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Abstract. Time Series (TS) analysis is a central research topic in areas
such as finance, bioinformatics, and weather forecasting, where the goal
is to extract knowledge through data mining techniques. Symbolic ag-
gregate approximation (SAX) is a state-of-the-art method that performs
discretization and dimensionality reduction for univariate TS, which are
key steps for TS representation and analysis. In this work, we propose
MSAX, an extension of this algorithm to multivariate TS that takes into
account the covariance structure of the data. The method is tested in
several datasets, including the Pen Digits, Character Trajectories, and
twelve benchmark files. Depending on the experiment, MSAX exhibits
comparable performance with state-of-the-art methods in terms of clas-
sification accuracy. Although not superior to 1-nearest neighbor (1-NN)
and dynamic time warping (DTW), it has interesting characteristics for
some classes, and thus enriches the set of methods to analyze multivariate
TS.

Keywords: symbolic aggregate approximation · time series · classifica-
tion · multivariate analysis.

1 Introduction

The vast quantity of available data nowadays is posing new challenges for knowl-
edge discovery, namely, to extract meaningful information such as significant
patterns, statistics, and regularities. Temporal data, and in particular time se-
ries (TS), are now pervasive in many fields, which fully justifies the development
of new methods for their analysis. A discrete TS is a series of n real-valued
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observations, each one being measured at a discrete time t ∈ {1, . . . , T}, made
sequentially and regularly trough T instances of time. In this case, the i-th TS
is given by {xi[t]}t∈{1,...,T}, where xi[t] = (xi1[t], . . . , xin[t]). When n = 1, the TS
is said to be univariate; otherwise, when n > 1, it is multivariate.

Data representation takes a big focus on TS analyses. An abundant wealth
of data structures and algorithms for streaming discrete data were developed in
recent years, especially by the text processing and bioinformatics communities.
To make use of these methods, real-valued TS need symbolic discretizations.
Besides this, representation methods also address the TS dimensionality prob-
lem arising from the fact that almost all TS datasets are intrinsically of high
dimensionality.

In contrast to univariate TS, Multivariate TS (MTS) are characterized not
only by serial correlations (auto-correlation) but also by relationships between
the attributes measured at the same time point (intra-correlation). Due to con-
sidering the attributes individually, their intra-correlations might be poorly cap-
tured, as shown in [4, 5]. In [6], the necessity of different TS representations for
MTS classification was discussed. It was and pointed out as desirable the de-
velopment of methods that consider all attributes simultaneously, taking into
account the relationships between them.

This work proposes a multivariate extension of the well-known TS represen-
tation of Symbolic Aggregate Approximation (SAX) [1]. In the SAX method,
the TS is normalized to have a temporal mean of zero and a standard deviation
of one. A TS normalized in this manner has a Gaussian distribution [2].

If desired, Piecewise Aggregate Approximation (PAA) [3] is then applied, re-
ducing the TS length. This technique divides the TS into w (method parameter)
segments of equal length, where each segment is replaced with its average value
that is further grouped in a vector representing the TS.

Assuming that the normalized TS has a Gaussian distribution [2], it is pos-
sible to divide it into equal size areas under the Gaussian curve trough break-
points, producing equiprobable symbols. These breakpoints may be determined
by a statistical table inspection. After, the discretizing process is done by as-
sociating the TS points to a (method parameter that represents the size of the
symbolic alphabet) equal area intervals beneath the Gaussian curve associated
to the TS to be discretized. An illustrative example of the discretizing process
is shown in Fig. 1.

Having a discretized TS, a distance measure between two TS Q = q1q2 . . . qT
and C = c1c2 . . . cT , in the new representation space can be defined as:

MINDIST (Q,C) =

√
T

w

√√√√ w∑
i=1

dist (q[i], c[i])
2
. (1)

The function dist() that returns the distance between two symbols is im-
plemented using a lookup table in which the value for entry (r, c) is obtained
through the following function, where β represents the breakpoints values:
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Fig. 1: The TS (in ligth blue) is discretized by first applying the PAA technique
and then using predetermined breakpoints to map the PAA coefficients into the
symbols. In the example above, with T = 128, w = 8 and a = 3, the TS is
mapped to the word BAABBCBC.

cellr,c =

{
0, if |r − c| ≤ 1

βmax(r,c)−1 − βmin(r,c), otherwise.
(2)

SAX is the only symbolic TS representation, until now, for which the distance
measure in the symbolic space lower bounds the distance in the original TS space.
This fact is assumed to be one of the reasons for its excellent performance [1,2].
Nevertheless, SAX only works for univariate TS, paving the way for extending
its promising results for MTS. In the literature, SAX has been applied to MTS
by dealing with each variable independently, disregarding intra-correlations in
the discretization process [7, 8]. We propose to explore these intra-correlations
to understand the benefits of using these dependencies.

