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Abstract Pharmacokinetics (PK) is a branch of pharmacology dedicated to the study
of the time course of drug concentrations, from absorption to excretion from the body.
PK dynamic models are often based on homogeneous, multi-compartment assump-
tions, which allow to identify the PK parameters and further predict the time evolution
of drug concentration for a given subject. One key characteristic of these time series
is their high variability among patients, which may hamper their correct stratification.
In the present work, we address this variability by estimating the PK parameters and
simultaneously clustering the corresponding subjects using the time series. We pro-
pose an expectation maximization algorithm that clusters subjects based on their PK
drug responses, in an unsupervised way, collapsing clusters that are closer than a given
threshold. Experimental results show that the proposed algorithm converges fast and
leads to meaningful results in synthetic and real scenarios.
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1 Introduction

A model commonly used in pharmacokinetics (PK) is the compartment model
(Dayneka et al. 1993; Derendorf et al. 2000; Mager et al. 2003; Gueorguieva et al.
2007) which is used to describe the time course of drug concentrations in the body.
Compartment models define a family of drug concentration functions depicting the
variability of PKdrug responses among subjects. They are categorized according to the
number of compartments needed to describe the behavior of the drug. Each compart-
ment can represent a group of similar tissues, an organ or a fluid; drug concentration
is measured in the blood, plasma, urine, saliva, and other easily sampled fluids.

Literature in population PK is vast and typically aims at performing drug devel-
opment and therapeutic drug monitoring. Compartment models are fitted to the data
mostly using nonlinear mixed effects models (NLMEM) (Beal and Sheiner 1980;
Sheiner et al. 1977; Davidian and Giltinan 2003). NLMEM include fixed effects asso-
ciated with the entire population and random effectswhich are subject/group-specific.
In these models at least one of the fixed or random effects appears nonlinearly in the
model function.

The usual approach is to integrate out the random effects to allow maximum likeli-
hood estimation. Unfortunately, this cannot be done analytically due to random effects
not being linear. This problem cannot be circumvented by standard Expectation-
Maximization (EM) because of the nonlinear structure of the model (Dempster et al.
1977; Lindstrom and Bates 1988. To overcome these shortcomings, Monte Carlo
EM techniques have been proposed where the E-step can only be approximated with
empirical averages (Wei and Tanners 1991; Walker 1996; Wu 2002, 2004. Additional
approaches include stochastic approximation EM where the E-step is approximated
by a weighted average (Delyon et al. 1999; Kuhn and Lavielle 2005). MONOLIX is
a software package (Trout et al. 2004) that incorporates several of these techniques.

The aforementionedmethods do not cluster subjects using PK responses. They only
estimate the parameters for a single cluster describing the average population effects.
Random effects that are subject/group-specific are not learned. Grouping subjects in
clusters according to their PK profiles is desirable in order to design tailored therapies
for each group. The advantage of personalized therapies is that the administered dose,
as well as intervals of administration, can be tuned in order to keep the correct concen-
tration of the drug in the body with the smallest side-effects. This is the key objective
of this paper, to cluster subjects according to their PK drug response parameters.

To this end, we consider an one-compartment model where drug concentration in
the body compartment is described by a function over time whose parameters are
group-dependent. We provide a novel unsupervised learning method for clustering
PK drug responses. The proposed algorithm is an EM method and a special case
of that devised by Azzimonti et al. (2013). The latter can be applied to any non-
linear function, allowing to include both fixed and random effects with Gaussian
noise to the measurements. In our case, we omit fixed effects, but we consider a
cluster-specific error variance aiming to address PK drug responses. Indeed, based on
empirical evidence, each PK profile seems to have its own variance.

We assess the merits of the proposed method against synthetic data, by considering
several datasets where clusters of PK drug responses were simulated. For all datasets
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considered, the algorithm was able to recover the original clusters, and moreover, it
performed linearly on the number of subjects and the number of initial clusters. In
addition, the algorithm showed to be insensitive to imbalanced data, specially when
clusters are well defined. Real data from theophylline pharmacokinetics was also used
to assess the algorithm; threemeaningful clusters of PK drug responses were retrieved.

This paper is organized as follows. Section 2 describes the one-compartmentmodel.
In Sect. 3 the novel EM algorithm to cluster PK drug responses is presented. Experi-
mental results are presented next, followed by some conclusions and future work. In
the end, we provide two appendixes with details concerning the implementation of the
proposed method.

2 One-compartment model

The simplest PK drug response model is the one-compartment model. Despite being
over-simplistic, one-compartment models are the most frequently used in clinical
practice.

