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Abstract. Dynamic Bayesian networks (DBNs) offer an approach that
allows for causal and temporal dependencies between random variables
repeatedly measured over time. For this reason, they have been used in
several domains such as medical prognostic predictions, meteorology and
econometrics. Learning the intra-slice dependencies is, however, most of
the times neglected. This is due to the inherent difficulty in dealing with
cyclic dependencies. We propose an algorithm for learning optimal DBNs
consistent with the tree-augmented network (tDBN). This algorithm uses
the topological order induced by the tDBN to increase its search space
exponentially while keeping the time complexity polynomial.

1 Introduction

Bayesian networks (BN) are a powerful probabilistic representation [20] that pro-
vide interpretable models of the domain. This is achieved through the definition
of a network – a directed acyclic graph (DAG) – that unravels direct condi-
tional dependencies between random variables. This network provides nothing
more than a factorization of the joint probability distribution of those variables.
Learning a BN from data consists in learning this structure. Having so, it is easy
to learn its parameters and make inferences over this probabilistic framework.

Dynamic Bayesian networks (DBN), on the other hand, model stochastic
processes [19]. In this case, variables are measured not only once, as for the
case of BNs, but repeatedly over time. The networks to be learned consist in
a prior network and several transition networks. The prior network is a BN
eliciting the dependencies between the random variables at their initial state.
The transition network unravels the dynamic dependencies of the variables over
time: from past states to current states (inter-slice dependencies); and between
current states (intra-slice dependencies).

The inter-slice dependencies are easy to learn as they flow forward in time and
do not create cycles [12]. On the other hand, learning the intra-slice dependencies
suffers from the hardness of finding an acyclic graph [9,7,11]. A polynomial-time
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algorithm for learning optimal DBNs was proposed using the Mutual Information
Tests (MIT) [22]. However, learning the inter and intra-slice networks all together
is not considered. This step has been done for tree-like networks, resulting in the
so-called tree-augmented DBN (tDBN) [17]. We propose to further extend this
algorithm by increasing exponentially its search space to networks consistent
with the topological order induced by an optimal tDBN. At the same time, we
are able to maintain its time complexity polynomial in the size of the input.

The emerging availability of electronic medical records (EMR) is triggering
this line of research, bringing large, feature-rich, heterogeneous, noisy, and in-
complete time series. The proposed algorithm is currently being used to predict
evolution of amyotrophic lateral sclerosis and treatment outcome of arthritis
rheumatoid from EMR.

We start by reviewing the basic concepts of both BNs and DBNs. Then, we
present the proposed learning algorithm and the experimental results. The paper
concludes with a brief discussion and directions for future work.

2 Bayesian networks

Let X denote a discrete random variable that takes values over a finite set X
and X = (X1, . . . , Xn) represent an n-dimensional random vector, where each
Xi takes values in Xi = {xi1, . . . , xiri}. Furthermore, let P (x) denotes the
probability that X takes the value x. A Bayesian network (BN) encodes the
joint probability distribution of a set of n random variables {X1, . . . , Xn} [20]
and it is given by a triple B = (X, G,Θ), where:

– X = (X1, . . . , Xn), each random variable Xi taking values in {xi1, . . . , xiri},
where xik denotes the k-th value Xi can take.

– G = (X, E) is a directed acyclic graph (DAG) with nodes in X and edges E
representing direct dependencies between the nodes.

– The set Θ encodes the parameters of the network G. Each random variable
Xi has an associated conditional probability distribution (CPD) a.k.a. local
parameters: Θijk = PB(Xi = xik|ΠXi = wij), where ΠXi denotes the set of
parents of Xi in the network G and wij is the j-th parent configuration of
ΠXi , which ranges over {wi1, . . . , wiqi}, with qi =

∏
Xj∈ΠXi

rj .

We note that the random vector X coincide exactly with the set of nodes in G,
and we abuse notation considering that set to be denoted by X.

