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a b s t r a c t 

Background and Objective : Pharmacokinetics comprises the study of drug absorption, distribution, 

metabolism and excretion over time. Clinical pharmacokinetics, focusing on therapeutic management, of- 

fers important insights towards personalised medicine through the study of efficacy and toxicity of drug 

therapies. This study is hampered by subject’s high variability in drug blood concentration, when start- 

ing a therapy with the same drug dosage. Clustering of pharmacokinetics responses has been addressed 

recently as a way to stratify subjects and provide different drug doses for each stratum. This clustering 

method, however, is not able to automatically determine the correct number of clusters, using an user- 

defined parameter for collapsing clusters that are closer than a given heuristic threshold. We aim to use 

information-theoretical approaches to address parameter-free model selection. 

Methods : We propose two model selection criteria for clustering pharmacokinetics responses, founded on 

the Minimum Description Length and on the Normalised Maximum Likelihood. 

Results : Experimental results show the ability of model selection schemes to unveil the correct number 

of clusters underlying the mixture of pharmacokinetics responses. 

Conclusions : In this work we were able to devise two model selection criteria to determine the number of 

clusters in a mixture of pharmacokinetics curves, advancing over previous works. A cost-efficient parallel 

implementation in Java of the proposed method is publicly available for the community. 

© 2018 Elsevier B.V. All rights reserved. 
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. Introduction 

Pharmacokinetics (PK) aims to study the evolution of drug con-

entration in a subject taking into account his individual patterns

f drug absorption and elimination by the body [1] . Simple PK

odels consider that the entire human circulatory system is a sin-

le compartment with constant drug concentration in a single in-

tant. In this model, drug elimination rate is assumed to be propor-

ional to this concentration, and thus, the blood drug concentration

er time instant (PK curve) fulfils a simple differential equation. Al-

hough simplistic, this mathematical model has been largely used

ith success in clinical practice [2–4] . 

Usually, PK is used for drug development and monitoring. With

ersonalised medicine in mind, PK curves can also be used to ad-

ust the drug dose to particular subjects taking into account group-

ependant responses. Indeed, it is commonly the case that sub-

ects starting with the same drug dosage present high variability
∗ Corresponding author at: Instituto de Telecomunicações, Av. Rovisco Pais, 1049- 

01, Lisboa, Portugal. 
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n drug blood concentration, with a strong impact on drug efficacy

nd/or toxicity. In order to improve efficacy and diminish toxicity,

ubjects can be clustered in groups with similar responses and the

reatment adjusted according to the average PK response of each

roup. 

Unsupervised learning of PK curves has been proposed using

n Expectation-Maximisation (EM) algorithm [5] . This method is

 particular case of the nonlinear mixed-effects model proposed

y Azzimonti et al. [6] , where cluster-specific error variances were

onsidered. However, the number of clusters elicited by these

ethods is heuristic, depending highly on user-defined parame-

ers that avoid low-weight clusters besides merging similar ones.

inding the optimal number of clusters of an EM finite mixture is

 model-selection problem, with both deterministic and stochas-

ic solutions. Deterministic methods consider a finite range for the

umber of clusters M , from M min to M max , and evaluate each can-

idate through a model selection criterion, usually a score account-

ng with the maximum likelihood of the model with a penalty fac-

or. These deterministic approaches include the Laplace-Empirical

riterion [7,8] , the Bayesian Information Criterion [9] and the Mini-

um Description Length [10] , among others [11–16] . Stochastic ap-

https://doi.org/10.1016/j.cmpb.2018.05.002
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cmpb
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cmpb.2018.05.002&domain=pdf
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proaches, like Markov chain Monte Carlo [17] , resampling methods

[18] and cross-validation approaches [19] , can also be used as a

model-selection criterion, incurring, however, in a high computa-

tion load when compared with deterministic ones. 