In the one-compartment model the drug enters the compartment with an initial
Dose. Drug concentration can then be monitored by continuously measuring the con-
centration of the drug in the compartment. With this repeated measurements a curve
of drug concentration against time, C(t), can be plotted. Note that

C(t) = Q(t)

V
,

where Q(t) is the amount of drug in the compartment and V the volume of the
compartment.

If the drug is administered orally, it has a gradual absorption, reaching maxi-
mum concentrations later when compared with intravenous administration. Therefore,
ka is defined as the absorption rate constant. A subcategory of absorption is the
bioavailability, denoted by F , accounting for the fraction of unchanged drug that
effectively reaches the compartment. The process of gradual absorption, called sus-
tained release (Lee and Amidon 1996), is described by a function I (t) which follows
a first-order kinetics, described by the constant ka , with initial condition defined by
the Dose and F . Concretely, I ′(t) = −ka I (t) and I (0) = Dose × F . Similarly, the
rate at which a drug is removed from the compartment is also given by ke, called the
elimination rate constant. A figure depicting this model is presented in Fig. 1.

By putting everything together, we obtain

Q′(t) = −keQ(t) + ka I (t).

Body compartment

Drug amount : Q(t)
Compartment volume : V

Oral administration: Dose
Absorption : I(t)

Bioavailability : F

ka ke

Fig. 1 Scheme of one-compartment model for sustained release with first-order kinetics
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Solving the previous system of equations, the concentration of the drug in the
compartment over time is given by:

C(t) = α(e−β1t − e−β2t ), (1)

where

α = kaDose × F

V (ka − ke)
,

β1 = ke and β2 = ka .

3 Unsupervised learning of pharmacokinetic responses

In this section, we propose an unsupervised learning algorithm to cluster subjects
based on their PK drug responses. More specifically, we draw up an EM algorithm that
estimates the parameters of the curves modelling the responses. Before presenting the
EM algorithm we introduce notation and the stochastic assumptions needed to derive
the algorithm.

We assume that subjects split among M clusters and that, for each cluster � ∈
{1, . . . , M}, the drug concentration evolves over time as described by Eq. (1), that is,

C�(t) = f (α�, β1�, β2�, t) = α�(e
−β1�t − e−β2�t ). (2)

We denote by N the number of subjects and n the number of measurements for
each subject. Motivated by empirical evidence from PK drug response, we assume that
each cluster has a specific error variance, which can be due, for instance, to genetics
(Roden andGeorge 2002) or interactionwith other drugs (Lee et al. 2014).We consider
a Gaussian distribution to model this cluster-specific error. Concretely, we consider

yi j = C�(t j ) + εi j�, i = 1, ..., N and j = 1, . . . , n,

to be the observed drug concentration at instant t j for the i-th subject in the �-th cluster,
where εi j� ∼ N (0, v�) is the cluster-specific error. Given that εi j� = yi j −C�(t j ), the
probability density function for the observed drug concentration is given by:

p�(yi j ) = 1

(2πv�)
1
2

e
−1
2v�

(yi j−C�(t j ))2
.

In addition, we assume that errors are independent, and so the probability density
function of measuring yi = (yi1, . . . , yin) for the i-th subject in the �-th cluster is
given by:

p�(yi) = 1

(2πv�)
n
2
e

−1
2v�

∑n
j=1(yi j−C�(t j ))2

. (3)
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Finally, we assume that each subject belongs to some cluster �. The cluster a
subject belongs to is unknown a priori, and so, we consider the random vector
W = (W1, . . . ,WN ) where each random variable Wi describes the cluster to which
subject i belongs. In this case, we assume that

P(Wi = �) = ω� for 1 ≤ � ≤ M,

where each ω� is called the �-weight and amounts to the probability of the subjects
belonging to the �-th cluster.

3.1 EM algorithm

Under the above assumptions, we now set out to derive the EM algorithm. The algo-
rithm estimates, for each cluster � ∈ {1, . . . , M}, the parameters α�, β1� and β2�, that
best fit the data. It also elicits the cluster each subject belongs to, as well as the variance
of the error for each cluster. As input, the algorithm receives a matrix

Y =
⎛

⎜
⎝

y11 . . . y1n
...

. . .
...

yN1 . . . yNn

⎞

⎟
⎠

and a vector t = (t1, . . . tn), where yi j is the observed drug concentration at instant
t j for the i-th subject, since drug ingestion. For the sake of simplicity we assume
that t = (t1, . . . tn) is the same for all subjects, that is, sampling times and number
of samples are the same for all subjects. However, it is straightforward to adapt the
proposed algorithm to different sampling times and different number of samples for
each subject.

