of the Gaussian surface with and without

noise, and employing two kinds of clique potentials.

Figure 5.3 (a) is analogous to 5.1 (a), but now the original absolute phase surface

Gaussian elevation has a quarter set to zero. This introduces additional discontinuities in

the wrapped values, therefore rendering a quite difficult unwrapping problem. We remark

here that, again, no discontinuities are explicitly supplied in this application example, i.e.,

no quality maps are supplied to the algorithm. In Fig. 5.3 (b) we show the unwrapped

solution with a classical L2 potential, which clearly is useless2. A successful unwrapping

was obtained with a quantized potential, the classical L1, and the result is shown in Fig. 5.3

(c); this result illustrates the ability of PUMF to cope with absolute phase discontinuities,

when low p values are used. In Figs. 5.3 (d) and 5.3 (e) we display, respectively, a

3-D representation of the unwrapped solution and the energy evolution along the nine

iterations taken by the algorithm to achieve the correct solution.

5.2 Shear Ramps

Figures 5.4 (a) and 5.4 (b) display two phase images to be unwrapped; they are synthesized

from an original absolute phase surface formed by two equal size planes with slopes 0 and 1

rad/pixel (maximum height is 99 rad). The wrapped images are generated using the same
2The non-quantized version (section 4.2.4) yields a similarly useless solution.
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Figure 5.1: (a) Wrapped Gaussian elevation with 14π height; correspondent colorbar on
the right. The associated noise standard deviation is 0◦. (b) Wrapped Gaussian elevation
with 14π height; correspondent colorbar on the right. The associated noise standard
deviation is 50.5◦. (c) Image in (a) unwrapped by PUMF; correspondent colorbar on
the right. (d) Image in (b) unwrapped by PUMF; correspondent colorbar on the right.
(e) Energy decreasing for the unwrapping of image in (a). (f) Energy decreasing for the
unwrapping of image in (b).
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Figure 5.2: Unwrapping times of a 14π height Gaussian surface with PUMF, using a PC
workstation equipped with a 1.7 Ghz Pentium-IV CPU: time (s) vs image size (n). Time
grows roughly as O(n) in all the four shown experiments. An O(n2.5) line is shown for
reference. (A) Gaussian surface with 50.5◦ interferometric noise unwrapped with a non-
quantized L2 norm. (B) Gaussian surface without interferometric noise unwrapped with a
non-quantized L2 norm. (C) Gaussian surface with 50.5◦ interferometric noise unwrapped
with a classical (quantized) L2 norm. (D) Gaussian surface without interferometric noise
unwrapped with a classical (quantized) L2 norm.
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Figure 5.3: (a) Wrapped Gaussian elevation with 14π height and a quarter set to zero; cor-
respondent colorbar on the right. The associated noise standard deviation is 0◦. (b) Failed
unwrapping of the image in (a); correspondent colorbar on the right. It was employed a
(quantized) L2 norm. (c) Image in (a) successfully unwrapped by PUMF; correspondent
colorbar on the right. It was employed a (quantized) L1 norm. (d) 3-D representation of
the unwrapped image. (e) Energy decreasing along the unwrapping process.
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procedure described for images in 5.1 (a) and (b), again with interferometric noise standard

deviation of 0◦ and 50.5◦, respectively. The main unwrapping difficulty with these images,

lies in the shear line that separates the two equal size planes, which is an obvious source

of discontinuities; once more no quality maps are used to supply explicit discontinuities

information. We note, again, that the 50.5◦ noise standard deviation is high enough to

also induce a large number of phase residues, making the unwrapping even harder. Figures

5.4(c) and 5.4(d) show the corresponding unwrapped surfaces by PUMF using a classical

L1 norm, both taking 18 iterations. We can see that, even with low-correlation induced

discontinuities, PUMF successfully accomplishes a meaningful unwrapping. Figures 5.4 (e)

and (f) display, respectively, the corresponding energy evolutions. Figure 5.4 (g) displays

a 3-D representation of the unwrapped image in (c). Finally, Fig. 5.4 (h) shows the

failed unwrapping of the image in 5.4 (b) with a classical L1.5 potential. As expected,

the failure is mainly along the shear line where the major discontinuities lie. This, over

again, highlights the PUMF ability to preserve discontinuities and the importance of a

low p value to do it.