In this paper, we consider two deterministic methods for model

selection of mixtures of PK curves. Taking into account the PK

model, we adapt two penalisation factors based on the Mini-

mum Description Length (MDL) and the Normalised Maximum

Likelihood (NML) [20,21] for mixtures of Gaussians. In this way,

we are able to elicit the number of clusters with informational-

theoretically considerations, improving in this way previous results

[5,6] . As a benefit, the proposed model-selection criteria also offer

the advantage of avoiding data overfitting. From the implementa-

tion point of view, as random initialisations required by the EM al-

gorithm are embarrassingly parallel, we propose an algorithm that

distributes the initialisations through the available cores in a cost-

efficient manner. The source code is freely available at a GitHub

repository in [22] , together with a user manual and data used in

the experiments. 

The paper is organised as follows. Section 2 describes related

work needed to understand the proposed method; namely, the

one-compartment model, clustering of PK drug responses and

model selection via MDL and NML. Section 3 presents the pro-

posed criteria, whose implementation and experimental results are

discussed in Sections 4 and 5 . Finally, in Section 7 we draw some

conclusions. 

2. Background 

In this section we explain basic PK concepts and describe ex-

isting solutions regarding PK clustering responses. In the end, the

MDL and NML model selection criteria are presented in their gen-

eral formulation. 

2.1. Pharmacokinetic models 

In order to describe and predict the effect that a drug has on

a subject, it is necessary to consider a simplified representation of

the human body, so-called PK model [23] . 

One representation commonly used in practice is the one-

compartment model. In this very simple case, the entire human

circulatory system is considered as a single compartment with a

constant volume V , usually measured in litres, and a time-variant

quantity of drug Q ( t ) within that volume, measured in milligrams.

This time variance is caused either by absorption or elimination

of the drug from the body. These processes are ruled by two con-

stants that depend on the subject, namely the absorption rate con-

stant ( k a ) and the elimination rate constant ( k e ). Considering the

absorption of the drug by the body as a function of time I ( t ), with

initial condition I (0) given by I(0) = Dose × F , where Dose is the

initial dosage and F is a constant related to the bioavailability of

the subject, such that I ′ (t) = −k a I(t) . It is possible to write a dif-

ferential equation representing the quantity of drug in the body

given by 

Q 

′ (t) = −k e Q(t) + k a I(t) . (1)

The concentration C ( t ) of the drug along time in the single com-

partment is used to more consistently compare the reaction of the

drug in different subjects. This can simply be computed using the

expression 

(t) = 

Q(t) 
. (2)
V 
.2. Unsupervised learning of PK curves 

An Expectation-Maximisation (EM) algorithm was recently pro-

osed for clustering PK responses [5] . To introduce notation, we

ketch this algorithm in what follows. 

By solving the system of equations given by (1) and (2) , the

xpression for the drug concentration is given by 

(t) = α(e −β1 t − e −β2 t ) , (3)

here 

= 

k a Dose × F 

V (k a − k e ) 
, β1 = k e and β2 = k a . (4)

The variables α, β1 and β2 are the free parameters of the PK

urves, modelling the drug responses of the subjects. Subjects are

hen grouped into clusters, depending on their responses. The drug

oncentration over time for cluster l is described by 

 l (t) = αl (e −β1 l t − e −β2 l t ) . (5)

ach subject i , belonging to cluster l , has a concentration y il at time

 given by 

 il = C l (t j ) + εi jl , (6)

here ε ijl is Gaussian error with zero mean and variance υl . 

Two assumptions are made to establish the EM algorithm. First,

easurements over all N subjects are performed over the same n

ime instants t = (t 1 , . . . , t n ) . Second, measurement errors at dif-

erent time instants are independent. In this case, the probabil-

ty density function of y i = (y i 1 , . . . , y in ) for subject i belonging to

luster l is given by 

p l (y i ) = 

1 

(2 πv l ) 
n 
2 

e 
−1 
2 v l 

∑ n 
j=1 (y i j −C l (t j )) 

2 

. (7)

Let ω l be the probability of a subject belonging to cluster l . In

ddition, denote by W = (W 1 , . . . , W N ) the random vector where

ach W i describes the cluster to whom subject i belongs; in this

ase, we have 

 (W i = l) = ω l for 1 ≤ l ≤ M , (8)

here M is the number of clusters. 

