□ Radon Transform

□ Fourier Slice Theorem

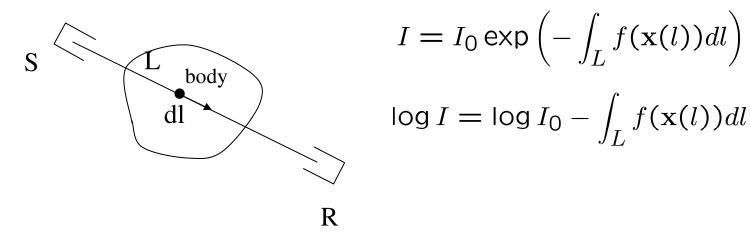
Backprojection Operator

□ Filtered Backprojection (FBP) Algorithm

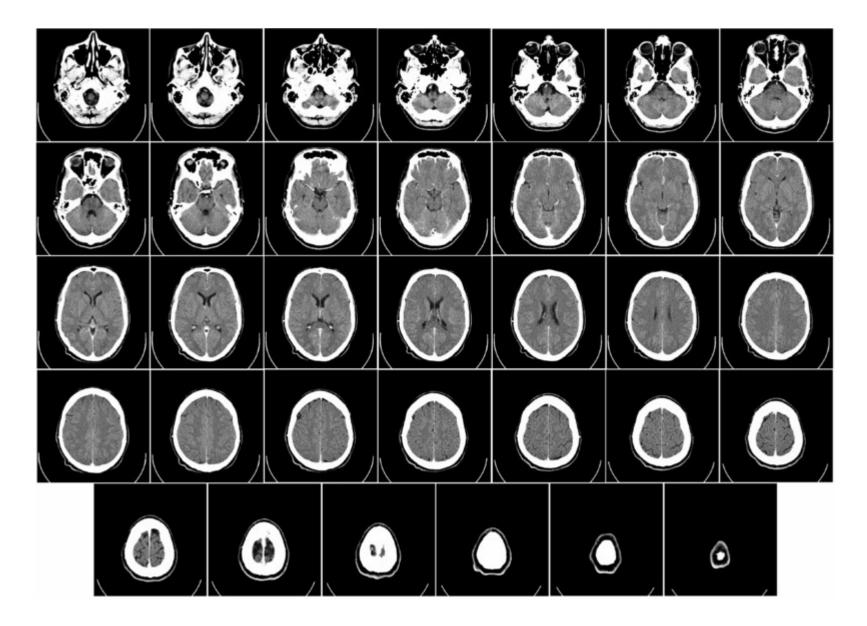
□ Implementation Issues

□ Total Variation Reconstruction

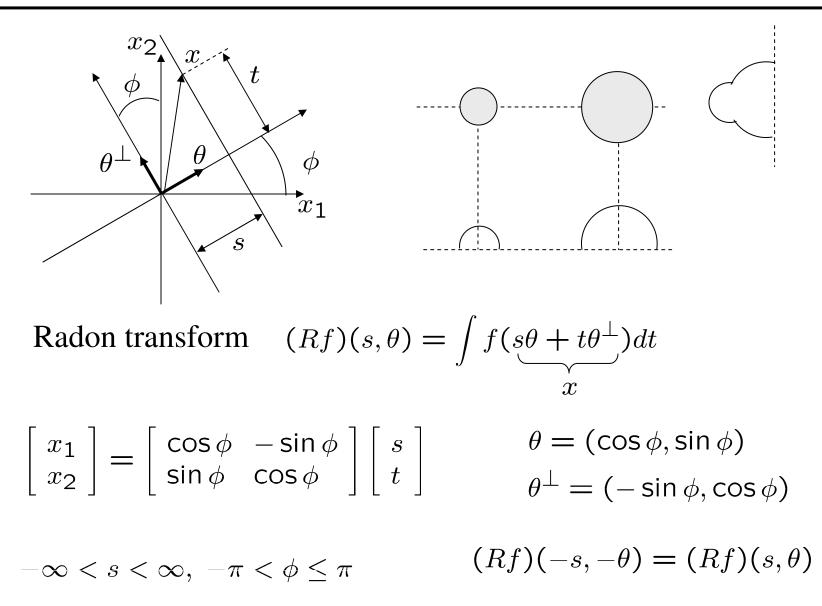
- "Tomography" comes from Greek and means cross-sectional representations of a 3D object
- □ X-ray tomography, introduced by Hounsfield in 1971, is usually called *computed tomography* (CT)
- □ CT produces images of human anatonomy with a resolution of about 1mm and an attenuation coefficient attenuation of about 1%