2 Materials and Methods

The method proposed in this work, MSAX, expands the SAX algorithm by first
performing a multivariate normalization of the MTS. The rationale for this first
step is to account for the mean and covariance structure of the data X[t], i.e.,
E[X[t]] = µ and V ar[X[t]] = Σn×n.

The normalized TS valuesZ[t] are given byZ[t] = Σ−1/2(X[t]−µ), such that
the obtained distribution has zero mean and uncorrelated variables. Assuming
a Gaussian distribution, we can identify the cut points and intervals that define



4 M. Anacleto et al.

equal volumes, a crucial step to identify the areas associated with symbols used
in the discretization.

2.1 MSAX discretization

After the normalization step, and like in the original method, the PAA procedure
is applied to each variable individually, to reduce its dimensionality. PAA can be
performed individually as the resulting variables are now independent of each
other, and so, intra-dependencies do not interfere with temporal ones. First,
before the proper discretization of the TS values, the volumes associated with
each symbol beneath the multivariate Gaussian curve are defined. With this
into consideration, the following reasoning is used to define the volumes and
corresponding cut-points.

Due to the normalization step, the new variables of the MTS are now un-
correlated, i.e., the covariance matrix of the TS is the identity matrix. Since the
probability density function of the MTS is equal to the product of the probabil-
ity density function of each variable when no correlation between the variables
exist, a Gaussian distribution of N (0, 1) is associated to each series variable of
the TS, in the same way as in the original method. Then, each Gaussian curve
associated to a variable will be split using breakpoints such that the probabil-
ity of each space split beneath the Gaussian curve is the same for all divisions.
This procedure is done in the same way as the original method following the a
parameter (that indicates the alphabet size per variable).

After the split regions under the multivariate Gaussian curve are defined
trough the breakpoints intersection for each variable, this results in the variable
space to be split in a grid way with each partition of the grid having the same vol-
ume under the multivariate Gaussian curve. Finally, the points of the normalized
and PAA processed MTS are mapped to the multivariate split space beneath
the Gaussian curve associated with multivariate TS. As a result of the entire
process, a univariate discrete TS is obtained from the multivariate numerical
TS.

An example of the full discretization process is given with bivariate TS nor-
malized points X where x1 and x2 represent each dimension. Fig. 2 illustrates
the Gaussian curve associate to this distribution. If three symbols per variable
are used in the discretization process, a = 3, the discretization shown in Fig. 2
(right) is obtained, with a total of nine symbols. The final symbol value is ob-
tained by the concatenation of the symbols associated with each variable (these
symbols will be designated by variable symbols to distinguish from the final
symbols). As an example, consider the purple partition in Fig. 2; its final sym-
bol value is aB, directly obtained by concatenating x1 = a and x2 = B (purple
partition).

2.2 Dissimilarity definition

Having introduced this new representation of MTS, a new dissimilarity measure
should be defined. Two symbolic univariate TS Q and C of the same length T ,
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Fig. 2: On the left, plot of the probability density function or Gaussian curve
with distribution N (0, I), for two variables x1 and x2. On the right, the areas
associated to each symbol on the x1, x2 plane, for a = 3. Each area with a
different color is associated with a symbol. For example, a point situated on the
area in orange, the x1 variable value is associated with b, and the x2 variable
value is associated with A. To this x1, x2 example point will be associated final
symbol of bA.

obtained from an MTS with n attributes, are considered. The distance measure
between two TS using the MSAX representation is given by the sum of the
distances between each two-time points, for all the indexes of the TS length,
where the distance between two ultimate symbols of the MSAX is obtained by
the sum of the difference between the symbol of the variable associated to each
variable in this representation:

MINDIST MSAX (Q,C) =

√
T

w

√√√√ w∑
i=0

(
n∑

i=0

dist (q[i], c[i])
2

)
. (3)

The distance between two symbols is calculated based on the univariate rep-
resentations, and by using the corresponding distance defined originally, i.e.,
obtained through the same table used in the original SAX distance. This re-
sult stems from the fact that the breakpoints are the same due to the Gaussian
properties.