Under the previous assumptions, the EM algorithm estimates

he parameters 

= { αl , β1 l , β2 l , υl , ω l } l∈ 1 , ... ,M 

(9)

hat best fit the observed data Y = (y 1 , . . . , y N ) of size N × n , corre-

ponding to the responses of N subjects during n sampling instants.

Let w be a realisation of the random vector W , that is, w =
(l 1 , . . . , l N ) where l i is the cluster to whom subject i belongs to.

he working hypothesis H = (w, θ) allows to write the probability

f observing data Y as 

p(Y | H) = p(Y | w, θ) = 

N ∏ 

i =1 

ω li p l (y i ) . (10)

The EM algorithm is an iterative process divided in two steps:

he Expectation (E) step and the Maximisation (M) step [24] . The

 step consists of computing an objective function Q ( θ, θ( k ) ) whose

aximisation corresponds to the maximisation of the likelihood of

he data. This function is defined as 

(θ, θ(k ) ) = 

M ∑ 

l=1 

N ∑ 

i =1 

X 

(k ) 
il 

log (ω l p l (y i )) , (11)

here X (k ) 
il 

is the probability of observation y i be described by

luster l in the k -th step, given by 

 

(k ) 
il 

= 

ω 

(k ) 
l 

p (k ) 
l 

(y i ) ∑ M 

r=1 ω 

(k ) 
r p (k ) 

r (y i ) 
. (12)
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The M step consists in finding a new set of parameters θ(k +1) 

hat maximizes the objective function given by Eq. (11) . The weight

nd variance parameters, ω l and υl , can be maximised based

n the canonical expressions for Gaussian mixtures. However, the

odel parameters αl , β1 l and β2 l are more complex to maximise,

equiring numerical methods. We refer the interested reader to

omás et al. [5] . 

One of the main drawbacks of the EM algorithm is the require-

ent to fix the number of clusters M a priori. This shortcoming

as previously approached in [5] by disregarding negligible clus-

ers and merging similar ones. However, there is no canonical no-

ion of similarity among clusters, and so, the elicited number of

lusters highly depends on user-defined parameters. Model selec-

ion provides a sound alternative justified at the light of informa-

ion theory. 

.3. Model selection 

The MDL principle is a model selection method proposed by

issanen [25] and has been successfully used in a variety of learn-

ng tasks [26,27] . It states that the best description of the data is

he one that manages to compress it the most, according to its reg-

larity. This is what MDL strives for, finding an hypothesis to ex-

lain the data that is at the same time, as simple as possible, and

ompresses the data, as much as possible. 

The first and simplest implementation of the MDL principle is

ne that divides an objective function in two parts [28] , crudely

iven by 

 (H) + L (Y | H) , (13)

here L ( H ) corresponds to the length, in bits, needed to describe

n hypothesis H and L ( Y | H ) is the length, in bits, of the description

f data Y according to hypothesis H . 

In order to define the second part of the expression, L ( Y | H ), it is

ossible to use the fact that the hypothesis H defines a probability

istribution for the data. Considering that the length is measured

n bits, the codelength of data Y while using hypothesis H can be

iven by the Shannon-Fano code [29] , and so it is possible to write

 (Y | H) = − log p(Y | H) , (14)

here p ( Y | H ) is the probability density of data Y according to hy-

othesis H . This expression shows the parallelism between find-

ng the shortest length code and finding the distribution with the

ighest log-likelihood. 