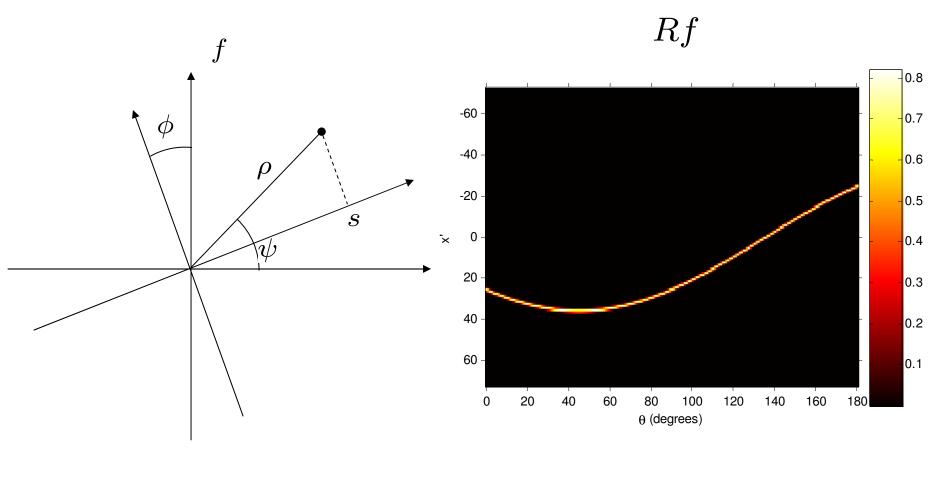
CT images (from wikipedia)