A BN B induces a unique joint probability distribution over X given by:

PB(X1, . . . , Xn) =

n∏
i=1

PB(Xi|ΠXi). (1)

Intuitively, the graph G of a BN can be viewed as a network structure that
provides the skeleton for representing the joint probability, compactly, in a fac-
torized way. This reduces highly the number of parameters needed to describe
the full joint probability distribution over the random variables [16,6].
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Learning a Bayesian network is done in two steps: first the structure is
learned; having the structure fixed, the parameters are learned. This is called
structure learning and parameter learning, respectively. In what follows, we as-
sume data D is complete, i.e, each instance is fully observed, there are no missing
values or hidden variables. Moreover, D = {x1, . . . ,xN} is given by a set of N
i.i.d. instances. In that case, Nijk is the number of instances where Xi takes
the value xik and its parents ΠXi takes the configuration wij . In addition, the
number of instances where ΠXi takes the configuration wij is denoted by Nij .

In order to learn the parameters we assume the underlying graph G is given;
in this case, the goal is to estimate the parameters Θ of the network. Using gen-
eral results of the maximum likelihood estimate we get the following parameters
for a BN B:

θ̂ijk =
Nijk
Nij

, (2)

that is denoted by observed frequency estimates (OFE).When learning the struc-
ture, the aim is to find a DAG G, given D. This can be accomplished through
the use of a scoring function φ : S ×X → R, where S denotes the search space,
that measures how well the BN B fits the data D; therefore, it is called score-
based learning [5,2,3]. The main scoring criteria are Bayesian and information-
theoretical [1]. We will focus only on information-theoretical ones, in particular,
log-likelihood (LL) and minimum description length (MDL). The LL of a BN B
is given by:

LL(B|D) =

n∑
i=1

qi∑
j=1

ri∑
k=1

Nijk log(θijk). (3)

This criterion does not generalize well as it favors complete network structures,
leading to the overfitting of the model to the data. The MDL criterion, pro-
posed by Rissanen [21], imposes that the parameters of the model must also be
accounted, providing a penalty factor that balances between fitness and model
complexity. The MDL is defined by:

MDL(B|D) = LL(B|D)− 1

2
ln(N)|B|, with |B| =

n∑
i=1

(ri − 1)qi, (4)

where |B| corresponds to the number of parameters Θ of the network. These
scoring functions have a very important property, they are decomposable. This
means that the overall score φ of B can be expressed as sums of local contri-
butions φi of each node Xi and its parents (c.f. summations in Eq. (3)). This
decomposability property allows for efficient learning procedures based on local-
search methods.

In light of the previous discussion, structure learning reduces to an optimiza-
tion problem: given a scoring function φ and a data D, find the BN B that
maximizes φ(B,D).

Learning general BNs is a NP-hard problem [9,7,11]. However, if we restrict
the search space S to branchings (a.k.a. tree-like structures) [8,15] or networks
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Fig. 1: Given the branching R represented in Figure 1a, Figure 1b represents a
C2G w.r.t. R; Figure 1c represents a non-consistent 2-graph w.r.t. R due to the
edge from X2 to X4.

with bounded in-degree with a known ordering over the variables [10], it is pos-
sible to obtain global optimal solutions for this problem. A polynomial-time
algorithm for learning BNs with underlying consistent κ-graphs (CκG) was pro-
posed combining these ideas [4]. Therein, the authors showed that the set of
networks consistent with the optimal branching is exponentially larger, in the
number of variables, when comparing with branchings themselves [4]. In addi-
tion, the time-complexity of the learning procedure remained polynomial. The
method we propose in this paper is an extension of the CκGs to DBNs, so in the
following we further introduce notation and detail the CκG learning procedure.

A κ-graph is a graph where each node has in-degree at most κ. Given a
branching R over a set of nodes V , a graph G = (V,E) is said to be a consistent
κ-graph (CκG) w.r.t. R if it is a κ-graph and for any edge in E from Xi to Xj

the node Xi is in the path from the root of R to Xj . Intuitively, this branching
R provides a topological order of the nodes from which the set of parents of each
node in the network can be refined without creating cycles, avoiding the hardness
of checking for cycles in the DAG. In this way, it is possible to add relevant edges,
not considered previously due to the branching restriction (that allows only for
one parent), and remove irrelevant ones (as branchings also requires exactly one
parent per node, except from the root). For an example see Figure 1.