It is visible that the other part of the code, L ( H ), depends

nly on the hypothesis at hand and not on the observed data.

n asymptotical result derived by Rissanen [30,31] , which coin-

ides with a Bayesian criterion proposed by Schwarz [32] , known

s the Bayesian Information Criterion , takes L ( H ) to represent the ex-

ra amount of bits needed to describe the data given as a function

f the number of parameters. This term depends on the number of

bservations N and the total number of parameters in the model

 , as well as, the number of observations h � that belongs to each

luster � . For M clusters, L ( H ) is given by 

 (H) = 

1 

2 

M ∑ 

� =1 

log h � + 

1 

2 

K log N . (15)

he first term of this expression has commonly a small weight,

herefore, it is often disregarded for the sake of simplicity. 

An alternative method to define the model complexity L ( H ) is

y using the NML codelength [33] . For this purpose we recall the

oncept of the regret [34] of a model for a set of hypothesis H. 

In terms of codelengths, the regret of distribution p against a

et of hypothesis H can be seen as the additional length, in bits,

eeded to encode the data Y using the code associated with p ,
n comparison with the bits needed by the “optimal” distribution

ithin H. Given data Y , the optimal distribution in H, denoted by
ˆ 
 , corresponds to the distribution that maximises the likelihood of

he data. A good measure to check the quality of a model against

he set of hypothesis H consists in checking its regret in the worst

ase. This measure resumes to find the maximum possible regret

or all data of fixed size N . Accordingly to the NML principle, the

est probability distribution p NML is the one that minimises the

aximum regret over all possible data Y , of a fixed size N , as in

p NML (·|H) = min 

p 
max 

Y 
(− log p(Y ) + log p(Y | ̂  H )) . (16)

The solution to this minimax problem is achieved by the NML

istribution, also known as the Shtarkov distribution [35] , given by

p NML (Y |H) = 

p(Y | ̂  H ) 

C(H, N) 
, (17)

here the denominator for the continuous case can be computed

s 

(H, N) = 

∫ 
Y 

p(Y | ̂  H ) dY. (18)

e recall that the integration in Eq. (18) ranges over all data

 of size N , and moreover, that the NML distribution given by

q. (17) does not need to belong to H. 

By applying a logarithm to the NML distribution, it is possible

o obtain the NML codelength, or stochastic complexity, given by 

log p NML (Y |H) = − log p(Y | ̂  H ) + log C(H, N) . (19)

From this expression it is easy to understand that the first term

orresponds, again, to the goodness-of-fit term (the symmetric of

he log-likelihood), which is similar to the MDL case, and the sec-

nd term corresponds to the complexity of the class of models in

, so-called the parametric complexity. 

The value of the parametric complexity can be difficult to com-

ute for certain probability distributions. However, for Gaussian

ixture models, an expression has been derived in [36] that can

e adapted for mixtures of PK responses. We address this issue in

he next section. 

. Model selection for mixtures of PK curves 

To address model selection for mixtures of PK curves using the

M algorithm described in Section 2.2 , two penalisations were de-

ived: one using using the MDL principle and another with the

ML codelength, both described in Section 2.3 . 

Adapting the MDL principle is relatively simple, since the

oodness-of-fit term corresponds to maximising the likelihood of

he data, which is given by Eq. (10) . In information-theoretical

erms, this is equivalent to minimising the (symmetric of the) log-

ikelihood of the data, whose maxima coincides with that of Q ( θ,
( k ) ), given by Eq. (11) . Moreover, the model complexity term is

iven by Eq. (15) ; following the canons of the literature, only the

econd term will be used. In this case, the number of degrees of

reedom of the model is five times M minus one. This follows from

he five cluster parameters ( α, β1 , β2 , υ and ω) and from the fact

hat one cluster weight ω is linearly dependant on the others. 