The algorithm aims at estimating the parameters by minimizing the error εi j�
according to the inputs, which amounts to maximize the likelihood of the data.
Given the parameters θ = {α�, β1�, β2�, v�, ω�}�∈1,...,M and W = w, where w =
(�1, . . . , �N ) and �i is the cluster to which the i-th subject belongs, the probability of
observing data Y and w is given by

pθ (Y,w) =
N∏

i=1

P(Wi = �i )pθ (yi | Wi = �i )

=
N∏

i=1

ω�i p�(yi ),

where, for the sake of notation, we drop the parameters θ in p�. Recall that p�(yi ) is
as given in Eq. (3).

The EM algorithm is an iterative method, where the parameters θ are iteratively
refined until convergence. Thus, we denote by
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θ (k) = {α(k)
� , β

(k)
1� , β

(k)
2� , v

(k)
� , ω

(k)
� }�∈1,...,M

the parameters at iteration k of the EM algorithm. As usual, the EM algorithm is going
to havemultiple random restarts for the initial parameters θ (0), fromwhich it is elicited
the clustering with highest likelihood.

The EM algorithm consists of two steps, an expectation step (E-step) and a max-
imization step (M-step). We devote the remainder of this section to describe these
steps.

3.1.1 E-step

In this step we compute the objective function Q defined as

Q(θ , θ (k)) = Ep
θ(k) (W|Y )[log(pθ (Y,W)]

=
M∑

�=1

N∑

i=1

X (k)
i� log(ω� p�(yi )),

where

X (k)
i� = ω

(k)
� p(k)

� (yi )
∑M

m=1 ω
(k)
m p(k)

m (yi )
.

Note that the expected value is taken over pθ (k) (W | Y ) and that Q is a function of θ ,
given the present estimates of the parameters θ (k). It is well known that maximizing
Q corresponds to maximizing the likelihood of Y .

3.1.2 M-step

In this step we find the parameters θ that maximize Q(θ , θ (k)). Next, we present the
expressions to update the parameters α�, β1�, β2�, v� and ω� for iteration k + 1, given
their current values at iteration k; recall that the parameters α�, β1� and β2� define the
mean concentration for the �-th cluster, given by C�(t), and so, their update is jointly
presented.

Update of ω�. The update of ω� is similar to the canonical EM algorithm for mixtures
of Gaussians and for that reason we omit its derivation; the update is given by:

ω
(k+1)
� = 1

N

N∑

i=1

X (k)
i� for all � = 1, . . . , M .

Update of C�(t). The update of C�(t) consists in updating α�, β1� and β2�. Unfortu-
nately, it is not straightforward to analytically find these parameters, as this corresponds
to solve a system of transcendental equations.
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For this reason, we need to rely on numerical methods, where a possibility is
to use Newton’s method for the multidimensional case. This method allows to find
successively better approximations to the roots (or zeros) of a real-valued function.
In our specific case, we want to find the parameters θ that maximize the objective
function Q(θ, θ (k)) and those correspond to finding the roots on the partial derivatives
of Q(θ, θ (k)). However, for large-scale data, Netwon’s method becomes unfeasible as
it requires to compute the inverse of the Hessian matrix at each iteration of the EM
algorithm. On one hand, the determinant of the matrix might be close to zero, which
will make the method unstable; on the other hand, the method is quite space and time
demanding.

To overcome this difficulty, we followed the canon of the literature and used a
coordinate descent method (Wright 2015; Nesterov 2012). In this method, we greed-
ily search themaximumof each parameter by fixing the others on their previous values.
For this simplified approach we are able to find α

(k+1)
� analytically while β

(k+1)
1� and

β
(k+1)
2� are obtained using the Newton’s method for the univariate case. The experi-

mental results show that this simplification does not prevent our method from reaching
good performance.

To update α� we have to solve
∂Q(θ ,θ (k))

∂α�
= 0. The solution for this equation is

α� =
∑N

i=1

∑n

j=1
X (k)
i� yi j (e

−β1�t j − e−β2�t j )

∑N

i=1

∑n

j=1
X (k)
i� (e−β1�t j − e−β2�t j )2

and, as mentioned before, we shall use β
(k)
1� and β

(k)
2� , instead of the maxima for β1�

and β2�, to compute the update of α�, which leads to

α
(k+1)
� =

∑N

i=1

∑n

j=1
X (k)
i� yi j (e

−β
(k)
1� t j − e−β

(k)
2� t j )

∑N

i=1

∑n

j=1
X (k)
i� (e−β

(k)
1� t j − e−β

(k)
2� t j )2

.

It is straightforward to see that the above value is indeed a maximum, by computing
the second derivative, and checking that it is negative in α

(k+1)
� .