The algorithm for learning CκG network structures, presented in Algorithm 1,
starts by determining an optimal branching R (Step 1); for this it uses the Chow-
Liu [8] or Edmond’s [13] algorithm (see details in [4]). It then computes the set of
candidate ancestors αi, for each node Xi, compatible with the topological order
induced by the optimal branching R (Steps 2–3). The parents of each node Xi in
the network are then refined considering those in αi (Steps 4–9). The algorithm
returns a BN of in-degree κ consistent with R, augmenting the search space
exponentially, in the number of variables, relatively to branchings, yet keeping
a polynomial-time bound in the number of variables n.

3 Dynamic Bayesian networks

Dynamic Bayesian networks (DBN) model the stochastic evolution of a set of
random variables over time [19]. Consider the discretization of time in time slices
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Algorithm 1 Learning CκG networks

1: Run a deterministic algorithm Aφ that outputs an optimal branching R.
2: for each node Xi in R do
3: Compute the set αi of candidate ancestors for Xi.
4: for each subset S of αi with at most κ nodes do
5: Compute φi(S,D).
6: if φi(S,D) is the maximal score for Xi then
7: Set ΠXi = S.
8: end if
9: end for

10: end for

T = {0, . . . , T}. Let X[t] = (X1[t], . . . , Xn[t]) be a random vector denoting the
value of the set of attributes at time t. Furthermore, let X[t1 : t2] denote the set
of random variables X for the interval t1 ≤ t ≤ t2. Consider a set of individuals
H measured over T sequential instants of time. The set of observations is repre-
sented as {xh[t]}h∈H,t∈T , where xh[t] = (xh1 , . . . , x

h
n) is a single observation of n

attributes, measured at time t and referring to individual h.
In DBNs we aim at defining a probability joint distribution over all possible

trajectories, i.e., possible values for each attribute Xi and instant t, Xi[t]. Let
P (X[t1 : t2]) denote the joint probability distribution over the trajectory of
the process from X[t1] to X[t2]. The space of possible trajectories is enormous,
therefore, it is necessary to simplify the problem and make it tractable.

In what follows, observations are viewed as i.i.d. samples of a sequence of
probability distributions {Pθ[t]}t∈T . For all individuals h ∈ H, and a fixed time

t, the probability distribution is considered constant, i.e., xh[t] ∼ Pθ[t], h ∈ H.
Using the chain rule, the joint probability over X is given by:

P
(
X[0 : T ]

)
= P

(
X[0]

) T−1∏
t=0

P
(
X[t+ 1]|X[0 : t]

)
.

In this case the attributes in time slice t + 1 depend on all previous time slices
t, for t ∈ {0, . . . , T − 1}. Usually, not all previous time slices are considered but
only a few. In that case, we say that m is the Markov lag of the process, also
known as mth-order Markov process, and so

P
(
X[t+ 1]|X[0 : t]

)
= P

(
X[t+ 1]|X[t−m+ 1 : t]

)
.

A further simpification approach is to consider that the process is stationary,
also called time invariant or homogeneous, that is, P

(
X[t+ 1]|X[t]

)
is the same

for all time slices t ∈ {0, . . . , T − 1}. Sometimes, instead of considering the full
process as stationary, we consider it piece-wise stationary.

In what follows we consider the stochastic process to be a first-order Markov
stationary process. This eases the exposition, but its extension to a non-stationary
or a mth-order Markov is straightforward. In this case, a first-order Markov sta-
tionary dynamic Bayesian network (DBN) consists of:
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Fig. 2: An example of a DBN. In the left, the prior network B0 is depicted and in
the right, the transition network Bt+1

t is represented. The edges X1[t]→ X1[t+1]
andX2[t]→ X2[t+1] are the inter-slice connections and edgeX2[t+1]→ X3[t+1]
represents the intra-slice connection.

– A prior network B0, which specifies a distribution over the initial states X[0].