5.3 Long’s Peak

In this section we apply PUMF to InSAR data. The interferogram phase image is dis-

tributed with [31], and was obtained from a USGS3 digital elevation model, by using

a high-fidelity InSAR simulator [31, Chap. 3] (for more information see the references

therein). Geographically, the data corresponds to Long’s Peak, in Colorado (USA), which

is a steep-relief terrain thus inducing phase discontinuities and posing a challenging phase

unwrapping problem. Moreover, the simulator introduces shadowing, layover, and speckle

noise, which constitute well known characteristic SAR imaging phenomena [4]: shadowing

results from the absence of radar echoes of terrain areas that are occluded by other terrain

areas; layover is quite the opposite, as it corresponds to coincident echoes from different

terrain areas; speckle noise is characteristic of coherent imaging systems, and is due to

interference of the echoes returned from the scatterers, that are within the same resolution

cell.
3United States Geological Survey.
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Figure 5.4: (a) Wrapped shear planes without noise; correspondent colorbar on the right.
The associated noise standard deviation is 0◦. (b) Wrapped shear planes with noise (50.5◦

standard deviation); colorbar on the right. (c) Image in (a) successfully unwrapped by
PUMF using a classical L1 norm; colorbar on the right. (d) Image in (b) successfully un-
wrapped by PUMF using a classical L1 norm; colorbar on the right. (e) Energy decreasing
for the unwrapping of image in (a). (f) Energy decreasing for the unwrapping of image in
(b). (g) 3-D representation of the unwrapped image in (c). (h) Failed unwrapping of the
image in (b); colorbar on the right. It was employed a classical L1.5 norm.
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In Fig. 5.5 (a) we depict a contour map (values in radians) corresponding to the Long’s

Peak DEM and in Fig. 5.5 (b) we show the corresponding interferogram phase image. In

this wrapped image, the regions where the fringes come very close each other, correspond

to layover [31, Chap.3]. The black areas at top and bottom correspond to artifacts. Figure

5.5 (c) displays a quality map computed from the InSAR coherence estimate [31, Chap.4],

while Fig. 5.5 (d) presents a subset of that quality map; this subset was supplied as a

discontinuity information to PUMF; this reduced quality map usage, aims at somehow

suggesting the PUMF ability to preserve discontinuities. Finally, Fig. 5.5 (e) displays a 3-

D rendering of the resulting phase unwrapping, showing the Long’s Peak; a non-quantized

L1 potential was used. Figure 5.5 (f) depicts the energy decreasing for the unwrapping

along the 23 iterations employed to accomplish phase unwrapping.

5.4 Benchmarking

In this section we benchmark PUMF against main state-of-the-art algorithms, using the

above presented PUMF phase unwrapping examples. The algorithms performances are

measured by the standard deviation of the absolute error between original and unwrapped

phase images4. The results are summarized in tables 5.1, 5.2, and 5.3 corresponding,

respectively, to the examples shown in sections 5.1, 5.2, and 5.3. It should be noted that

only in the latter we provide discontinuity information, by supplying the binary quality

map, displayed in Fig. 5.5 (d), to all competing algorithms. In this case, we do not include

the areas masked out by this quality map, as well as the above referred top and bottom

artifact areas, in the computation of the error measure.

The comparing algorithms are:

• Path following type: Goldstein’s branch cut (GBC) [30]; quality guided (QG)

[61]; and mask cut (MC) [38].

• Minimum norm type: Flynn’s minimum discontinuity (FMD) [40]; weighted least-

squares (WLS) [43]; and L0 norm (L0N) (see [31, Chap. 5.5]).