To update β1�, we have to find when the partial derivative of Q(θ, θ (k)) in β1� takes

the value zero, that is, ∂Q(θ ,θ (k))
∂β1�

= 0, which corresponds to solving

N∑

i=1

n∑

j=1

(
− α�

v�

X (k)
i� t j e

−β1�t j
(
yi j − α�(e

−β1�t j − e−β2�t j )
) )

= 0. (4)
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For this purpose, let h(k)
1� (β1�) be defined as

N∑

i=1

n∑

j=1

(
− α

(k+1)
�

v
(k)
�

X (k)
i� t j e

−β1�t j
(
yi j − α

(k+1)
� (e−β1�t j − e−β

(k)
2� t j )

) )
.

This function is obtained by replacing in the lefthand side of Eq. (4) the variable α� by
α

(k+1)
� and β2� by β

(k)
2� . Since h

(k)
1� is continuous and differentiable for β1� > 0, we can

applyNewton’smethod, andmoreover, it is easy to see that it converges to amaximum,
as the second derivative, analytically computed, is negative in the convergence point.
Therefore,

β
(k+1)
1� = Newton(β(k)

1� , h(k)
1� ),

where Newton(x, h) is the output of the Newton’s method for function h with starting
point x .

Finally, to update β2�, we also have to find when the partial derivative of Q(θ , θ (k))

in β2� takes the value zero, that is,
∂Q(θ ,θ (k))

∂β2�
= 0, which corresponds to solving

N∑

i=1

n∑

j=1

(α�

v�

X (k)
i� t j e

−β2�t j
(
yi j − α�(e

−β1�t j − e−β2�t j )
) )

= 0. (5)

Similarly to the previous update, let h(k)
2� (β2�) be defined as

N∑

i=1

n∑

j=1

(α
(k+1)
�

v
(k)
�

X (k)
i� t j e

−β2�t j
(
yi j − α

(k+1)
� (e−β

(k+1)
1� t j − e−β2�t j )

) )
.

Observe that this function is obtained by replacing in the lefthand side of Eq. (5) the
variable α� by α

(k+1)
� and β1� by β

(k+1)
1� . Once again, since h(k)

2� is continuous and
differentiable for β2� > 0, we can apply Newton’s method that will converge to a
maximum, as the second derivative is negative in the convergence point. Thus,

β
(k+1)
2� = Newton(β(k)

2� , h(k)
2� ).

To sum up, C�(t) is updated as:

C (k+1)
� (t) = α

(k+1)
� (e−β

(k+1)
1� t − eβ

(k+1)
2� t ).

Update of v�. To update v� we need to have the mean value of the concentration for
cluster � at time t j , which is given byC

(k+1)
� (t j ). Given this, the update of v� is similar

to the canonical EM algorithm for mixtures of Gaussians, given by:
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v
(k+1)
� =

∑N

i=1

∑n

j=1
X (k)
i� (yi j − C (k+1)

� (t j ))
2

∑N

i=1
nX (k)

i�

.

3.2 Collapsing clusters

The EM algorithm starts with an initial number of clusters M and provides a weight
for each of these clusters. After EM convergence, clusters are analyzed to check
whether they are negligible or overlap to some extent. If a cluster � is negligible, that
is, ω� is below some user-defined threshold W , then the �-th cluster is disregarded,
being M decremented accordingly. The subjects that were grouped in the �-th cluster
are randomly distributed by the remaining clusters. The weights of the clusters are
recomputed correspondingly.

In addition, if two clusters �1 and �2 overlap, that is,

n∑

j=1

(C�1(t j ) − C�2(t j ))
2

n
< L,

where L is an user-defined threshold, then �1 and �2 are merged. Without loss of
generality, assume that cluster �2 is disregarded and all subjects now belong to cluster
�1 whose weight becomes ω�1 + ω�2 . The parameters of cluster �1 are updated with
the weighted average of the parameters of both clusters, that is,

α�1 = ω�1α�1 + ω�2α�2

ω�1 + ω�2

,

β1�1 = ω�1β1�1 + ω�2β1�1

ω�1 + ω�2

,

β2�1 = ω�1β2�1 + ω�2β2�2

ω�1 + ω�2

, and

v�1 = ω�1v�1 + ω�2v�2

ω�1 + ω�2

.

If at least one cluster is disregarded, the EM algorithm restarts with the new param-
eters as initial values for the method. The overall algorithm stops when EM converges
and there is no cluster to disregard according to the previous criteria.