– A transition network Bt+1
t over the variables X[t : t + 1], representing the

state transition probabilities, for 0 ≤ t ≤ T − 1.

The transition network has the additional constraint that edges between slices
must flow forward in time.

We denote by Gt+1 the subgraph of Bt+1
t with nodes X[t+ 1] that contains

only the intra-slice dependencies. Observe that a transition network encodes
the inter-slice dependencies, from time transitions t to t + 1, and intra-slice
dependencies, in time slice t+ 1 only. Figure 2 depicts an example of a DBN.

Learning dynamic Bayesian networks, considering no hidden variables or
missing values, i.e., considering a fully observable process, reduces simply to
learning two BNs: the initial network B0 and the transition network Bt+1

t , tak-
ing into account that in Bt+1

t edges between slices must flow forward in time
[14]. Not considering the acyclicity constraints, it was proved that learning a
BN does not have to be NP-hard [12]. This result can be applied to DBNs, as
the resulting unrolled graph, that contains a copy of each attribute in each time
step, is acyclic. For this reason, several methods that consider only inter-slice
dependencies appeared, as therein no cycles can arise [22,18].

More recently, a polynomial-time algorithm was proposed that learns both
the inter and intra-slice connections in a transition network; the resultant net-
work was denoted by tree-augmented DBN (tDBN) [17]. Therein, the search
space for the intra-slice networks was restricted to have a tree-like structure;
each attribute in time slice t + 1 was allowed to have at most one parent from
the same time slice, and up to p parents were allowed from previous time slices;
p is a user-input parameter.

We now describe the first-order Markov stationary tDBN algorithm. Let
P≤p(X[t]) be the set of subsets of X[t] with cardinality less or equal to p. For
each Xi[t+ 1] ∈ X[t+ 1], the optimal set of parents ΠXi[t+1] ∈ P≤p(X[t]) yields
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the following score:

si = max
ΠXi[t+1]∈P≤p(X[t])

φi(ΠXi[t+1], D
t+1
t ),

where φi is the local score of attribute Xi[t + 1] and Dt+1
t is the subset of

observations for time transition t → t + 1. Then, allowing at most one parent
Xj [t+ 1] from the current time slice, the maximal score is defined as:

sij = max
ΠXi[t+1]∈P≤p(X[t])

φi(ΠXi[t+1] ∪ {Xj [t+ 1]}, Dt+1
t ). (5)

A complete directed graph is built such that each edge Xj [t+ 1]→ Xi[t+ 1]
has the following weight,

eij = sij − si, (6)

that is, the gain in the network score of adding Xj [t+ 1] as a parent of Xi[t+ 1].
Herein, the tDBN algorithm is able to determine the optimal set of inter and
intra-slice parents of Xi[t+ 1] in a one-step procedure.

Generally eij 6= eji, as the edge Xi[t + 1] → Xj [t + 1] may account for the
contribution from the inter-slice parents and, in general, inter-slice parents of
Xi[t+ 1] and Xj [t+ 1] are not the same. Therefore, Edmond’s algorithm [13] is
applied to obtain a maximum branching for the intra-slice network.

The pseudo-code of the procedure is given in Algorithm 2. A complete di-
rected graph in X[t+ 1] is built (Step 1). Afterwards, in Step 2, the weight of all
edges and the optimal set of parents for all nodes are determined according to
Eq. (6) for a given scoring criterion φ. An optimal branching is obtained using
Edmonds’ algorithm [13] in Step 3. Step 4 retrieves the tree-like intra-slice tran-
sition network elicited in Step 3 with the optimal inter-slice parents determined
in Step 2.

Algorithm 2 Optimal first-order Markov stationary tDBN

1: Build a complete directed graph in X[t+ 1].
2: Calculate the weight of all edges and the optimal set of parents of all nodes.
3: Apply Edmonds’ algorithm to retrieve an optimal branching.
4: Extract transition network t→ t+ 1.

The tDBN algorithm has a worst-case time complexity that is linear in N
(size of the input data), polynomial in n (number of variables) and r (number
of values a variable can take), and exponential in p (number of parents from the
previous time slice).

