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a b s t r a c t

We propose a scoring criterion, named mixture-based factorized conditional log-likelihood (mfCLL), which
allows for efficient hybrid learning of mixtures of Bayesian networks in binary classification tasks. The
learning procedure is decoupled in foreground and background learning, being the foreground the single
concept of interest that we want to distinguish from a highly complex background. The overall procedure
is hybrid as the foreground is discriminatively learned, whereas the background is generatively learned.
The learning algorithm is shown to run in polynomial time for network structures such as trees and
consistent κ-graphs. To gauge the performance of the mfCLL scoring criterion, we carry out a comparison
with state-of-the-art classifiers. Results obtained with a large suite of benchmark datasets show that
mfCLL-trained classifiers are a competitive alternative and should be taken into consideration.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Bayesian networks [33] are probabilistic graphical models that
represent the joint probability distribution of a set of random
variables. They encode specific conditional independence proper-
ties pertaining to the joint distribution via a directed acyclic graph
(DAG). To achieve this, each vertex (aka node) of the DAG contains
a random variable, and edges between them represent the
dependencies between the variables. Besides serving as a repre-
sentation of a set of dependencies, the DAG also allows to factorize
the joint probability distribution via the chain rule of probability.
The main advantage of Bayesian networks is that they can specify
dependencies only when necessary, providing compact represen-
tations of complex domains which leads to a significant reduction
in the cost of learning and inference.

Bayesian networks have been widely used for classification
[18,21,40], being known in this context as Bayesian network
classifiers (BNC). However, they are often outperformed by much
simpler methods [15,18]. One of the most likely causes for this
seems to be the use of so called generative learning methods in
choosing the Bayesian network structure. In contrast to generative
learning, where the goal is to describe (or generate) the whole
data, discriminative learning focuses on the capacity of a model to

discriminate between different classes. Unfortunately, discrimina-
tive learning of BNCs turns out to be computationally much
more challenging than generative learning. For this reason, the
community has resorted to decompose the learning procedure
into generative–discriminative subtasks. In this context, Greiner
and Zhou [20] proposed to generatively learn the network struc-
ture and to discriminatively learn the parameters, whereas in
[21,41] the opposite is suggested. More recently, Carvalho et al.
proposed an approximate approach for fully discriminative learn-
ing of BNCs, exhibiting good performance both in terms of
accuracy and computational cost [8].

A great effort has been done to understand the advantages and
disadvantages of generative versus discriminative learning [35,31].
From this endeavor two regimes of performance, depending on the
size of the training data, were elicited. For large datasets, discri-
minative learning is preferred as it attains a lower asymptotic error.
On the other hand, generative learning performs better with small
datasets as it achieves its asymptotic error much faster. These
empirical results motivated the development of hybrid approaches
with intermediate regimes in between generative and discrimina-
tive limits, trying to get the best of both worlds. To this end, some
approaches considered a convex combination of generative and
discriminative likelihood functions [24,4]. Another work modified
the naive Bayes model to learn a large subset of parameters based
on the likelihood and a small subset of parameters based on the
conditional likelihood [36]. In contrast, Bishop and Lasserre [3]
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blend generative and discriminative learning by introducing priors
with constraints over the parameters which govern the balance
between the two learning regimes.

Mixtures of Bayesian networks further generalize BNCs. Bayesian
networks classifiers constrain the relations among the variables to
be the same for all values of the class variable. A mixture of Bayesian
networks, also called Bayesian multinet [19], can be thought as a
Bayesian network where edges can appear and disappear depend-
ing on the values of certain nodes in the graph. In particular,
Bayesian multinets as classifiers allow edges to appear and dis-
appear depending on the value of the class variable [18]. This
property is called asymmetric independence assumption [19]. Contra-
rily to BNCs, Bayesian multinets have only been learned genera-
tively. In this paper we propose a decomposable scoring criterion
for hybrid learning of multinets by extending the work of Carvalho
et al. [8] and capitalizing on the results on generative, discrimina-
tive and hybrid learning [35,31].

