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Abstract. Rheumatoid arthritis (RA) is a long-term autoimmune dis-
ease that severely affects physical function and quality of life. Patients
diagnosed with RA are usually treated with anti-tumor necrosis factor
(anti-TNF), which in certain cases do not contribute to reach remission.
Consequently, there is a need to develop models that can predict therapy
response, thus preventing disability, maintain life quality, and decrease
cost treatment. Transcriptomic data are emerging as valuable informa-
tion to predict RA pathogenesis and therapy outcome. The aim of this
study is to find gene signatures in RA patients that help to predict the
response to anti-TNF treatment. RNA-sequencing of whole blood sam-
ples dataset from RA patients at baseline and following 3 months of
therapy were used. A methodology based on sparse logistic regression
was employed to obtain predictive models which allowed to find 20 genes
consensually associated with therapy response, some known to be re-
lated with RA. Gene expression levels at 3 months of therapy showed no
added value in the prediction of response to therapy when compared with
the baseline. The analysis using Bayesian network learning unveiled sig-
nificant protein-protein interactions in both good and non-responders,
further confirmed using the STRING database. Structured sparse re-
gression coupled with Bayesian learning can support the identification
of disease biomarkers and generate hypotheses to be further analysed by
clinicians.

Keywords: Regularized optimization · Bayesian Networks · Protein-
Protein Interaction Networks.

1 Introduction

As high-dimensional data becomes increasingly available in all the fields of re-
search, effective analytic methods are fundamental to extract the maximum sci-
entific understanding from the data. For instance, in genetic studies, in which
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the number of variables (genes) is particularly large compared with the number
of samples (subjects), methods to extract knowledge from the data are essential.

Rheumatoid arthritis (RA) is a common systemic autoimmune disease that
severely damages physical function and quality of life. This chronic disease affects
about 1% of adult citizens [1]. RA cause remains unknown, although genetic
factors are responsible for a part of disease predisposition.

Nowadays, RA therapy is processed by the administration of disease-modifying
anti-rheumatic drugs (DMARDs), that have shown to slow down the disease pro-
gression. However, DMARDs may have no effect on patients, and therapy with
anti-tumor necrosis factor (TNF) is then recommended [2, 3]. If the therapy with
TNF inhibitors fails in a particular patient, an alternative agent is again cho-
sen. It is usually very difficult to find an agent, or a combination of agents,
that induce remission. So, RA patients may experience therapy with successive
changes in the administration of these agents until disease remission, which can
significantly worsen patient disability and can increase the cost of treatment.

The prediction of the patient’s response to anti-TNF therapy is then of
paramount importance, and it has been the object of study in several studies
that take into account demographic, clinical, and genetic data [4, 7]. Interest-
ingly, the studied clinical baseline biomarkers do not seem to add value in the
prediction of treatment response [5]. Notwithstanding, gene expression profiling
may provide insight into disease pathogenesis and already showed significant
changes before and after anti-TNF treatment [6], which illustrates the poten-
tial of using molecular information for prognosis. At the baseline of anti-TNF
treatment, innate/adaptive immune cell-type-specific genes revealed associations
with the response to treatment within 3 months of therapy [7]. Recent studies
have studied and demonstrated the role of molecular data to conduct robust
predictions in different human diseases [8, 9]. Therefore, additional evaluation of
the gene expression can be helpful to define biomarkers of outcome and response
to therapy in RA.

The aim of this study is to find gene signatures in patients with RA before
and after the beginning of the therapy, which may help to predict the response
to anti-TNF treatment. We propose a predictive model, based on dimensionality
reduction techniques and on a consensus approach, which uncover the most
relevant genes to predict the response to therapy. We also use a Bayesian network
methodology to discover relevant protein-protein interactions.

The paper is organised as follows. In Section 2 we present the RA data
under study and the sparse logistic regression and Bayesian networks. Next, in
Section 3 we present the experimental results and discuss them. Finally, we draw
some conclusions and discuss future works.

2 Methods

2.1 Rheumatologic transcriptomic data

The dataset under study is constituted by RNA-sequencing of whole blood
samples from biologic näıve RA patients. All the files are publicly available
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from the CORRONA CERTAIN registry [10] and at the NCBI-GEO database
(GSE129705); these data were previously analysed by Farutin et al. [7]. These
patients had no previous biologic agent treatment, and they are initiating ther-
apy with anti-TNF. The transcriptomic data are composed of a set of 25,370
variables (gene expressions) measured from 63 patients at baseline (BL), and
from 65 patients at 3 months (M3) after the beginning of anti-TNF treatment.