3 Results

In this section, the MSAX algorithm is evaluated for classification tasks. Tests
focused on the comparison between MSAX and the original SAX method ap-
plied to each MTS attribute separately, henceforward referred to as SAX INDP.
The behavior of both algorithms is asserted through the use of the first nearest
neighbor (1-NN) classifier, varying only the input MTS representation and the
respective distance measure.
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Benchmark datasets for TS classification tasks included: (i) the PenDigits
dataset, consisting in multiple labeled samples of pen trajectories; (ii) the Char-
acterTrajectories dataset, representing instead trajectories of characters from
the English alphabet; and (iii) 12 datasets with different characteristics from a
wide range of areas [10,11].

Firstly, we addressed the comparison between MSAX and SAX INDP in the
PenDigits and CharacterTrajectories datasets varying both the alphabet size and
the TS length reduction ratio. Results are depicted in Fig. 3. For both datasets,
the accuracy of the SAX INDP is superior to the MSAX for all parameters con-
figurations on both plots. While fixing the w parameter, both methods on both
datasets show a similar behavior by increasing the accuracy as long as the alpha-
bet size increases. When the alphabet size is fixed, and the TS length reduction
varies, the behavior differs. In the PenDigits dataset, the accuracy increases as
long as the TS length reduction diminishes, whereas, in the CharacterTrajec-
tories dataset, the accuracy remains the same as long the TS length reduction
diminishes.

Fig. 3: Comparison between MSAX and SAX INDP with 1-NN in PenDigits and
CharacterTrajectories datasets. On the first plot, the accuracy of the methods
is plotted against the parameter a; for these experiments, a fixed value of w was
used. On the second, the accuracy is plotted against the TS length reduction
ratio (obtained trough the parameter w); for these experiments, a fixed value of
a was used.

Additional results comparing both methods were performed by testing 14
datasets with a combination of configurations from an alphabet size varying from
5 to 20 and a TS length reduction ratio from 1/4 to 1. Besides the SAX-based
methods, two state-of-the-art classifiers were used: the 1-NN with Euclidean
distance and 1-NN with Dynamic Time Warping (DTW). Fig. 4 presents the
result corresponding to the configuration of parameters that achieved the best
accuracy.
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Fig. 4: Accuracy of the four classifiers: 1-NN with SAX INDP, 1-NN with MSAX,
1-NN with Euclidean distance, and 1-NN with DTW, for 14 benchmarks datasets
in TS classification tasks.

On the 14 datasets the accuracy of the SAX INDP is superior in 12 we com-
pared to the MSAX. In this 12 datasets, the difference is very significant in 6 of
them, while in the other 6 the accuracy of both methods is very close. Regarding
the comparison of the SAX-based methods with the other two state-of-the-art
classifiers, SAX INDP proves to be very competitive with the Euclidean dis-
tance, presenting a small superiority; the results are very similar in 10 datasets,
whereas in 4 datasets the SAX INDP achieves a significantly better result. Con-
cerning the DTW distance, it surpasses, in general, the other algorithms, being
the most accurate on most of the datasets. Nonetheless, SAX INDP achieves
very similar and competitive results on a significant number of datasets.

4 Conclusion

In this work, an extension of SAX for multivariate TS, named MSAX, was pro-
posed. Its behavior was assessed in classifications tasks, comparing it with the
SAX INDP and two other state-of-the-art classifiers: 1-NN with the Euclidean
distance and 1-NN with DTW. We concluded that the proposed method is over-
all not competitive with the SAX INPD, the original SAX algorithm applied
independently to each attribute in the MTS. Nonetheless, the obtained results
have utility as benchmark values for SAX-based methods in multivariate classi-
fications tasks. It is also noteworthy that for some datasets and specific cases,



8 M. Anacleto et al.

MSAX surpasses the other techniques. As a future direction, MSAX could be
evaluated more deeply in different data mining tasks, such as clustering or fore-
casting, in which it could be useful and achieve comparable performance with
state-of-the-art methods. Possible future applications in bioinformatics include
the analysis of patients’ data, such as transcriptomics and also time series from
electronic health records.
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