X-Ray tomography

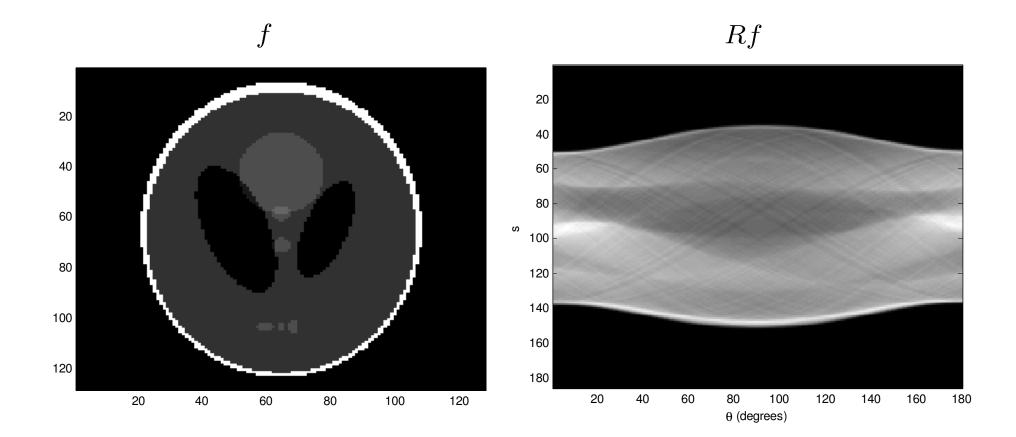


Example of Radon transform: sinogram

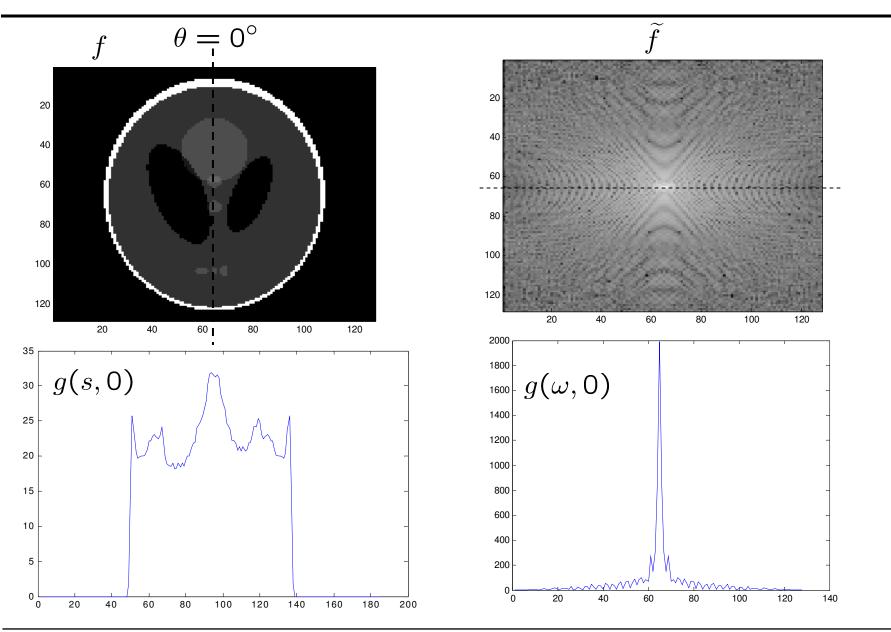


$$s = \rho \cos(\psi - \phi)$$

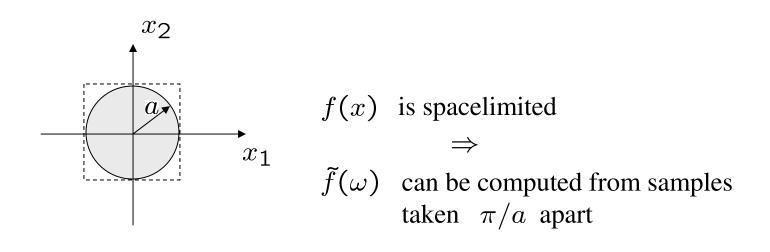
Example of Radon transform: sinogram



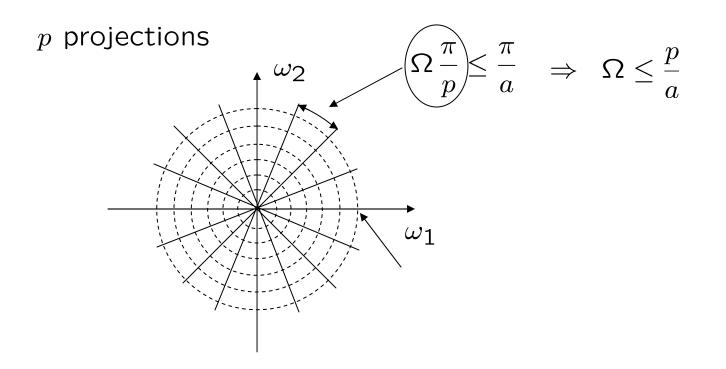
Fourier slice theorem: illustration



- 1- The solution of the inverse problem Rf = g, when exists, is unique
- 2- The knowledge of the the Radon transform of f implies the knowledge of the Fourier transform of f



Fourier slice theorem: consequences

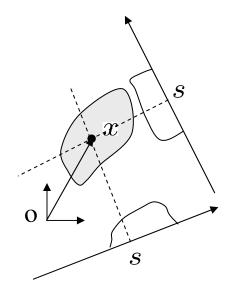


Assuming that $\tilde{f}(\omega)$ is bandlimited to Ω then it is possible to restore f with a resolution

$$\delta = \frac{2\pi}{2\Omega} = \frac{\pi a}{p}$$

$$(R^{\#}g)(x) \equiv \int_{0}^{2\pi} g(\underbrace{x \cdot \theta}_{s}, \theta) d\phi$$

 $(R^{\#}Rf)(x)$ is the sum of all line integrals that crosses the point x



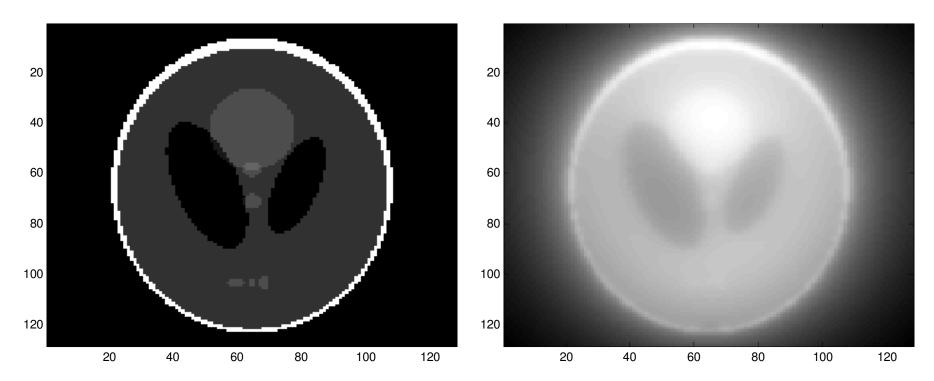
 $R^{\#}$ is the adjoint operator of R when the usual L^2 inner product is considered for both the data functions and the objects

$$\begin{split} \langle Rf,g\rangle_{\mathcal{Y}} &= \int_{0}^{2\pi} \left(\int_{-\infty}^{\infty} (Rf)(s,\theta)g(s,\theta)\,ds \right) \,d\phi \\ &= \int_{0}^{2\pi} \left\{ \int_{-\infty}^{\infty} \left(\int_{-\infty}^{\infty} f(s\theta + t\theta^{\perp})\,dt \right)g(s,\theta)\,ds \right) \,d\phi \\ &= \int_{\mathbb{R}^{2}} f(x) \left(\int_{0}^{2\pi} g(x \cdot \theta, \theta)\,d\phi \right) \,dx \\ &= \langle f, R^{\#}g \rangle_{\mathcal{X}} \end{split}$$