According to EULAR criteria for clinical response to therapy at 3 months [11],
each patient is classified as good responder or non-responder (GR and NR, re-
spectively). Under this classification, 36 patients were categorized as GR and
the remaining 27 as NR to therapy with anti-TNF.

2.2 Sparse logistic regression

Binary logistic regression defines the relationship between n independent ob-
servations {Xi}ni=1 and a binary outcome {Yi}ni=1, where each observation is
measured over p variables Xi = (Xi1, . . . , Xip)

T .
Specifically in this work, n = 63, Yi = 1 corresponds to a GR patient and

Yi = 0 to a NR patient. Then, the logistic regression is given by

P (Yi = 1|Xi) =
exp(XT

i β)

1 + exp(XT
i β)

, (1)

where β represents the regression coefficients related with the p variables and
P (Yi = 1|Xi) is the probability of observation i being a good responder (GR).

Logistic regression is a classical method that has shown to be competitive,
with equally performing results, compared with alternative machine learning
techniques in clinical and biological research [12–14].

To deal with datasets with a number of variables much higher than the
number of observations, (p � n), an initial dimensionality reduction step is
fundamental. Getting an adequate generalized model can be extremely difficult
in a high dimensional dataset due to the number of variables to be considered
in the final model and the few observations to support the model’s hypothe-
sis. To overcome this problem, additional constraints in the cost function can
be applied. Regularization methods like Least Absolute Shrinkage and Selection
Operator (Lasso), Ridge regression, elastic net, and other sparsity methods, pro-
vides a sparse estimate of the unknown regression coefficients and have become
a classical approach to deal with the possible non-identifiability of the regression
models.

For example, Lasso regression [15] enables shrinkage and variable selection
in the solutions by penalizing the sum of the absolute values of the coefficients
(L1-norm), defined as:

Ψ(β) =

p∑
i=1

|βi|. (2)

Ridge regression [16] considers the L2-norm (sum of the squared error of the
coefficients) penalty instead, having:
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Ψ(β) =

p∑
i=1

|β2
i |. (3)

The elastic net regularization combines L1 and L2 norms with the objective
of limit solution space [17]. So, the elastic net is a combination of Lasso and
Ridge regression:

λΨ(β) = λ(α||β||1 + (1− α)||β||22), (4)

where α is a controller between L1 and L2 penalties, given a fixed λ. Penalization
control of the weights is given by λ.

If α = 0, Ridge regression is applied. On the other hand, if α = 1, we are
dealing with Lasso regression. Elastic net allows the balance of sparsity with
the correlation between variables, which gives to this method high flexibility for
different types of datasets.

Maximum likelihood are used to estimate β coefficients. In the case of elastic
net regression, the penalized log-likelihood function, with L1 and L2 weights, is
the following:

l(β) =

n∑
i=1

{
yi logP (Yi = 1|Xi) + (1− yi) log[1− P (Yi = 1|Xi)]

}
+ λΨ(β)

=

n∑
i=1

(
yiX

T
i β − log(1 + exp(XT

i β)
)

+ λΨ(β), (5)

where the binary variable yi indicates if the ith patient is a good responder (GR)
(yi = 1) or a non-responder (NR) (yi = 0).

To fit the best predictive model to a dataset, cross-validation (CV) is an
important step. It allows estimating parameters for the envisaged model to im-
prove predictions. When regularization is being performed, the addition of a
variable in the model may increase model performance. However, its inclusion
may also have a high cost, and in that case, the variable should be disregarded
of the final model. CV allows tuning the model parameter to perform the best
feature selection and prevent overfitting. The penalty λ parameter is estimated
using this CV strategy, i.e., we use the value that achieves the minimum mean
cross-validation error.

Leave-one-out cross-validation (LOOCV) is another technique generally used
that we apply in the present study. It is based on estimating a model by con-
sidering all observations except one, that is left out from the training set. That
observation is then used to validate the predictive power of the estimated model.
This procedure is run the same number of times as the number of the existing
observations. In this case study, the objective is to predict whether a RA pa-
tient responds or not to the treatment with anti-TNF, i.e., a binary outcome. To
evaluate the estimated model, the classifier’s specificity and sensitivity trade-off
in the validation set can be visualized through Receiver operating characteristic
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(ROC) curves. The area under the ROC curve (AUC) is then calculated as a
quantitative measure of the classifier performance.