4 Proposed method

Profiting from the CκG learning algorithm for BN, we propose an algorithm to
learn DBN structures consistent with the tDBN. In what follows, as for tDBN,
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the proposed method is explained only for first-order Markov stationary DBNs;
the extension to non-stationary mth-order Markov, however, is straightforward.

Rigorously, a DBN is said to be a CκG, denoted by cDBN, if the intra-slice
transition network Gt+1 is a κ-graph where each edge from Xi[t+ 1] to Xj [t+ 1]
is consistent with the intra-slice tree-network of a given tDBN. Moreover, each
node Xi[t + 1] has at most p parents from the previous time slice. Therefore,
in order to be well-defined, a cDBN needs two positive integers: κ and p. In
addition, the given tDBN is an optimal tDBN computed with exactly the same
number of p parents from the previous time slice.

We now describe briefly the proposed algorithm. It starts by computing an
optimal tDBN. The intra-slice branching Gt+1 is then used to refine the set
of parents of each node in the network at time-slice t + 1 so that they are
consistent with the topological order induced by such branching. This is done
by computing the candidate ancestors of each node Xi[t+ 1], denoted by αi,t+1;
these are exactly the set of nodes in t + 1 connecting the root of the optimal
branching given by Gt+1 and Xi[t + 1]. For node Xi[t + 1], the optimal set of
past parents Xps[t] and intra-slice parents, denoted by Xps[t+ 1], are obtained
in a one-step procedure by finding

max
Xps[t]∈P≤p(X[t])

max
Xps[t+1]∈P≤κ(αi,t+1)

φi(Xps[t] ∪Xps[t+ 1], Dt+1
t ), (7)

where P≤κ(αi,t+1) is the set of all subsets of αi,t+1 of cardinality less than or
equal to κ. Note that, if Xi[t + 1] is the root, P≤κ(αi,t+1) = {∅}, so the set of
intra-slice parents Xps[t+ 1] of Xi[t+ 1] is always empty.

Algorithm 3 finds an optimal first-order Markov stationary cDBN, given
a decomposable scoring criterion φ, a set of n random variables, a maximum
number of parents from the previous time slice of p, and a bounded in-degree in
the intra-slice network of κ.

Algorithm 3 Learning optimal first-order Markov stationary cDBN

1: Compute an optimal tDBN with p parents with intra-slice graph given by Gt+1.
2: for each node Xi[t+ 1] ∈ Gt+1 do
3: Compute the set αi,t+1 of ancestors of Xi[t+ 1].
4: for each subset P in P≤p(X[t]) do
5: for each subset S in P≤κ(αi,t+1) do
6: Compute φi(P ∪ S,Dt+1

t ).
7: if φi(P ∪ S,Dt+1

t ) is the maximal score for Xi[t+ 1] then
8: Set ΠXi[t+1] = P ∪ S.
9: end if

10: end for
11: end for
12: end for

The proposed algorithm increases exponentially the search space of the intra-
slice transition network. Indeed, in the context of BNs, it was proved that the
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inter-slice DBN tDBN

cDBN

κ–in-degree DBN

general DBN

Fig. 3: Search-space classes of first-order Markov DBNs discussed in this paper.
The class of inter-slice DBN contains all DBNs with no intra-slice dependencies.
The class tDBN contains tree-augmented DBNs for all p parents from the pre-
vious time slice. The cDBN class contains all (κ + p)–in-degree cDBNs for all
p and κ. The class of κ–in-degree DBN contains DBNs with in-degree at most
κ < 2n, where n is the number of variables per time slice. This class does not
include the tDBN as κ may be smaller than p. The general DBN class coincides
with the (2n− 1)–in-degree DBNs.

class of CκGs is exponentially larger, in the number of variables, when com-
pared to tree-network structures [4], result which is straightforwardly extended
to cDBNs. In Figure 3 the search-space classes relating DBNs, namely tDBNs
and cDBNs, are presented.