Thus, the modified EM algorithm with MDL model-selection

cheme is set to optimise the following expression 

log (p(Y | w, θ)) + 

1 

2 

log (N) ( 5 M − 1 ) . (20)

Note that, since the penalisation does not depend on the fit-

ed parameters w and θ, the EM algorithm runs for the number of

lusters M , ranging within M min and M max , and then it elicits the

umber of clusters M that minimise Eq. (20) . 
MDL 
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The NML codelength for multidimensional Gaussian mixtures

with location vector � μ and covariance matrix 	 was recently de-

rived in [36] . Given the number of clusters M and the data size N ,

the parametric complexity for such models is given by 

C(H(M) , N) = 

∑ 

h 1 + ···+ h M = N 

N! 

h 1 ! · · · h M 

! 
×

M ∏ 

� =1 

(
h � 

N 

)h � 

× I(h � ) , (21)

where 

I(h � ) = B (n, λmin , R ) 

(
h � 

2 e 

) nh � 
2 1 

�m 

(
h � −1 

2 

) , (22)

B (n, λmin , R ) = 

2 

n +1 R 

n 
2 

∏ n 
j=1 λ

( j) 
min 

− n 
2 

n 

n +1 �
(

n 
2 

) , (23)

λ( j) 
min 

is a lower bound for the j th eigenvalue of the covariance ma-

trix 	, R is an upper bound on the square of the norm of the loca-

tion vector � μ, n is the dimension of the Gaussian distribution, � is

the Gamma function, and �m 

is the multivariate Gamma function

[37] given by 

�m 

(x ) = π
n (n −1) 

4 

n ∏ 

j=1 

�

(
x + 

1 − j 

2 

)
. (24)

The case of PK responses is simpler than the multivariate case

described above. The consequence is that, by adapting the above

formulation, we obtain an upper-bound for the NML codelength of

PK responses. 

Concretely, each subject has n independent measurements (over

time) of drug concentrations, corresponding to a vector of Gaussian

variables. Due to independence of each measurement, the covari-

ance matrix for cluster l is a diagonal matrix with constant value

λ = v l , the variance of cluster l . Moreover, a lower bound to λmin 

can be obtained from the precision of the concentrations stored in

the data, in other words, the concentrations should have been col-

lected with a device with error at most ±
√ 

λmin 

. So, Eq. (23) can

be simplified to 

B (n, λmin , R ) = 

2 

n +1 R 

n 
2 λ

− n 2 

2 

min 

n 

n +1 �
(

n 
2 

) . (25)

Finally, R is upper-bounded by n × C max where C max is a maxi-

mum concentration of the drug in the blood, which is also a phys-

ical constant that depends on the drug. We stress that, although

both λmin and R are parameters required to compute the NML,

they are not user-defined parameters, or heuristics, they have con-

crete physical meaning and can be extrapolated by knowing how

the data was collected and what kind of drug is being measured. 

Even considering the simplifications above, the expression in

Eq. (21) can still be quite difficult to compute. However, this com-

putation can be simplified by performing a recursive algorithm de-

scribed in Algorithm 1 , as suggested in [36] , with a computational

time complexity of O(N 

2 × M) . 

Algorithm 1 NML parametric complexity. 

1: Set C(H(M) , 0) = 1 ; 

2: Compute C(H(1) , j) = I( j) for j = 1 , . . . , N; 

3: for k = 2 to M do 

4: for j = 1 to N do 

5: Compute C(H(k ) , j) = 

∑ 

r 1 + r 2 = j 
(

j 
r 1 

)(
r 1 
j 

)r 1 
(

r 2 
j 

)r 2 ×
C(H(k − 1) , r 1 ) I(r 2 ) ; 

6: end for 

7: end for 
Using this algorithm it is possible to immediately obtain the

arametric complexity term for every possible number of clusters

 by using the value stored in C(H(M) , N) . 

The resulting expression that is used for performing model se-

ection based on the NML codelength is given by 

log (p(Y | w, θ)) + log C(H(M) , N) , (26)

nd it can be optimised ranging over the number of clusters, from

 min to M max , similarly to the MDL case. 

. Implementation details 

In this section, we describe the overall EM procedure to clus-

er PK responses using the proposed model-selection schemes de-

cribed in the previous section. 

For convenience, we let the number of random initialisations be

 user-defined parameter. In addition, it is up to the user to define

he minimum and maximum number of clusters ( M min and M max ),

nd the scoring criterion for the learning procedure (MDL or NML).