The proposed learning procedure is decoupled in foreground
and background learning. The foreground consists in the concept of
interest, for instance, a disease under study from a set of other
diseases and healthy patient data. The background consists of a
possible miscellaneous of concepts, for instance, one or more
diseases that are not under study and/or healthy patient data.
In this context, we propose to learn the background generatively
and the foreground discriminatively. This is achieved through
a new scoring criterion named mixture-based factorized conditional
log-likelihood (mfCLL). The Bayesian multinet provides an extra
benefit in this setup allowing us to describe the foreground
and the background in two separate regimes with context-
specific independences. The overall learning procedure is there-
fore hybrid, and it can be achieved in linear and polynomial time
for network structures like trees [12,16] and consistent κ-graphs
[6], respectively.

We applied the new hybrid procedure to distinguish transcrip-
tion factor binding sites (TFBS) from non-binding DNA sequences.
TFBSs are small strings of DNA where specific proteins bind to
start the transcription of a gene. Transcription is the first step in
gene expression and it is essential to protein biosynthesis which
regulates the biochemical reactions inside the cell of living organ-
isms. To evaluate the performance of mfCLL we assess its ability in
representing TFBSs from 89 benchmark datasets used in the
previous works [1,7]. We first provide a comparison with existing
TFBS models and then proceed to a broad examination using state-
of-the-art classifiers namely, support vector machine (SVM), logistic
regression (LogR), decision tree (DT), k-nearest neighbor (k-NN) and
tree augmented naive Bayes with factorized conditional log-likelihood
(TAN-fCLL) classifiers. On the above-mentioned 89 datasets, a
specific mfCLL-based mixture provided a higher discriminative
power than previous TFBS models. Moreover, such mfCLL-trained
mixture significantly outperformed SVMs with linear and Gaussian
kernels, LogR, DT, 3-NN, 5-NN, and TAN-fCLL classifiers. In addition,
it showed to be comparable with polynomial SVMs. Notwithstand-
ing, mfCLL-based mixtures are computationally more efficient than
polynomial SVMs, being 2–3 orders of magnitude faster for the 89
considered datasets.

The elicited mfCLL-trained mixture was also evaluated over
eight UCI diagnosis datasets [30]. The results confirmed its super-
ior power since it outperformed all other classifiers with statistical
significance.

The paper is organized as follows. In Section 2 we review the
essentials of Bayesian networks, as well as generative, discrimina-
tive and hybrid learning. In Section 3 we provide the background
material in Bayesian multinets and present our scoring criterion
for discriminatively learning the mixture foreground. Given the
model selection criterion we derive the optimal parameters and
present the hybrid procedure to learn the mixture structure. In

Section 4 we assess the developed techniques against state-of-the-
art classifiers. Finally, we draw some conclusions and future work
in Section 5.

2. Background

In this section we review the basic concepts of Bayesian
networks required to understand the proposed methods, and
discuss the differences between generative and discriminative
learning of BNCs.

2.1. Bayesian networks

Let X be a discrete random variable taking values in a countable
set X . In all that follows, we consider the domain X finite. We
denote an n-dimensional random vector by X¼ ðX1;…;XnÞ where
each component Xi is a random variable over X i. For each variable
Xi, we denote the elements of X i by xi1;…; xiri where ri is the
number of values that Xi may take. We say that xik is the kth value
of Xi, with kAf1;…; rig. The probability that X takes value x is
denoted by PðxÞ, being conditional probabilities Pðx∣zÞ defined
accordingly. The random vector X is said to be conditionally
independent of the random vector Y, given random vector Z, if
Pðx∣y; zÞ ¼ Pðx∣zÞ, for all x; y, and z.

A Bayesian network (BN) is a triple B¼ ðX;G;ΘÞ where X¼
ðX1;…;XnÞ is a random vector. The network structure G¼ ðX; EÞ is a
directed acyclic graph (DAG) with nodes in X and edges E
representing direct dependencies between the variables. For the
sake of simplicity we do not distinguish the random vector
X¼ ðX1;…;XnÞ from the set of random variables fX1;…;Xng. More-
over, we denote by ΠXi

the (possibly empty) set of parents of Xi in
G. For each node Xi, the number of possible vectors of parents'
values, called the parent configurations, is denoted by qi. The actual
parent configurations are ordered (arbitrarily) and denoted by
wi1;…;wiqi . For jAf1;…; qig, we say that wij is the jth configuration
of ΠXi