4 Experimental results

We implemented the proposed algorithm in Java; the implementation is available at
https://asmcarvalho.github.io/EMPK/, togetherwith data used in the experiments. The
details about the coordinate descent method used to update the parameters β1� and
β2� in each EM iteration are provided in Appendix A. Moreover, in Appendix B we
provide further implementation details about the proposed EM algorithm.
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Fig. 2 On the left it is presented the dataset of experiment (i). The four clusters elicited by the proposed
EM algorithm are depicted in different colors; each line represents a subject. The algorithm was initialized
with ten clusters and was able to recover the original four, where two are very similar (orange and red). On
the right it is depicted the clusters found together with their standard deviation, that is, C�(t) ± σ� (color
figure online)

First, we present experimental results in synthetic data. Afterwards, we address real
data with the analysis of theophylline pharmacokinetics.

4.1 Synthetic data

In this section we evaluated the merits of the proposed algorithm with synthetic data.
Firstly, we considered cluster recovery and homogeneity. Then, we tested the cluster-
ing procedure with imbalanced data and empirically studied the running time of the
algorithm.

4.1.1 Cluster recovering

We performed two tests with the following (balanced) data: (i) a dataset with 60
subjects (N = 60), nine measurements over time for each subject (n = 9), low
within-group variance, and four clusters (M = 4); (ii) a dataset with 100 subjects
(N = 100), nine measurements over time for each subject (n = 9), high within-group
variance, and four non-overlapping clusters (M = 4). In this setup low within-group
variance means that the standard deviation of each cluster, although different in all
of them, is lower than 0.6; on the other hand, high within-group variance means a
standard deviation bigger than 1.2.

For each dataset, we ran the algorithm with 100 random initializations (to avoid
local maxima in the EM procedure) and ten initial clusters; the result with the highest
likelihoodwas chosen. The best result for experiments (i) and (ii) is presented in Figs. 2
and 3, respectively.

We conclude that the algorithm was able to completely recover the original four
clusters, even with two clusters having low between-group variance (orange and red
curves in Fig. 2, and blue and green curves in Fig. 3).

4.1.2 Cluster homogeneity

We also performed nine additional experiments, with different number of clusters
(M), summarized in Table1. To assess the homogeneity of the clusters the Sum of
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Fig. 3 On the left it is presented the dataset of experiment (ii). The four clusters elicited by the proposed
EM algorithm are depicted in different colors; each line represents a subject. The algorithm was initialized
with ten clusters and was able to recover the original four. On the right it is depicted the clusters found
together with their standard deviation (color figure online)

Table 1 Description of results
performed for nine additional
experiments. The last column
presents average time among the
100 runs for each experiment.
The normalized SSw is higher
when the dataset has higher
within-group variance (see
wgVar column). The algorithm
was able to recover all original
clusters

Test wgVar N M SSw
N×n Time

1 Low 60 4 0.1953 2.4125

2 High 100 4 1.4443 7.9685

3 Low 20 4 0.1482 0.4048

4 High 20 4 1.3421 0.7296

5 Low 60 3 0.2782 3.2308

6 High 200 4 1.4131 12.2858

7 Low 100 5 0.5467 2.1050

8 Low 100 5 0.1441 2.9747

9 Low 100 5 0.1724 4.2409

Squareswithin (SSw)was used. This performancemetric calculates the sumof squared
distances between all data points within the same cluster and the center of the cluster,
for all clusters. To be able to compare among experiments, SSw was normalized
with the number of computed distances, in our case, N × n. Similarly to previous
experiments, the algorithm was run over 100 random initializations and ten initial
clusters. The result with the highest likelihood was chosen to compute the normalized
SSw.

In conclusion, the algorithm was able to recover all original clusters. Moreover,
the normalized SSw is higher, as expected, when the dataset has higher within-group
variance (see wgVar column in Table1).

4.1.3 Imbalanced data

In this section we studied how cluster recovering behaves with imbalanced data.
Figure 4 depicts the curves used to generate the data.

In the first three datasets (Tests 1–3) the clusters are quite distinguishable due
to the low standard deviations in each group. With these tests we wanted to assess
the behaviour of the algorithm in a balanced scenario (20:20:20) and with between-
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Fig. 4 On the left it is presented the curves used to generate synthetic tests 1–3; on the right the curves used
to generate synthetic tests 4–6. Cluster 1 is depicted in red, 2 in blue and 3 in green (color figure online)

Table 2 Description of the imbalanced data

Test
√

v1 − √
v2 − √

v3 Imbalance

1 20:20:20

2 0.3–0.6–0.2 40:10:10

3 50:5:5

4 20:20:20

5 1.0–1.2–1.5 40:10:10

6 50:5:5

Each test has a total of 60 subjects, with eight time points, distributed among three different clusters. For
instance, Test 3 has three clusters: (i) the first cluster with 50 subjects and a standard deviation

√
v1 = 0.3;

(ii) the second cluster with 5 subjects and a standard deviation
√

v2 = 0.6; (iii) the third cluster with 5
subjects and a standard deviation

√
v3 = 0.2

cluster imbalances of 40:10:10 and 50:5:5. Check Table 2 for additional details in the
parameters and Fig. 5 (top) for a plot of the data.