Backprojection operator

f

$$(R^{\#}Rf)(x) = 2f(x) \star \frac{1}{|x - x'|}$$



$$f(x) = \frac{1}{(2\pi)^2} \int \tilde{f}(\omega) e^{j\omega \cdot x} d\omega \qquad \omega = |\omega| \underbrace{(\cos\phi, \sin\phi)}_{\theta}$$
$$f(x) = \frac{1}{(2\pi)^2} \int_0^{2\pi} \left(\int_0^\infty |\omega| \tilde{f}(|\omega|\theta) e^{j|\omega|\theta \cdot x} d|\omega| \right) d\phi$$

periodic function of ϕ

$$\begin{split} f(x) &= \frac{1}{(2\pi)^2} \int_0^{2\pi} \left(\int_0^\infty |\omega| \tilde{f}(-|\omega|\theta) e^{-j|\omega|\theta \cdot x} \, d|\omega| \right) \, d\phi \qquad \omega' = -|\omega| \\ &= \frac{1}{(2\pi)^2} \int_0^{2\pi} \left(\int_{-\infty}^0 |\omega'| \tilde{f}(\omega'\theta) e^{j\omega'\theta \cdot x} \, d\omega' \right) \, d\phi \\ &= \frac{1}{2(2\pi)^2} \int_0^{2\pi} \left(\int_{-\infty}^\infty |\omega'| \tilde{f}(\omega'\theta) e^{j\omega'\theta \cdot x} \, d\omega' \right) \, d\phi \end{split}$$

$$f(x) = \frac{1}{2(2\pi)^2} \int_0^{2\pi} \left(\int_{-\infty}^\infty |\omega'| \tilde{f}(\omega'\theta) e^{j\omega'\theta \cdot x} \, d\omega' \right) \, d\phi$$

From the Fourier slice theorem $\tilde{f}(\omega\theta) = \tilde{g}(\omega,\theta)$

Defining the filtered backprojections as

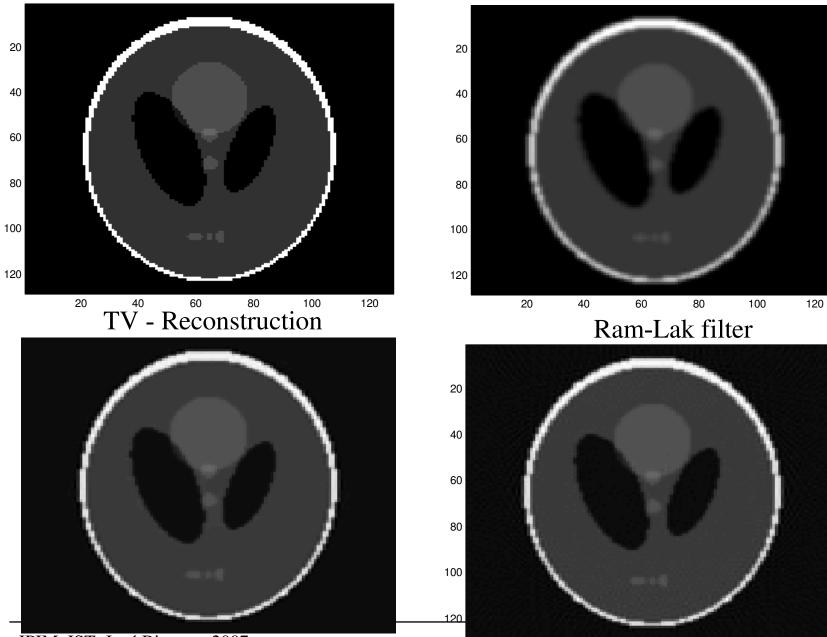
$$G(s,\theta) = \frac{1}{2\pi} \int_{-\infty}^{\infty} |\omega| \tilde{g}(\omega,\theta) e^{j\omega s} d\omega$$

Then

$$f(x) = \frac{1}{4\pi} R^{\#} G$$

- for each value of θ compute the Fourier transform $\hat{g}(\omega, \theta)$ of $g(s, \theta)$
- multiply $\hat{g}(\omega, \theta)$ by the ramp filter $|\omega|$
- compute the inverse Fourier transform of $|\omega|\hat{g}(\omega, \theta)$ to obtain the filtered projections $G(s, \theta)$
- apply the backprojection operator to $G(s, \theta)$.

Filtered backprojection



Hann filter

IPIM, IST, José Bioucas, 2007