In terms of worst-time complexity, when comparing with the tDBN algo-
rithm, Algorithm 3 is linear in N (size of the input data) and T (number of time
slices), polynomial in n (number of variables) and r (number of values a variable
can take), and exponential in p (number of parents from the previous time slice
t) and κ (number of parents in current time slice t+ 1).

5 Experimental results

We evaluate the proposed algorithm comparing it with the tDBN learning al-
gorithm [17]. Our algorithm was implemented in Java and was released under
a free software license.3 The experiments were run on an Intel Core i5-3320M
CPU @ 2.60GHz×4 machine.

We analyze the performance of the proposed algorithm for synthetic data
generated from first-order Markov stationary cDBNs. Four cDBN structures and
parameters were determined, and observations were sampled from the generated
networks, for a given number of observations N . The parameters p and κ were
taken to be the maximum in-degree of the inter and intra-slice network, re-
spectively, of the transition network considered. The four transition networks

3 https://margaridanarsousa.github.io/learn_cDBN/

https://margaridanarsousa.github.io/learn_cDBN/
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considered included: (i) one incomplete cDBN with n = 5, κ = 2 and at most
p = 1 parents from the previous time slice; (ii) one complete cDBN with n = 5,
κ = 4 and at most p = 1 parents from the previous time slice; (iii) one incomplete
cDBN with with n = 10, κ = 6 and at most p = 1 parents from the previous time
slice; (iv) one incomplete cDBN with n = 10, κ = 4 and at most p = 1 parents
from the previous time slice. The tDBN and cDBN algorithms were applied to
the resultant data sets, and the ability to learn and recover the original network
structure was measured using the precision, recall and F1-measure metrics.Two
scoring functions were used: LL in Eq. (3) and MDL in Eq. (4).

The results are depicted in Table 1 and the presented values are annotated
with a 95% confidence interval, over 5 trials. Considering LL, the cDBN algo-
rithm consistently outperforms tDBN, for all number of instances N considered.
As for MDL, the cDBN networks have a greater number of parameters, therefore
the model complexity penalization factor of MDL leads to the selection of sim-
ple networks when considering a low number of instances. Hence, in these cases,
the tDBN+MDL gives raise to better results. Generally, considering N ≥ 1000
instances for the networks considered, cDBN+MDL outperforms tDBN+MDL.
Comparing the results for networks 1 and 2, we observe that LL gives raise
to better results when considering complete networks, whereas considering less
complex structures, the MDL has better results. On the other hand, when com-
paring the results for networks 2:4 and 3:4, we conclude that considering a higher
number of nodes and intra-slice in-degree κ, respectively, a higher number of in-
stances is necessary to achieve similar recalls.

In Figure 4, an example of the cDBN+MDL learning algorithms ability to
recover a known network is shown. The original cDBN network has n = 5 at-
tributes, each taking r = 2 different values, having up to one parent from the
previous time slice and two from the current time slice. Varying the number of
input observations N , five recovered networks are shown. As N increases, the
recovered network structures become more similar to the original, converging to
the original for N = 1800.
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(a) N = 100.
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(b) N = 500.
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(c) N = 1000.
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(d) N = 1500.
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(e) N = 1800.

Fig. 4: Reconstructed networks for cDBN algorithm, where N is the number of
instances used to learn. The true network was recovered when N = 1800.
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N tDBN+LL tDBN+MDL cDBN+LL cDBN+MDL

Pre Rec F1 Time Pre Rec F1 Time Pre Rec F1 Time Pre Rec F1 Time

Network 1 (n = 5, p = 1, κ = 2, r = 3)

100 60± 5 60± 5 60± 5 0 92± 14 51± 8 66± 10 0 58± 5 76± 7 65± 6 0 100± 0 20± 4 33± 6 0

500 78± 0 78± 0 78± 0 0 86± 8 64± 4 74± 5 0 73± 3 98± 4 84± 3 0 98± 4 84± 5 90± 4 0

1000 78± 0 78± 0 78± 0 0 88± 0 78± 0 82± 0 0 75± 0 100± 0 86± 0 0 100± 0 100± 0 100± 0 0

