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Abstract. Breast invasive carcinoma (BRCA) and prostate adenocarci-
noma (PRAD) are two of the most common types of cancer in women and
men, respectively. As hormone-dependent tumours, BRCA and PRAD
share considerable underlying biological similarities worth being exploited.
The disclosure of gene networks regulating both types of cancers would
potentially allow the development of common therapies, greatly con-
tributing to disease management and health economics. A methodol-
ogy based on Bayesian network learning is proposed to unravel breast
and prostate common gene signatures. BRCA and PRAD RNA-Seq data
from The Cancer Genome Atlas (TCGA) measured over ∼ 20000 genes
were used. A prior dimensionality reduction step based on sparse logis-
tic regression with elastic net penalisation was employed to select a set
of relevant genes and provide more interpretable results. The Bayesian
networks obtained were validated against information from STRING, a
database containing known gene interactions.

Keywords: sparse logistic regression · gene expression · machine learn-
ing.

1 Scientific Background

Due to the computerisation of our everyday life, available data is growing tremen-
dously across all fields of research, businesses and industry. When dealing with
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high-dimensional data, sparse models are able to extract knowledge from data,
by identifying a smaller number of relevant variables (from a whole set of vari-
ables) explaining the data. In the context of biological data, the use of sparse
graphical models is expected to disclose valuable insights on the underlying bi-
ological mechanisms.

This work searches for common gene signatures between breast invasive carci-
noma (BRCA) and prostate adenocarcinoma (PRAD), two of the most common
types of invasive cancer in women and men, respectively. Although arising in
organs with different anatomies and physiological functions, BRCA and PRAD
tumours depend on gonadal steroids for their development, as the organs they
originate from, being hormone-dependent. Both cancers have considerable un-
derlying biological similarities worth being exploited with the goal of improving
patient outcomes [1]. The proposed methodology uses Bayesian network learn-
ing to identify a common gene network to both cancers, as not only the genes
regulating the diseases but also the interaction between them could help better
understanding the diseases, while providing guidance to cancer therapy research
and disease management.

2 Materials and Methods

2.1 Dimensionality Reduction

Let Y be a random variable whose n components are independently distributed
with means µ, X the n × p matrix containing the set of p explanatory vari-
ables, and β = {β1, . . . , βp}T the p× 1 vector of unknown regression coefficients
associated with each covariate. Then, in a generalised linear model (GLM) [2]:

E(Y ) = η = g(µ) = Xβ = xiβ; i = 1, . . . , n. (1)

Specifically in this work, the independent variable is binary, thus Y is as-
sumed to follow a Binomial distribution. Defining the probability of success, pi
as the probability of Yi = 1, given the associated variables vector xi, binary
logistic regression (LR) models how the response variable depends on the set of
variables:

η = logit(pi) = log

(
pi

1− pi

)
= xiβ; i = 1, . . . , n. (2)

The unknown regression coefficients β are estimated using maximum likelihood.
For a n sized sample, the log-likelihood function for a binary LR is

`(β) =

n∑
i=1

[yi log(pi) + (1− yi) log(1− pi)]. (3)

The estimates β̂ obtained maximise `(β). Usually, they are all non-zero, and
if p > N (more explanatory variables than observations), they are not unique.



Unravelling gene signatures by Bayesian network learning 3

When addressing healthcare big data problems, it is necessary to constrain the
regression problem in order to estimate interpretable models, e.g. through reg-
ularised optimisation. In other words, it is necessary to encourage sparsity. In
a sparse statistical model, only a relatively small number of predictors is differ-
ent from zero. The more sparse the model is, the less the number of non-zero
parameters.

Ridge regularisation [3] adds an `2 constraint,
∑p
j=1 β

2
j , to the log-likelihood

function, promoting solutions with small norms, i.e., close to zero, but still non-
sparse. The least absolute shrinkage and selection operator (lasso) [4] is a regu-
larisation method that enjoys the stability of ridge regression, while promoting
variable selection. It works by combining the log-likelihood function with an `1
constraint,

∑p
j=1 |βj |.

The lasso penalty is able to perform both shrinkage and variable selection.
While it performs well in many circumstances, it has shown some limitations. If
p > n the lasso selects no more than n variables before it saturates; if there are
highly correlated variables, the lasso arbitrarily selects only one, not taking into
account the group as a whole (there is no clustering); and when the variables
are highly correlated, in n > p situations, the prediction accuracy of the lasso
becomes dominated by the ridge regression.

Elastic net regularisation [5] is a technique proposed to solve the mentioned
problems, as a combination of both lasso and ridge, and performing as well
as the lasso whenever the lasso does the best. The regulariser is defined as
λ
∑p
j=1

{
(1− α)β2

j + α|βj |
}

. The `1 part of the penalty helps to generate a
sparse model, while the `2 part makes it possible to select more than n variables
(in the p > n case) and encourages clustering. The tuning constants, λ ≥ 0 and
α ∈ [0, 1] control the magnitude of the parameters and the relative weight of
each constraint, respectively.

