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Compressed Sensing

• Compressible/k-sparse signals

• Stable measurements

• Restricted isometric property

• Signal reconstruction algorithms

• Geometric interpretation

• Constrained/Unconstrained optimization

• Fast algorithms
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K-sparse signals

Definition of k-sparse signals:

is k-sparse if  only  k coefficients     are nonzero
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Compressible signals

� There exists a basis  where the representation 

has just a few large coefficients and many small   

coefficients. 

� Compressible signals are well approximated by k-sparse

representations

� Many natural and man-made signals are compressible
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Example: wavelet representation
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Example: wavelet representation (cont.)
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Classical transform coding of compressive signals

1. Acquire the full n-sample signal

2. Compute the set of n coefficients

3. Retain the k << n largest coefficients and encode 

their locations and values

Shortcommings:

1. Acquire n samples and only k << n coefficients   are retained

2. The encoder computes n coefficients 

3. The locations, besides the values of the largest k  coefficients, have to be   

encoded
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Goal of compressive sampling

Measurement matrix

Goal of CS 

Design a measurement matrix     and a reconstruction algorithm for k-sparse 

and compressible signals  such that       is  of the order of 
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Stable measurement matrix

The measurement processes must not  erase the information present in the k 

non-zero entries of signal  

Restricted isometric property (RIP)

For any k-sparse vector     there holds   

for some  ε > 0   

Any              submatrix of       is well-conditioned   
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Another way to look at stable measurements

The measurement matrix      must be  incoherent with the sparsifying basis     

in the sense that the vectors       cannot sparsely represent the vectors       and 

vice versa. 

Stable (in the RIP sense) measurement matrices  

random Gaussian

random binary

randomly selected Fourier samples (extra log factors apply)
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Signal reconstruction algorithms

Minimum       -norm reconstruction  

NP- complete problem !!!!

(Convex approximation)  Replace       with    

Basis pursuit problem (                complexity)

Surprise: if the measurement matrix is Gaussian i.i.d, then

a k-sparse vector f  is exactly recovered by solving the     

optimization  problem with                                   observations                   
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Geometrical interpretation

k-sparse vectors
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Unconstrained optimization

Minimum       -norm reconstruction  

Equivalent

Basis denoising algorithm

Algorithms 
• l1_ls       [Kim et al, 2007]

• GPRS     [Figueiredo et al, 2007]

• TwIST [Bioucas-Dias & Figueiredo , 2007]
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Example: Sparse reconstruction
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Example: Sparse reconstruction
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Example: Total variation reconstruction

randomly selected Fourier samples (9%)
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