4The absolute error is the difference between the images. The difference is defined pixel-to-pixel, and
so the absolute error is itself an image.
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Figure 5.5: (a) Contour map (values in radians) corresponding to the Long’s Peak DEM.
(b) Corresponding interferogram phase image (colorbar on the top). (c) Total discontinuity
information at disposal. White pixels signal discontinuity locations. (d) Discontinuity
information supplied to the phase unwrapping process. White pixels signal discontinuity
locations. (e) 3-D rendering of the image in (b) unwrapped in 23 iterations. (f) Energy
decreasing for the unwrapping process.
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Table 5.1: PUMF vs. reference PU algorithms. Phase unwrapping problems presented in
section 5.1.

Error (radians)
Algorithm Gaussian Gaussian Gauss. NullQuarter

(Clean) (Noisy) (Clean)
PUMF 0 0.51 0
GBC 0 0.55 1.08
QG 0 0.60 0.36
MC 0 0.75 2.16
FMD 0 0.51 1.23
WLS 2.33 0.36 5.99
L0N 0 0.51 5.41

Table 5.2: PUMF vs. reference PU algorithms. Phase unwrapping problems presented in
section 5.2.

Error (radians)
Algorithm Shear Planes Shear Planes

(Clean) (Noisy)
PUMF 0 0.10
GBC 0 0.47
QG 0 6.71
MC 1.99 4.56
FMD 2.54 1.43
WLS 1.12 3.00
L0N 1.15 1.65

Table 5.3: PUMF vs. reference PU algorithms. Phase unwrapping problem presented in
section 5.3.

Error (radians)
Algorithm Long’s Peak

(Clean)
PUMF 0.30
GBC 8.12
QG 12.02
MC 14.77
FMD 0.50
WLS 1.14
L0N 0.48
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The obtained results clearly illustrate the competitiveness of PUMF with relation to

the main state-of-the-art algorithms.
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Chapter 6

Concluding Remarks

We have presented a new approach to the phase unwrapping problem. Our method em-

ploys energy minimization concepts, using a binary-moves optimization scheme adopted

from the ZπM algorithm [6], jointly with graph cuts techniques for binary optimization.

The proposed algorithm – the PUMF – addresses the phase unwrapping problem en-

tirely in the integers domain, therefore handling a discrete optimization problem for which

it is an exact global minimizer. It was shown that, in particular, PUMF exactly solves

the minimum Lp norm PU problem, for p ≥ 1. Moreover, the PUMF flexibility to admit

any 2π-periodically convex clique potential, suggests the ability to blindly deal with phase

discontinuities. This was confirmed by the experiments presented, which also show the

PUMF competitiveness with state-of-the-art algorithms.

Addressing non-convex potentials can be an interesting extension of the current work.

Such potentials are well known to possess discontinuity preserving capabilities. In partic-

ular, a minimum L0 norm PU algorithm is commonly regarded as the desirable solution

for phase unwrapping, yet an NP -hard problem1. This leads, then, to research on suitable

approximate optimization techniques, which may, possibly, have the additional benefit of

speeding up, even more, the PUMF algorithm.

1All the minimum Lp norm problems with p ≤ 1 are NP-Hard [45].
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Appendix A

Proof of Theorem 1

This proof parallels the proofs of Lemma 1 in the appendixes of [6] and of [40], with the

appropriate modifications to deal with the more general clique potentials here employed.

Define ∆kij = [k2]ij−[k1]ij , for (i, j) ∈ Z0 where Z0 = {(i, j) : i = 1, . . . ,M, j = 1, . . . , N},
with M and N denoting the number of lines and columns respectively (i.e., the usual im-

age pixel indexing 2D grid). Given that the energy E(k|ψ) depends only on differences

between elements of k, we take ∆kij ≥ 0 for (i, j) ∈ Z0. Define n = maxij(∆kij) and the

wrap-count image sequence
{
k(t), t = 0, . . . , n

}
, such that k(0) = k1, k(n) = k2, and

k
(t)
ij = k

(0)
ij + min (t,∆kij) , t = 0, . . . , n. (A.1)

The energy variation ∆E ≡ E(k2|ψ) − E(k1|ψ) can be decomposed as

∆E ≡
n∑
t=1

[
E(k(t)|ψ) − E(k(t−1)|ψ)

]
︸ ︷︷ ︸

∆E(t)

.