The pseudocode presented in Algorithm 2 summarises the exe-

ution of a single random initialisation for each possible numbers

f clusters M , from M min to M max . The score refers either to MDL

r NML. 

lgorithm 2 Expectation-Maximisation algorithm. 

1: function runEM 

2: for each possible number of clusters M from M min to M max 

do 

3: randomly generate initial cluster parameters for M clus-

ters; 

4: compute concentration of each cluster; 

5: compute log-likelihood of each subject data to belong to

each cluster; 

6: compute degree of belonging of each subject to each

cluster; 

7: update cluster weights ω and variances υ for each clus-

ter; 

8: while maximum iterations is not reached and algorithm

has not converged do 

9: update cluster parameters α, β1 and β2 for each clus-

ter; 

10: compute concentration of each cluster; 

11: compute log-likelihood of each subject data to belong

to each cluster; 

12: compute degree of belonging of each subject to each

cluster; 

13: update cluster weights ω and variances υ for each

cluster; 

14: end while 

15: assign each subject to the cluster with the highest prob-

ability of belonging; 

16: compute score value; 

17: if score is higher than current best score value then 

18: save clustering output; 

19: end if 

0: end for 

21: return best clustering output; 

2: end function 

In order to improve performance we considered a parallel im-

lementation. The parallelisation method used in the current im-

lementation of the program is the one that divides the load such

hat each processor takes care of approximately the same num-

er of random initialisations for each possible numbers of clus-

ers. With this process, it is possible to guarantee the best possible
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Table 1 

Detailed description of the 12 synthetic datasets. The values described in the Scenario col- 

umn are the number of observations that belong to each of the generated clusters; for in- 

stance, in the imbalanced data number 7, the first cluster contains 50 subjects, whereas the 

second and third clusters contain each only 5 subjects. The within-group variance is de- 

scribed by the Sum of Squares within (SSw) normalised by the number N × n of generated 

concentrations. 

Number M Balance Scenario Variance Standard deviation SSw 
N×n 

1 3 Yes 20-20-20 Low 0.3-0.6-0.2 0.15 

2 4 Yes 15-15-15-15 Low 0.3-0.3-0.3-0.3 0.07 

3 5 Yes 12-12-12-12-12 Low 0.3-0.3-0.3-0.3-0.3 0.08 

4 3 Yes 20-20-20 High 1.3-1.1-0.9 1.27 

5 4 Yes 15-15-15-15 High 0.6-0.6-0.6-0.6 0.28 

6 5 Yes 12-12-12-12-12 High 0.6-0.6-0.6-0.6-0.6 0.28 

7 3 No 50-5-5 Low 0.3-0.6-0.2 0.10 

8 4 No 45-5-5-5 Low 0.3-0.3-0.3-0.3 0.07 

9 5 No 40-5-5-5-5 Low 0.3-0.3-0.3-0.3-0.3 0.07 

10 3 No 50-5-5 High 1.3-1.1-0.9 0.93 

11 4 No 45-5-5-5 High 0.6-0.6-0.6-0.6 0.30 

12 5 No 40-5-5-5-5 High 0.6-0.6-0.6-0.6-0.6 0.31 

Table 2 

Scores of a single initialisation using the input data 3 from Table 1 . 

No. of clusters 1 2 3 4 5 6 7 8 9 10 

MDL 1472 1093 884 829 211 621 642 927 680 303 

NML 1536 1190 996 766 333 769 413 455 406 390 
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Table 3 

Execution times for different numbers of processors p using the 

dataset 3 from Table 1 , with both MDL and NML criteria. 

p MDL Time [s] NML Time [s] 

4 80.219 90.233 

2 161.358 170.751 

1 272.366 277.542 
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ost efficiency [38] , with the load balance being perfect if the user-

efined number of random initialisations is divisible by the num-

er of available processors. In this case, a computer with p proces-

ors is able to run the program approximately p times faster than

f it was run sequentially. 