In contrast, in the last three datasets (Test 4–6) there is a significant overlap between
the second (blue) and third (green) clusters, while the curves of the first (red) and third
(green) cluster have a similar shape (and so, closer parameters); see Fig. 4 (right) and
5 (bottom). In this setup we wanted to model within-cluster imbalance by mixing the
third (green) cluster with both the first (red) and the second (blue) cluster, and assess
the behaviour of the algorithm.

We ran the algorithm in the above scenarios, with 100 random initializations, start-
ingwith ten clusters. The optimal solution of the algorithmwas able to fully recover the
original clusters for Tests 1–3. In Tests 4–6, the algorithm often split the clusters into
new subconcepts but never merged the clusters or mixed subjects of distinct clusters.
Results are presented in Table3. Note that throughout the 100 random initializations
sometimes two clusters were retrieved (Test 1–3 and 5–6); in these cases the second
(blue) and the third (green) clusters were merged. In all the remaining cases, whenever
three clusters were outputted, theywere exactly the original clusters; if more than three
clusters were retrieved, one or more of the original clusters were split in more than
one cluster.
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Fig. 5 The data of each test 1–6, from top left to bottom right, respectively (color figure online)

Table 3 Results of the clustering procedure for Test 1–6

Test Optimal solution Retrieved clusters

M̂ Cluster 1 Cluster 2 Cluster 3 2 3 4 5

1 3 20 20 20 8 92 0 0

2 3 40 10 10 2 98 0 0

3 3 50 5 5 5 95 0 0

4 5 20 18 + 2 17 + 3 0 17 49 34

5 4 40 10 8 + 2 11 56 32 1

6 4 40 5 3 + 2 20 62 18 0

The number of clusters found by the optimal solution is indicated by M̂. Column Cluster i indicates the
number of subjects in the i-th cluster. For instance, in Test 1, the first cluster of the optimal solution has 20
subjects; in Test 4, the second original cluster was split in two in the optimal solution, one with 18 subjects
and other with 2 subject. The column Retrieved clusters concerns the number of clusters found in the 100
random initializations, ranging from 2 to 5. For instance, in Test 1, the algorithm found 8 solutions with
2 clusters and 92 with 3. No solutions with more clusters were found in the 100 random initializations of
Test 1

Although the results were close to the expected, we noticed that by choosing the
likelihood to retrieve the optimal solution, the number of clusters tend to be higher
with the extra clusters having low weight (in our case, 2 or 3 subjects). Indeed, it is
well known that the likelihood overfits the data (Carvalho et al. 2011, 2014). Notwith-
standing, having prior knowledge about the application domain, one can restrict the
number of initial clusters and guide the algorithm to find the right ones. Alternatively,
one can also merge clusters with low weight by setting W to a larger value (we used
the default value of 0.025 in the experiments).

To avoid this shortcoming, we repeated Tests 4–6, with 100 random initializations,
but starting with three random clusters instead of the previous ten. In this case, the
algorithm was able to recover the original clusters in all the tests.
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Fig. 6 On the left the average running time is plotted as a function of the number of subjects. The linear
regression (in blue) is also plotted and it gives evidence that the algorithm runs linearly on the number of
subjects. On the right the box-and-whisker chart for the 100 random initializations is presented (color figure
online)
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Fig. 7 On the left the average running time is plotted as a function of the number of initial clusters. The
linear regression (in blue) is also plotted and it gives evidence that the algorithm runs linearly on the number
of initial clusters. On the right the box-and-whisker chart for the 100 random initializations is presented
(color figure online)

4.1.4 Running time

We assessed the average running time of the algorithm as a function of the number of
subjects. For this purpose, we used datasets with the number of subjects ranging from
20 to 200, all with the same initial number of clusters M = 10. As usual, the algorithm
was initialized randomly 100 times. The average running times are shown in Fig. 6.

A similar analysis was carried out to study the average running time of the algorithm
in terms of the initial number of clusters. From a dataset with 100 subjects, we varied
the initial number of clusters from 10 to 60. Again, the algorithm was initialized
randomly 100 times. The average running times are exhibited in Fig. 7.

We conclude that the algorithm runs linearly both on the number of subjects and
on the number of initial clusters.