Since ∆E < 0 by hypothesis, then at least one of the terms ∆E(t) of the above sum is

negative. The theorem is proved if we show that the variation δE(t) ≡ E(k(0) + δk(t)|ψ)−
E(k(0)|ψ) satisfies δE(t) ≤ ∆E(t), where δk(t) ≡ k(t) − k(t−1), for any t = 1, . . . , n. This

condition is equivalent to

0 ≤ E(k(t)|ψ) − E(k(t−1)|ψ) − E(k0 + k(t) − k(t−1)|ψ) +E(k0|ψ), (A.2)
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for t = 1, . . . , n. Introducing (4.1) into (A.2), we obtain 0 ≤ Sh + Sv, where

Sh =
∑
ij

[
V

(
∆φh(t)

ij

)
− V

(
∆φh(t−1)

ij

)
+ V

(
∆φh(0)

ij

)
− V

(
∆φh(0)

ij + ∆φh(t)
ij − ∆φh(t−1)

ij

)]
vij

(A.3)

Sv =
∑
ij

[
V

(
∆φv(t)ij

)
− V

(
∆φv(t−1)

ij

)
+ V

(
∆φv(0)ij

)
− V

(
∆φv(0)ij + ∆φv(t)ij − ∆φv(t−1)

ij

)]
hij,

(A.4)

where V is the clique potential, and ∆φh(t)
ij and ∆φv(t)ij are given by (4.2) and (4.3),

respectively, computed at the wrap-count image k(t). To prove (A.2), we now show that

the terms of Sh corresponding to a given site (i, j) ∈ Z1 have positive sum. The same is

true concerning Sv.

The difference k(t)
ij − k

(t)
ij−1, for t = 0, . . . , n, is a monotone sequence. This is a conse-

quence of the definition (A.1): if ∆kij > ∆kij−1 the sequence is monotone increasing; if

∆kij ≤ ∆kij−1 the sequence is monotone decreasing. Therefore the sequence
{
∆φh(t)

ij

}
,

for t = 0, . . . , n, is also monotone. Define a ≡ ∆φh(0)
ij , b ≡ ∆φh(t−1)

ij , and c ≡ ∆φh(t)
ij , and

without loss of generality let us assume1 a ≥ b ≥ c. We will show that the sum of terms

of Sh, corresponding to the site (i, j) is positive:

V (c) − V (b) + V (a) − V (a+ c− b) ≥ 0

V (a) + V (c) − V (b) ≥ V (a+ c− b).
(A.5)

By hypothesis, V is convex. Also by hypothesis, a ≥ b ≥ c, so ∃t ∈ [0, 1] : b =

at+ c(1 − t). Thus,

V (b) ≤ tV (a) + (1 − t)V (c) (A.6)

V (a) + V (c) − V (b) ≥ V (a) + V (c) − [tV (a) + (1 − t)V (c)] (A.7)

≥ (1 − t)V (a) + tV (c). (A.8)

1The only possibilities are either a ≥ b ≥ c or a ≤ b ≤ c, because the sequence
�

∆φ
h(t)
ij

�
is monotone

as we have shown.
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As V is convex, (1 − t)V (a) + tV (c) ≥ V [(1 − t)a+ tc]. So, from (A.8),

V (a) + V (c) − V (b) ≥ V [(1 − t)a+ tc] (A.9)

≥ V (a+ c− [at+ c(1 − t)]︸ ︷︷ ︸
b

) (A.10)

≥ V (a+ c− b). (A.11)

The same reasoning applies to Sv.

�
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