2.3 Bayesian networks

Bayesian networks (BNs) are a rich framework to model domains with complex
connections between thousands or millions of random variables. BNs are graph-
ical models that represent a family of probability distributions defined in terms
of a directed graph. The nodes of the graph contain the random variables, and
the product of local connections defines a unique joint probability distribution.
These local connections represent dependencies between a random variable and
its parents in the graph.

Rigorously, let Z = (Z1, . . . , Zp) be a p-dimensional random vector. A Bayesian
network (BN) is a pair (G, θ) where G = (V,E) is a directed acyclic graph
(DAG), with nodes in V , coinciding with the random variables in Z, and edges
in E. The parameters describe how each variable relates probabilistically with its
parents. Using the chain rule, we can then obtain a joint probability distribution,
in a factored way, according to the DAG structure, defined as:

P (Z1, . . . , Zp) =

p∏
j=1

P (Zj |pa(Zj), θj), (6)

where pa(Zj) = {Zi : Zi → Zj ∈ E} is the parent set of Zj and θj encodes the
parameters that define the conditional probability distribution (CPD) for Zj . In
the case of continuos data, Gaussian CPDs are considered.

When learning a BN, the challenge is in structure learning. With the structure
fixed, parameters are quite easy to learn. Structure learning is accomplished
through score-based learning, where a score is used to understand the network
that best fits the data. A possible scoring criterion is the maximum likelihood.
When overfitting occurs, penalisation factors are used to avoid it.

Aragam et al. (2017) developed an R package, called sparsebn [18], especially
devoted to high dimensional data. For that, a sparse BN is outputted using a
score-based approach that relies on regularised maximum likelihood estimation.
The scoring criterion is given by:

LL(B;X) + ρλ(B), (7)

where LL denotes the negative log-likelihood, B the BN, and ρλ is some regu-
lariser. For continuous data, a Gaussian likelihood with L1 or minimax concave
penalty is proposed.

Considering gene expression, from rheumatologic transcriptomic data, as ob-
servations of random variables, a sparse BN is a rich model to describe the
underlying data. The nodes represent the genes, and connections between them
correspond to gene interactions/edges. The interactions found are those that
best explain the data.
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3 Results and Discussion

To unravel the most relevant genes in RA patients for the response to anti-TNF
therapy, two datasets of gene expression levels, from the CORRONA CERTAIN
registry, were used: (i) at baseline (BL), and (ii) three months after starting the
treatment with anti-TNF (M3).

Both BL and M3 datasets contain a set of 25370 variables/genes. The data
were preprocessed as follows. In both datasets, the variables with zero standard
deviation were firstly excluded. This resulted in a reduction to 21911 and to
22142 variables, respectively, for BL and M3 datasets. Then, the variables were
log-transformed and normalised to unit variance. A vector with binary responses,
with ‘1’ for GR patients and ‘0’ for NR patients, were further used in logistic
regression (a vector for BL dataset and another for M3 dataset).

To ensure full reproducibility of our results, all the R code and data are
available at https://github.com/sysbiomed/RA-CORRONA.

3.1 Identification of response biomarkers

Dimensionality reduction was achieved by applying sparse logistic regression
using the glmnet R package [19]. For model validation, 70% of the dataset were
randomly split for training the model, and the remaining 30% for the test. This
procedure was repeated 100 times. The model is estimated in the training set
with logistic regression, defining the λ and α parameter. CV is used to choose the
λ parameter that better fit the model. The α parameters used varied between
0 and 1 with intervals of 0.1. Then, the fitted model was used to predict the
response of the treatment of the test set. For each model, the ROC curve was
accessed, and the AUC calculated. The ROC curve is obtained by using different
values for the classification probability threshold. The median and interquartile
range of the models estimated using each α in the BL data and over the 100
runs are presented in Table 1.

Table 1: Area Under the Curve (AUC) results from the sparse logistic regression at
baseline data for different α parameters. For each α, the statistics of the AUC over
all 100 runs are reported, namely the median values, the interquartile range (IQR),
the maximum (Max) and the minimum (Min). The best median AUCs results are
highlighted in bold.