An implementation using Java is publicly available at the

itHub repository in [22] . A graphical user interface, with an ap-

lication user guide, is available therein, along with the synthetic

ata used in the experiments. 

. Results 

In order to confirm that the program performs correctly and

roduces consistent results, we conducted a series of tests with

aried input data. This section aims at describing these results. 

.1. Synthetic data 

Synthetic data was generated using 60 subjects, each being

ampled at the same eight time instants. Different number of clus-

ers and balanced scenarios were considered; each cluster with its

wn error variance. These datasets, available at the GitHub repos-

tory [22] , are summarised in Table 1 and depicted in Fig. 1 . Clus-

ers are presented in different colours, each line representing a

ubject. 

The program was run using 200 random initialisations with

 min = 1 and M max = 10 . The maximum number of clusters M max 

as chosen to be higher than the probable number of clusters in

he data. The number of random initialisations was chosen as a

ower bound that was consistently able to find the correct solution.

oth scoring schemes, MDL and NML, were used. We conclude that

he proposed algorithm performed well, being able to obtain the

orrect cluster functions and correctly assign the subjects to the

riginal clusters from where they were generated, even in the dif-

cult scenarios of imbalanced and high variance data (datasets 10–

2 in Table 1 ). 

To exemplify that the program makes the correct decisions

hile comparing different outputs, Table 2 shows as an example

he resulting scores of a single initialisation of the algorithm ap-
lied to the dataset number 3 (see Table 1 ), using both the MDL

nd NML criteria. 

.1.1. Behaviour across initializations 

In addition to correct clusters retrieval, we wanted to study the

umber of times the proposed algorithm converge to the correct

umber of clusters among all random initialisations. For this, we

sed 10 synthetic datasets with 3 clusters, all with the same clus-

er parameters, except for the cluster-specific variances. Results are

resented in Fig. 2 . 

We noted that small standard deviations cause the proposed

M algorithm to elicit several single-subject clusters. Nevertheless,

ven when there is a small numbers of initialisations that converge

o the true clusters, the algorithm still converges to the correct

utput, empirically attesting for the good behaviour of the scoring

chemes. With higher values for the standard deviation almost half

f the initialisations converge to the correct number of clusters.

omparing the behaviour of the proposed scoring criteria, NML

eems to be slightly superior, although both MDL and NML have

imilar patterns in unveiling the correct number of clusters in the

ata throughout the 200 initialisations. 

.1.2. Cost-efficient implementation 

To empirically validate the cost efficiency of the implemented

lgorithm, the execution times, using different numbers of proces-

ors p , for both MDL and NML criteria, are shown in Table 3 for the

ataset 3 described in Table 1 . It is visible that the execution time

pproximately doubles as the number of processors are cut in half;

imilar results were obtained when four processors were used. 



16 R.P. Guerra et al. / Computer Methods and Programs in Biomedicine 162 (2018) 11–18 

Fig. 1. Synthetic datasets summarised in Table 1 , ordered from top-left to bottom-right. Each cluster is in a different color and each line represents a subject. 
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5.2. Real data 

To test the algorithm in a real scenario, a dataset with blood

concentrations of an anti-asthmatic drug was used. The clinical

data is available in R [39] , where twelve patients were given oral

doses of the theophylline drug and had their serum measured over

the following 25 h (at 11 time instants). The data is shown on

Fig. 3 (left). The PK curves were unveiled by running the algo-

rithm with exactly the same conditions as for the synthetic data:

200 random initializations, with M min = 1 and M max = 10 , for both

MDL and NML criteria. The algorithm found six different clusters,

as color-coded in Fig. 3 (right). 

Six clusters from a dataset of 12 subjects might seem exces-

sive. Our interpretation is that this is precisely due to the small

sample size, as the influence of the parametric complexity terms

is directly related to the number of subjects N . Nonetheless, the

output should be interpreted by experts with domain knowledge

about the drug under study. After that, we should be able to re-

late subject features with the elicited groups and predict to which

cluster a new subject belongs. 
. Discussion 

In pharmokinetics (PK), the time course of drug concentra-

ions in the body is usually described with compartment mod-

ls [40–42] . Such models define functions of the drug concentra-

ion through time among patients. Each compartment represents a

roup of similar tissues, an organ or a fluid. 