4.2 Real data

The real dataset chosenwas the analysis of theophylline pharmacokinetics. The clinical
data (available e.g. in R), corresponds to a study on the kinetics of the anti-asthmatic
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Fig. 8 On the left it is presented the dataset for the analysis of theophylline pharmacokinetics; each line
represents a subject. On the right it is depicted the six clusters found together with their standard deviation.
As clusters are unknown for this data, the color of a line on the left matches the corresponding cluster,
found by the proposed algorithm, on the right. The algorithm was initialized with three clusters (as only 12
subjects were under study) and 100 random restarts (color figure online)
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Fig. 9 The three clusters along with the original theophylline data grouped in the corresponding cluster.
First cluster (red) parameters are:α1 = 12.08,β11 = 0.08 andβ21 = 1.21; second cluster (blue) parameters
are: α2 = 9.03, β12 = 0.09 and β22 = 3.18; third cluster (green) parameters are: α3 = 9.60, β13 = 0.10
and β23 = 1.01. The fitting of the data with the curves empirically supports the one-compartment model
(color figure online)

drug theophylline where twelve patients were given oral doses of this drug and had
their serum theophylline concentrations measured over the following 25 hours (Beal
et al. 1993).

Figure 8 (left) shows the original time-series’ concentrations. Figure 8 (right) shows
the results of the clustering procedure with the proposed algorithm; it groups the
theophylline time series in three clusters with different characteristics (corresponding
to different absorption, distribution, metabolism, and excretion rates). Figure 9 shows
the fit of each cluster with the original data.

From Fig. 9 we conclude that subjects in the first cluster (red) absorb more drug
than those in the other clusters. Moreover, subjects in the second (blue) and third
(green) cluster have more or less the same blood drug concentration after three hours,
however, subjects in the second cluster tend to absorb the drug faster than those in the
third cluster.

Finally, note that whenever clusters are elicited, the next step is to relate other
patient features to the identified groups, allowing to predict a priori in which cluster a
new patient belongs to. In this dataset such features were not present. This obviously
requires domain knowledge to list which features are relevant to classify the patients
into the obtained groups.
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5 Conclusion and future work

The EM algorithm is a well established unsupervised learning method that allows to
cluster data into similar groups. Themain contribution of this work was to adapt EM to
cluster time-series data for a relevant family of curves describing PK drug responses.
As a special case of the method of Azzimonti et al. (2013), we explored the model
features in order to skip the non-linear estimation step, hence favoring a singleEMstep.
Experimental results showed that the proposed method was effective when learning
in synthetic and real scenarios. In addition, the algorithm converged efficiently.

The ultimate goal of the proposed method is to study inter-patient variability in PK
drug response. This will allow to stratify patients depending on their response and
help physicians tailoring group-dependent therapies. This shall improve the therapy
response while decreasing its side-effects. In particular, the method will be applied to
study PK drug responses of HIV subjects co-infected with hepatitis B/C.

As future work we intend to identify and include fixed effects to describe popu-
lation behavior. Research in PK drug response goes precisely towards finding such
parameters, either using some empirical evidence or theoretical justification. From an
algorithmic point of view, we also want to incorporate a penalty such like theminimum
description length (Rissanen 1997) in the clustering procedure to avoid overfitting and
low-weight clusters with outliers.
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Appendix 1: Experimental setup

As described in Sect. 3.1, theM-stepmaximizes the likelihood over the parameters β1�
and β2�, for each cluster �, resorting to a numerical method; indeed, it is overwhelming
to obtain the analytical solution of the transcendental systemof equations that provided
the maxima. Next, we detail a simple optimization and stopping criteria for coordinate
descent method used in the experiments presented in Sect. 4.

Optimization

To improve the convergence rate of coordinate descent method we made an improve-
ment in the method by intercalating the (one-dimensional) Newtown iterations for
variables β1� and β2�, thus, solving Eqs. (4) and (5) simultaneously. With such mod-
ification, the method converged significantly faster, without deteriorating the results.
Recall that Newton(b, h) is an iterative method to find a root of a function h given
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an initial approximation b, such that, in the d-th iteration of Newton’s method we
have

b(0) = b and b(d+1) = b(d) − h(b(d))

h′(b(d))
.

We can recast the M-step for maximizing β1� and β2� as the problem of finding b1
that maximizes h1(b1, b2), given b2 fixed, and b2 that maximizes h2(b1, b2), given b1
fixed, simultaneously. A simple approach to address this problem is to interleave the
iterations of Newton’s method as b(0)

1 , b(0)
2 , b(1)

1 , b(1)
2 , . . . so that

b(d+1)
1 = b(d)

1 − h1(b
(d)
1 , b(d)

2 )

∂h1
∂b1

(b(d)
1 , b(d)

2 )
and b(d+1)

2 = b(d)
2 − h2(b

(d)
1 , b(d)

2 )

∂h2
∂b2

(b(d)
1 , b(d)

2 )
.