2.2 Bayesian Networks

Graphical models are a powerful probabilistic representation that provide in-
terpretable models of the domain. For this reason, they have been used in a
large variety applications such as genetics, oncology, computational biology, and
medicine and health care. The large volume of high-dimensional biological data
has motivated the use of graphical models to provide understanding into novel
biological mechanisms.

Bayesian networks are the most widely known directed graphical models,
however, they are typically not used with high dimensional data, with p� n, as
they do not scale well with the number of variables. Nonetheless, these directed
models provide us with unprecedented insights about probabilistic correlations
between variables under study, in this case, gene expression values. This could
be of great benefit for genomics applications, with datasets such as the human
transcriptome , with p ∼ 20000.

Considering a p-dimensional random vector Z = (Z1, . . . , Zp), whose realisa-
tion is in X, a Bayesian network (BN) is rigorously defined as a directed acyclic
graph (DAG) G = (V ;E) with nodes in V , coinciding with Z, and edges in E,
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representing a joint probability distribution P (Z) in a factored way, according
to the DAG structure as:

P (Z1, . . . , Zp) =

p∏
j=1

P (Zj |pa(Zj), θj), (4)

where pa(Zj) = {Zi : Zi → Zj ∈ E} is the parent set of Zj and θj encodes the
parameters that define the conditional probability distribution (CPD) for Zj .
Gaussian CPDs for continuous data are considered.

Learning a BN reduces to learn its structure and parameters. Having the
structure fixed, parameters are quite easy to learn. The hard task is to learn the
structure itself, generally approached through score-based learning; in this case,
a score is used to ascribe the network fitting to the data. Most common scoring
criteria are based on maximum likelihood estimation with penalisation factors
to prevent data overfitting.

Aragam et al. (2017) developed a new R package, called sparsebn [6], focused
on learning the structure of sparse graphical models, especially thought for large
networks. To learn a BN from data, they have used a score-based approach that
relies on regularised maximum likelihood estimation. The following criterion was
considered:

min
B∈D

`(B;X) + ρλ(B), (5)

where ` denotes the negative log-likelihood, ρλ is some regulariser, the matrix B
is the weighted adjacency matrix of a DAG, being D the set of weighted adja-
cency matrices that represent DAGs. For continuous data, a Gaussian likelihood
with `1 or minimax concave penalty is used.

The package offers methods to learn the structure of a BN, to estimate its
parameters B̂, to plot that structure and, for Gaussian data, to calculate the
implied covariance and precision matrices. Many methods from the literature
on coordinate descent such as warm starts, active set iterations, block updates
and sparse data structures were used by the authors to make the algorithms
run faster, distinguishing sparsebn from existing packages, for sparse structure
learning and high dimensional data.

2.3 Datasets

To unravel common gene signatures to breast and prostate cancers, two datasets
were extracted from the Cancer Genome Atlas (TCGA) database [7]: BRCA and
PRAD datasets, corresponding to breast and prostate, respectively. For more
information on the datasets refer to https://github.com/jvillabrito/common-gene-
signature.

A subset of 19810 variables was selected from the BRCA dataset, and of 19660
from the PRAD dataset, corresponding to the protein-coding genes reported
from the Ensembl genome browser [8] and the Consensus CDS [9] project. The
data was pre-processed as follows (Fig. 1). The variables with zero standard
deviation were excluded from both datasets, and only the 19529 common to both
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datasets were considered for further analysis. The variables were log-transformed
and normalised to zero mean and unit variance. The final datasets are Xbrca ∈
Rnbrca×p; ybrca ∈ Rnbrca and Xprad ∈ Rnprad×p; yprad ∈ Rnprad , with nbrca =
1204, nprad = 547 and p = 19529. Matrices X are the explanatory variables
(genes) matrices and vectors y are the binary response vectors, with ‘1’ and
‘0’ corresponding to tumour and normal tissue samples, respectively. Samples
presented with metastases were not considered for the analysis.

2.4 Finding Common Gene Signatures

With the goal of obtaining more interpretable results, a dimensionality reduction
step was added before learning the Bayesian networks, using logistic regression
with elastic net penalisation, considering two values of α (α = 0.1 and α = 0.01).
Two approaches were tested: jointEN and sepEN. In the first, sparse logistic
regression with elastic net penalty was applied to a new dataset combining BRCA
and PRAD data, BRCAPRAD (Xbrcaprad ∈ Rnbrcaprad×p; ybrcaprad ∈ Rnbrcaprad ,
with nbrcaprad = 1751 and p = 19529), using the glmnet R package. The λ
parameter was optimised by 10-fold cross-validation. The variables selected were
used for further analysis. In the second approach, two sparse logistic models were
fit, one for BRCA and another for PRAD, also with 10-fold cross-validation. The
variables used are the ones selected separately for each cancer.