α
AUC 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.00

Median 0.62 0.64 0.60 0.60 0.63 0.59 0.58 0.57 0.58 0.58 0.52
IQR 0.12 0.13 0.13 0.16 0.11 0.14 0.12 0.13 0.14 0.12 0.09
Max 0.83 0.82 0.89 0.90 0.85 0.78 0.84 0.86 0.81 0.86 0.76
Min 0.37 0.45 0.42 0.43 0.44 0.42 0.39 0.38 0.41 0.37 0.36

The AUC values obtained with sparse logistic regression at month 3 (M3)
were not significantly different from those at baseline (BL), presented in Table 1
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(t-test, p-values ranging from 0.07 to 0.49). Therefore, only the dataset from BL
was further used.

In Farutin et al. [7], the top 100 genes over-expressed with the most signif-
icant contributions to the negative correlation with the effect of treatment are
presented. We applied the same methodology as before considering those specific
genes, to achieve a predictive model. In this case, only α = 0 was used for the
logistic regression, to ensure that all the genes emerge in the model. The me-
dian and interquartile range (IQR) of the AUCs was 0.57 and 0.09, respectively.
These results show that although these specified genes are over-expressed, they
do not have better predictive power than those identified with a sparse logistic
regression using all the available genes and α ∈ [0, 0.9] (Table 1).

The better predictive models were achieved with an α of 0.1 and 0.4 applied
to the BL dataset, with median AUC of 0.64 and 0.63 for α = 0.1 and α = 0.4,
respectively. These results are satisfactory, taking into account the few obser-
vations (63) in the dataset. Hereupon, these were the parameters for logistic
regression further used.

To detect genes strongly associated with the response, LOOCV was applied.
The intersection of genes appearing in all the predictive models calculated with
LOOCV correspond to those that may have a better predictive response at BL.
Amongst the 21911 genes in the dataset, 20 were repeatedly selected for model
prediction, both for α=0.1 and α=0.4. The 20 identified genes are the following:

– ALOX12B, CAPNS2, CTSG, EPHX4, EVPLL, FAM133CP, FOXD4L3,
HIST1H3J, IGF2BP1, LOC339975, LRGUK, MPO, NUAK1, ODF3L2,
PRKG1, PRSS30P, RAD21L1, SLC6A19, SYT1, and TGFB2.

Even though none of these discovered genes were present in the top 100
genes over-expressed presented by Farutin et al. [7], some are already known to
be related to the RA disease.

CTSG was previously found to participate in the pathogenesis of some au-
toimmune diseases, as, for instance, RA [20]. When compared with healthy con-
trols, CTSG activity and concentration are augmented in the synovial fluids of
RA patients. Therefore, identification of CTSG in our model may be associated
with the response to anti-TNF therapy in RA patients.

Karouzakis et al. [21] found that EPHX4 gene was one of the top-ranked
genes differentially expressed in human lymph node stromal cells (LNSCs) during
the earliest phases of RA. LNSCs are decisive in shaping the immune response in
lymphoid tissue (where is initiated the adaptive immunity). This suggests that
EPHX4 could be related to the immune response to treatment.

The MPO gene encodes myeloperoxidase. Myeloperoxidase serum levels are
encountered in inflammatory diseases, like RA. Fernandes et al. [22] observed
significantly higher MPO plasma levels in RA patients. Yet, no correlation be-
tween disease activity measured by EULAR criteria and MPO expression was
found. Contrarily, our analysis led to the identification of this gene as helpful for
the prediction of the response to therapy.
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Also, RAD21L1 is part of the 21 upregulated by tumor necrosis factor-like
ligand 1A (TL1A) [23]. TL1A is a tumor necrosis factor that influences positively
the pathogenesis of autoimmune diseases, including RA.

All the hypotheses above should be confirmed in further studies with the
contribution of a rheumatologist. The relevance of the remaining genes in RA
was not explored in previous studies. So, we propose a subsequent investigation
of the 20 genes achieved in our analysis with the response to therapy with anti-
TNF agents. Moreover, the presented methods can be further added to a future
benchmarking study that comprehensively assesses the performance of different
classifiers.