We took this approach where

b(0)
1 = β

(k)
1� and b(0)

2 = β
(k)
2� .

Note that k is used for the k-th iteration of the EM algorithm, whereas d (in the above
case d = 0) is used for the d-th iteration of the Newton’s method. So the previous
estimates of β1� and β2� by the EM algorithm, are the initial approximation for the
roots in Newton’s method. In this case, we let

h1(b1, b2) = h(k)
1� (b1, b2) and h2(b1, b2) = h(k)

2� (b1, b2),

with h(k)
1� (b1, b2) defined as

N∑

i=1

n∑

j=1

(
− α

(k+1)
�

v
(k)
�

X (k)
i� t j e

−b1t j
(
yi j − α

(k+1)
� (e−b1t j − e−b2t j )

) )
,

and h(k)
2� (b1, b2) defined as

N∑

i=1

n∑

j=1

(α
(k+1)
�

v
(k)
�

X (k)
i� t j e

−b2t j
(
yi j − α

(k+1)
� (e−b1t j − e−b2t j )

) )
.

Observe that functions h(k)
1� and h(k)

2� as defined in Sect. 3.1 have only one argument,
while here they have two for the purpose of applying the envisage optimization. With
this optimization we start with b(0)

1 = β
(k)
1� and b(0)

2 = β
(k)
2� , then we iterate the

Newton’s method until convergence in, say, d iterations, and finally, we update β1�

and β2� as β
(k+1)
1� = b(d)

1 and β
(k+1)
2� = b(d)

2 .
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Stopping criterion

In our implementation, the Newton(b, h) method is stopped at iteration d if

| b(d) − b(d−1) |< 10−10.

Moreover, if the number of iterations exceeds 104 the method is aborted (with a
warning to the user). However, in practice, this iteration limit was never achieved in
the experiments performed in Sect. 4.

In our particular setting, as we are computing at each step both β1� and β2�, we
stop when both approximations fulfill the previous criteria.

Knee analysis

For the clustered curves to have biological meaning (e.g., concentrations need to be
positive, rates cannot become exponentially faster, etc.), we imposed that

β1�, β2� ∈ (0, 5) and β1� ≤ β2�.

If Newton’s method ends with β1� > β2� then we swap β1� with β2�; in practice, this
never happened in the experiments performed in Sect. 4. Nonetheless, if β1� /∈ (0, 5)
or β2� /∈ (0, 5), we perform a knee analysis to elicit a value within the allowed range.

In a general setting of Newton(b, h), assume that the method converges in iteration
d and b(d) is out of some allowed range. It might be very well the case b(d) is out
of range but the images of h within the allowed range are very closed to h(b(d)). In
this case, the method does not converge inside the range because b(d) > b(d−1) but
h(b(d)) ≈ h(b(d−1)). Therefore, the method should be stopped when

| h(b(d)) − h(b(d−1)) |< 10−10,

which is called a knee analysis.
In our particular case, we perform this knee analysis to avoid β1� /∈ (0, 5) and

β2� /∈ (0, 5). If, even performing this analysis, we have β1� /∈ (0, 5) then we keep
the previous parameters approximation, that is, β(k+1)

1� = β
(k)
1� , and the EM algorithm

proceeds. The same analysis is carried out for β2�.

Appendix 2: Implementation details

In this appendix, we present implementation details related to the proposed EM algo-
rithm.

Initial number of clusters

The initial number of clusters is an user-defined parameter. However, if this value is
not given, we set M = N

3 .
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Stopping criterion

Usually, an EM algorithm stops when the difference between consecutive values of the
parameters reaches some threshold. In our case, the impact of the parameters β1� and
β2� overwhelms the impact of all remaining parameters in the definition of the clusters;
recall that β1� and β2� are exponents in Eq. (2). For this reason, only β1� and β2� are
considered in the stopping criterion of the proposed EM algorithm. Specifically, the
EM algorithm stops when

| β
(k+1)
1� − β

(k)
1� |

| β
(k+1)
1� |

≤ 10−6 and
| β

(k+1)
2� − β

(k)
2� |

| β
(k+1)
2� |

≤ 10−6,

for all clusters � ∈ {1, . . . , M}.

Cluster thresholds

The thresholds for disregarding and merging clusters were defined (empirically) as
W = 0.025 and L = 1.
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