After the dimensionality reduction block (Fig. 1), sparsebn R package was
used to learn the Bayesian networks, using the method estimate.dag. The pa-
rameter ‘edge.threshold’ was used to force the number of edges in the solution
to be less or equal than the number of nodes. The output of the method is a
solution path, rather than an unique solution, consisting of a sequence of esti-
mates for a predetermined set of lambdas λmax > λ1 > . . . > λmin (default
grid of values are used based on a decreasing log-scale). As λ decreases, there
is less regularisation, i.e. the graphs are more dense, containing more edges.
The select.parameter method was then used to get the optimal value of λ,
based on a trade-off between the increase in log-likelihood and the increase in
complexity between solutions. Only the solution for the optimal lambda was
considered for further analysis. Four Bayesian networks were learnt: two from
BRCA data, one using only tumour tissue samples (tumourBN) and another
using only normal tissue samples (normalBN), and the same from PRAD data.
The four Bayesian Networks obtained were validated by comparing the result-
ing edges with STRING information [10]. The tumourBNs were then compared
to determine the number of shared edges. The same was done for normalBNs.
Finally, tumourBNs were compared against normalBNs, to verify whether they
share common edges.

3 Results

The number of edges of the Bayesian networks obtained can be found in Tab. 1,
for reduced data and for full dimension data. In the case of reduced data, jointEN
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and sepEN approaches are discriminated. BN brca and BNprad correspond to the
Bayesian networks learnt from BRCA and PRAD data, respectively. It can be
noticed that the solutions for the optimal lambdas have the number of edges
close to the number of variables. A considerable overlap between BN brca and
BNprad networks (# common edges; Tab. 1) was obtained, which supports the
fact that both types of cancer have underlying similarities. A noticeable overlap
was also obtained when comparing the pairwise gene connections identified and
STRING information. The percentage of known gene interactions found when
learning the BNs from tumour data is approximately twice the number of gene
interactions when BNs are learnt from normal data.

Fig. 1. Proposed solution pipeline.

Table 1. Number of edges of BNs obtained. The numbers in parentheses state the
percentage of edges that represent known gene interactions, based on STRING infor-
mation. (T: Tumour; NT: Non-Tumour)

α data
n

approach p
# edges # common

edgesbrca prad BNbrca BNprad

0.1
T 1091 495

jointEN 546 499 (12 %) 528 (11 %) 57 (47 %)
sepEN 738 624 (11 %) 733 (11 %) 33 (45 %)

NT 113 52
jointEN 546 537 (7 %) 534 (8 %) 38 (21 %)
sepEN 738 713 (9 %) 721 (7 %) 33 (24 %)

0.01
T 1091 495

jointEN 2791 2674 (16 %) 2663 (13 %) 268 (32 %)
sepEN 4370 4125 (17 %) 4148 (14 %) 337 (33 %)

NT 113 52
jointEN 2791 2790 (6 %) 2791 (9 %) 153 (18 %)
sepEN 4370 4370 (8 %) 4336 (9 %) 287 (16 %)

–
T 1091 495 – 19529 18411 (23 %) 18553 (17 %) 1589 (31 %)

NT 113 52 – 19529 19527 (9 %) 19366 (10 %) 1664 (16 %)

Figure 2 illustrates the networks of the common edges inBN brca andBNprad,
when BNs are learnt from tumour data, after dimensionality reduction with
α = 0.01. Besides paired genes, highly connected genes were obtained as well,
called hubs, which are also reported in STRING.
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(a) jointEN, 268 edges (b) sepEN, 337 edges (c) sepEN ∩ jointEN, 40
edges

(d) 32 % (86 edges) (e) 33 % (112 edges) (f) 48 % (19 edges)

Fig. 2. Networks of common genes in BNbrca and BNprad learnt form tumour data,
by (a) jointEN and (b) sepEN, for α = 0.01; (c) is the intersection of edges in (a) and
(b); (d), (e), and (f) correspond to the edges from the networks in (a), (b), and (c)
that are reported in STRING, respectively.

To infer whether the tumourBNs obtained are specific to BRCA and PRAD
diseases or not, Venn diagrams were produced to illustrate the overlap between
tumourBNs and normalBNs (Fig. 3). For α = 0.1, the overlap is of 9 and 3
edges for jointEN and sepEN, respectively, while for α = 0.01 the overlap is of
14 and 6 edges. With no regularisation, 41 edges in the tumourBN were also
found in normalBN. These edges are more likely related to cell machinery, and
therefore of little interest, and not related to BRCA and PRAD diseases. Such
little overlap might be an indicator of the specificity of the tumorBNs obtained
to the diseases under study.

4 Conclusion

The methodology proposed was able to extract common gene signatures to both
types of cancer, BRCA and PRAD, by Bayesian network learning. A considerable
overlap between the gene networks identified and STRING network information
was obtained, a strong indication that the networks learnt may be biologically
meaningful. The present results are expected to play a role in cancer therapy
research, by fostering cancer therapy research for both types of cancer. More-
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(a) α = 0.1 (b) α = 0.01 (c) full dimensionality

Fig. 3. Venn diagrams with common edges to breast and prostate for regularised and
full approaches, BNs learnt from tumour (T) and normal (NT) tissue samples.

over, this can be extended to multiple diseases, in the search for common gene
signatures across multiple types of cancer.
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