2000 78± 0 78± 0 78± 0 0 88± 0 78± 0 82± 0 0 75± 0 100± 0 86± 0 0 100± 0 100± 0 100± 0 0

Network 2 (n = 5, p = 1, κ = 4, r = 3)

100 71± 10 43± 6 53± 7 0 62± 13 19± 6 29± 8 0 71± 3 56± 3 63± 3 0 0± 0 4± 3 0± 0 0

500 96± 5 57± 3 72± 4 0 96± 7 41± 7 58± 8 0 98± 3 77± 3 87± 3 0 90± 18 28± 9 42± 13 0

1000 98± 4 59± 2 73± 3 0 100± 0 47± 0 64± 0 0 100± 0 80± 0 89± 0 0 100± 0 44± 3 61± 3 0

2000 100± 0 60± 0 75± 0 0 100± 0 52± 2 68± 2 0 100± 0 80± 0 89± 0 0 100± 0 64± 5 78± 3 0

Network 3 (n = 10, p = 1, κ = 6, r = 3)

100 53± 5 33± 3 41± 4 0 66± 8 23± 4 34± 5 0 36± 9 38± 7 37± 8 2 83± 18 7± 2 13± 4 4

500 72± 5 45± 3 56± 4 0 88± 5 40± 2 55± 3 0 53± 2 68± 7 60± 4 1 100± 0 33± 2 50± 2 1

1000 77± 2 49± 1 60± 2 0 92± 2 46± 1 61± 2 0 59± 2 75± 4 66± 2 2 100± 0 47± 0 64± 0 7

2000 78± 2 49± 1 60± 1 0 92± 2 48± 1 63± 2 0 60± 1 78± 2 68± 2 10 100± 0 58± 3 73± 2 8

Network 4 (n = 10, p = 1, κ = 4, r = 3)

100 29± 9 23± 7 26± 8 0 36± 17 13± 6 19± 9 0 24± 5 33± 7 28± 6 0 40± 33 3± 2 0± 0 0

500 58± 3 46± 2 51± 3 0 80± 10 33± 4 47± 6 0 43± 7 61± 12 50± 8 0 73± 14 31± 8 43± 10 3

1000 60± 5 48± 4 53± 4 0 80± 8 38± 3 51± 5 0 41± 6 69± 9 51± 7 4 86± 6 48± 4 62± 5 24

2000 65± 2 52± 2 58± 2 0 86± 9 48± 4 62± 5 0 50± 3 74± 7 59± 1 17 85± 10 68± 9 76± 9 17

Table 1: Comparative structure recovery results for tDBN and cDBN on sim-
ulated data. The tDBN+LL and tDBN+MDL denote, respectively, the tDBN
learning algorithm with LL and MDL criteria. Similarly, for cDBN+LL and
cDBN+MDL. For each network, n is the number of variables, p is the maximum
inter-slice in-degree, κ is the maximum intra-slice in-degree, and r is the number
of values of all attributes. On the left, N is the number of observations. Preci-
sion (Pre), recall (Rec) and F1-measure (F1) values are presented as percentages,
running time is in seconds.

6 Conclusions

We conclude that the proposed algorithm allows to learn efficiently DBNs consis-
tent with the topological order induced by the transition network of an optimal
tDBN as far as the in-degree bounds p and κ are kept low. Notwithstanding,
it is well known that in most practical scenarios BNs behave well with small
in-degree network structures.

The resulting method is scalable (in the number of instances N , number of
time slices T and number of variables n) and therefore suitable for the increasing
amount of temporal data arising from medicine (and also other fields). We are
currently using cDBN to predict the class of evolution of Amyotrophic Lateral
Sclerosis (ALS) patients and the treatment outcome of rheumatoid arthritis
(RA). These ALS and RA data is collected as a multivariate time series with
heterogeneous values, which can be addressed effectively by cDBN. DBNs play
the unique role of not only being able to model evolution in time of several
autocorrelated variables but also provide models that are human interpretable.

Further improvements of the algorithm may include using a total order, in-
stead of a partial one (as the topological order), and extend the learning proce-
dure to allow hidden variables.
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