Compressed Sensing

e Compressible/k-sparse signals

e Stable measurements

 Restricted 1sometric property

* Signal reconstruction algorithms

e Geometric interpretation

e Constrained/Unconstrained optimization
e Fast algorithms
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K-sparse signals

feR™ — asignal/image

{¢; e R"}_1 — an orthogonal basis for R"
W= €RPY Wl =1

n
f=> tisi=Ws, 8 = ([, )

i=1

Definition of k-sparse signals:

f1is k-sparse if only k coefficients s; are nonzero

IP, José Bioucas Dias, IST, 2007



Compressible signals

] There exists a basis where the representation

n

'F p— v ’)/’ - Q.
J /. ¥i°o1
1=1
has just a few large coefficients and many small

coefficients.

 Compressible signals are well approximated by k-sparse
representations

(d Many natural and man-made signals are compressible
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Example: wavelet representation

256 x 256 image

10*

sorted wavelet coefficients
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Example: wavelet representation (cont.)

original image Jx approximation

|f — fill2 <0.08] fl]2
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Classical transform coding of compressive signals

1. Acquire the full n-sample signal

2. Compute the set of n coefficients S; = (s i)

3. Retain the k << n largest coefficients and encode
their locations and values

Shortcommings:

I. Acquire n samples and only k << n coefficients are retained

2. The encoder computes n coefficients

3. The locations, besides the values of the largest k coefficients, have to be
encoded
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Goal of compressive sampling

g=>®f ¢ R™ m<n 9; = (@i, f)

!

Measurement matrix

© = dW ¢ R™*" g=Os

Goal of CS

Design a measurement matrix ¢ and a reconstruction algorithm for k-sparse
and compressible signals such that & is of the order of ™
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Stable measurement matrix

The measurement processes must not erase the information present in the k
non-zero entries of signal f

Restricted isometric property (RIP)

For any k-sparse vector f there holds

IIIII

for some €>0

Any m X k submatrix of © is well-conditioned
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Another way to look at stable measurements

The measurement matrix ¢ must be incoherent with the sparsifying basis W/
in the sense that the vectors ¢; cannot sparsely represent the vectors 1) jand
vice versa.

Stable (in the RIP sense) measurement matrices

¢;; = random Gaussian
¢;; = random binary

O; 4 = randomly selected Fourier samples (extra log factors apply)
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Signal reconstruction algorithms
Minimum £(-norm reconstruction
s = arg mSin IE subject to ©Os =g
NP- complete problem !!!!
(Convex approximation) Replace {g with ¢4
§ =argmin |s]|1 subject to ©s =g

Basis pursuit problem (O (n3) complexity)

Surprise: if the measurement matrix is Gaussian i.i.d, then
a k-sparse vector f is exactly recovered by solving the /4
optimization problem with m = cklog(n/k) observations
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Geometrical interpretation

RN

!

k-sparse vectors Is|lo = ¢

te

O@s=g

Islli = ¢

te
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Unconstrained optimization

Minimum #q -norm reconstruction

min |ls!l+ subject to
S =114

n)

= ar

(@]

Equivalent

§=argmin||©s — gll5 + Mlsll1

Basis denoising algorithm
Algorithms

e]1 _Is [Kim et al, 2007]
e GPRS [Figueiredo et al, 2007]

« TWIST [Bioucas-Dias & Figueiredo , 2007]
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Example: Sparse reconstruction

Lo(f) = llg = PfII* + ol fll1 & isiid. Gaussian
P
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Example: Sparse reconstruction

Pseudo-inverse €1 re gularization
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Example: Total variation reconstruction

La(f) = llg = ®fI2+aTV(H) TV =T V(Alf+ 27D

¢ randomly selected Fourier samples (9%)

Ciriginal Back-projection (I«CT ¥

IP, José Bioucas Dias, IST, 2007

15



Criginal
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