3.2 Identification of protein-protein interactions

The disclosure of gene networks regulating the response to anti-TNF treat-
ment was performed through Bayesian network (BN) learning. The 239 variables
(genes), resulting from the sparse logistic regression with α = 0.1, were used.
This parameter α was selected, taking into account the trade-off between the
AUC medians (Table 1) and the identification of a reasonable number of genes
to be further analysed. The baseline dataset with the 239 variables was split
into two independent sets: responders at BL (R-BL; 36 observations) and non-
responders at BL (NR-BL; 27 observations), each one described by two distinct
Bayesian networks.

This methodology was applied using sparsebn R package [18]. The method
estimate.dag was used to learn the two distinct Bayesian networks. Therein, we
used default parameter settings; the edge.threshold parameter was specified
to force the number of edges in the solution to be less or equal than the double
of the nodes (239×2). The output is a set of different networks, each one with a
distinct number of edges. From this set, the solution giving the number of edges
equal to the number of nodes was chosen, both for R-BL and NR-BL datasets.
The same was done in case the number of edges being twice the number of nodes.
Figure 2 illustrates the obtained networks.

To verify if the obtained edges (pairwise gene connections) were previously
identified, the STRING information was used. STRING is a database of known
and predicted protein-protein interactions [24]. In our study, only protein-protein
interactions with high combined score (combined score > 0.7) in the STRING
database were considered. The highly connected genes from STRING were then
compared with the edges given by BNs.

From the 239 edges, 4 in R-BL and 2 in NR-BL are reported in STRING.
There was no improvement in the number of common edges found in STRING
when increasing the number of edges from 239 to 478 edges.

The obtained Venn diagrams illustrate the overlap between the identified
protein-protein interactions in R-BL, NR-BL, and STRING (Figure 4), and are
as follows:

– R-BL ∩ STRING: DEFA4—CTSG ; AZU1—MPO ; CTSG—SERPINB10 ;
DEFA4—AZU1
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R-BL, 239 edges NR-BL, 239 edges

R-BL, 478 edges NR-BL, 478 edges

Fig. 2: Bayesian networks learnt from R-BL data (green nodes) and NR-BL data (red
nodes). (a) BN for R-BL with 239 edges. (b) BN for NR-BL with 239 edges. (c) BN
for R-BL with 478 edges. (d) BN for NR-BL with 478 edges.

– NR-BL ∩ STRING: CTSG—AZU1 ; AZU1—MPO

One overlap interaction between responders and non-responders was found,
which suggests that protein-protein interaction (AZU1—MPO) may be relevant
for both responders and non-responders. According to STRING, this interaction
with a total combined score of 0.985, is associated with: 1) the co-expression
of these two genes, 2) Database knowledge from the Reactome (in particular
the Neutrophil degranulation pathway, in the Innate Immune System – R-HSA-
6798751), and 3) the Textmining category. The remaining interactions stand out
independently in the responders and non-responders. These known highly con-
nected genes may be a strong indicator of how RA patients respond or not to
anti-TNF therapy before the treatment initiation and therefore represent inter-
esting biomarkers to be further explored.
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Fig. 4: Venn diagrams with protein-protein interactions in R-BL, NR-BL, and STRING.
On the left, the overlap of STRING interactions with R-BL and NR-BL networks with
239 edges. On the right, the overlap of STRING interactions with R-BL and NR-BL
networks with 478 edges.

4 Conclusions

Through transcriptomic data, we presented a satisfactory predictive model based
on sparse logistic regression that may help to predict the response to anti-TNF
therapy in RA patients prior to treatment initiation. A predictive model at BL
showed an identical prediction performance compared with that at M3. Also,
our methodology was able to unveil genes consistently associated with therapy
response, which may be valuable in the expression profiling of RA patients.
Some of these genes are already known to be related to RA disease. Moreover,
the application of BN learning uncovered highly connected genes in responders
and non-responders. The next challenge is to study promising gene signatures
individually to validate biomarkers to be used in clinical practice.

References

1. Spector, T. D.: Rheumatoid arthritis. Rheum Dis Clin North Am. 16(3), 513–37
(1990)

2. Radner, H., Aletaha, D.: Anti-TNF in rheumatoid arthritis: an overview. Wien Med
Wochenschr., 165(1–2), 3–9 (2015) https://doi.org/10.1007/s10354-015-0344-y
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