Drug concentration in the compartments is fitted mostly us-

ng nonlinear mixed effects (NLME) models [43] ; data is measured

sually in easily sampled fluids, like blood and urine. NLME sta-

istical models contain both fixed (entire population) and random

subject specific) effects. Their main shortcoming is the hardness of

ntegrating out random effects to compute maximum likelihood es-

imates. Expectation-Maximisation (EM) and stochastic approxima-

ions [44–46] are known techniques to overcome this issue, which

an be found, for instance, in the Monolix software packages [47] . 

The above-mentioned methods ignore the subject-specific ef-

ects, and extract a single cluster only with average population ef-

ects. Meanwhile, an EM method considering both fixed and ran-

om effects with Gaussian noise to the measurements was pro-
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Fig. 2. Number of random initialisations out of 200 where the algorithm found the correct number of clusters for different data standard deviations. 

Fig. 3. On the left, the real data from the theophylline drug administration. On the right, the clusters elicited with the proposed algorithm; both MDL and NML criteria 

resulted in the same clusters. 
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osed [6] . As a particular case, subject-specific groups of PK curves

as been addressed, unravelling clusters of subjects with similar

rug responses [5] . The envisaged application of this method is to

llow personalised medicine, delineating a treatment for each clus-

er. 

A drawback of the current available methods is that they are

ot parameters-free, and the clusters unveiled depend highly upon

ser-defined parameters. In this work we addressed this issue and

ere able to devise two model selection criteria, based on infor-

ation theory, to determine the number of clusters in a mixture

f pharmacokinetics curves, advancing significantly over previous

orks. 

Our first proposed criterion was based on the Minimum De-

cription Length (MDL) principle, as developed by Rissanen [25] .

DL allows to balance the description of a model with its com-

lexity, obtaining the best clustering outputs in a parameter-free

anner. The second solution was based on the Normalised Maxi-

um Likelihood (NML) coding, adapted from the case of Gaussian

ixture model as derived in [36] . 

A current limitation of both EM algorithms in which this work

s based [5,6] is that they can only address a constant variance

f the measurement noise. In PK, however, a constant coefficient

f variation model is commonly used. Concerning EM, this would

t

ake the M-Step intractable, as variance would depend deeply on

he remaining parameters. A possible solution is to use a variant

f EM, where the variance at the current step is proportional to

he average concentration computed at the previous step. Unfortu-

ately, in this case, as far as the authors know, there is no analyti-

al guarantee that EM reaches a local maximum of the likelihood. 

In closing, we stress that only the one compartment model,

ith first-order absorption, was considered; the impact of speci-

ying the wrong model was not assessed. We leave for future work

ddressing other PK models and evaluating which of these best

ts the data. Another possible topic to pursue is to consider NLME

odels accounting for correlations within individual data. In this

ase, the number of parameters in the MDL and NML criteria needs

o be updated to account for the entries of the covariance matrix,

t the expense of a much heavier optimisation algorithm. 

. Conclusion 

In this work we were able to devise two model selection cri-

eria to determine the number of clusters in a mixture of pharma-

okinetics curves, advancing over previous works. Experimental re-

ults showed the ability of the proposed model-selection schemes

o unravel the correct number of clusters in synthetic data. 



18 R.P. Guerra et al. / Computer Methods and Programs in Biomedicine 162 (2018) 11–18 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A parallel implementation was made by assigning to each pro-

cessor identical amounts of work in the form of the number of

random initialisations of the algorithm. By doing so, it was possi-

ble to guarantee its cost efficiency. The source code in Java, along

with an user guide and the synthetic datasets used in the experi-

ments, was made available at the GitHub repository [22] . 
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