. Using this notation, the third element of the BN triple
denotes the parameters Θ¼ fθijkgiA f1…ng; jA f1;…;qig; kA f1;…;rig that
encode the local distributions of the network via

PBðXi ¼ xik∣ΠXi
¼wijÞ ¼ θijk:

A BN B induces a joint probability distribution over X given by

PBðX1;…;XnÞ ¼ ∏
n

i ¼ 1
PBðXi∣ΠXi

Þ: ð1Þ

The conditional independence properties pertaining to the joint
distribution are essentially determined by the network structure.
Specifically, Xi is conditionally independent of its non-descendants
given its parents ΠXi

in G [33].
The problem of learning a BN, given some data, consists in

finding the BN that best fits the underlying distribution generating
the data. This can be achieved by a score-based learning algorithm,
where a scoring criterion is considered in order to quantify the
fitting of a BN.

Contributions in this area of research are typically divided into
two different problems: scoring and searching. The scoring pro-
blem focuses on devising new scoring criteria to measure the
goodness of a certain network structure given the data. On the
other hand, the searching problem concentrates on identifying one
or more network structures that yield a high value for the scoring
criterion in mind. If the search is conducted with respect to a
neighborhood structure defined on the space of possible solutions
then we are in the presence of local score-based learning. Local
score-based learning algorithms can be extremely efficient if the
scoring criterion employed is decomposable, that is, if the scoring
criterion can be expressed as a sum of local scores associated to
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each network node and its parents. In this case, whenever the
network structure changes during the search procedure, the score
of the new network is re-evaluated just by modifying the local
contribution of the changed part.

The most common scoring criteria employed in BN learning are
reviewed in [5,44,23]. We refer the interested reader in newly
developed scoring criteria to the works of Carvalho et al. [8], de
Campos [13] and Silander et al. [39].

2.2. Generative, discriminative and hybrid learning
of Bayesian networks

In classification tasks BNs are used as Bayesian network
classifiers. Rigorously, a Bayesian network classifier (BNC) is a BN
where X¼ ðX1;…;Xn;CÞ. The variables X1;…;Xn are called attri-
butes, or features, and C is called the class variable. For efficiency
purposes it is common to restrict the dependencies between the
attributes and the class variable, imposing that all attributes have
the class variable as parent. Rigorously, an augmented naive Bayes
classifier is a BNC where the graph structure G is such that the class
variable has no parents, that is, ΠC ¼ |, and all attributes have at
least the class variable as parent, that is, CAΠXi

for all 1r irn. In
this work we focus our attention on augmented naive Bayes
classifiers, referring abusively to them as BNCs.

For convenience, we introduce additional notation. Let data T
with size N be given by T ¼ fx1;…; xNg, where: (i) xt ¼ ðx1t ;…; xnt ; ctÞ
denotes the tth instance of the data; (ii) x1t ;…; xnt are the values
that the attributes X1;…;Xn take in the tth instance; and (iii) ct is
the corresponding value for the class variable C.

Generative learning aims at maximizing the likelihood of
the data, by using the log-likelihood scoring criterion or a score
thereof (for instance, [39,13]). The log-likelihood scoring criterion
can be written as

LLðB∣TÞ ¼ ∑
N

t ¼ 1
log ðPBðx1t ;…; xnt ; ctÞÞ: ð2Þ

Discriminative learning, on the other hand, aims at maximizing
the conditional likelihood of the data. The reason why this is
a form of discriminative learning is that it focuses on correctly
discriminating between classes by maximizing the probability of
obtaining the correct classification. The conditional log-likelihood
(CLL) scoring criterion can be written as

CLLðB∣TÞ ¼ ∑
N

t ¼ 1
log ðPBðct jx1t ;…; xnt ÞÞ: ð3Þ

Friedman et al. [18] noticed that, in the context of classification
learning problems, the log-likelihood of T for B can be rewritten as

LLðB∣TÞ ¼ CLLðB∣TÞþ ∑
N

t ¼ 1
log ðPBðx1t ;…; xnt ÞÞ: ð4Þ

Interestingly, the objective of generative learning is precisely to
maximize the whole sum, whereas the goal of discriminative
learning consists of maximizing only the first term of the sum in
(4). Friedman et al. [18] attributed the underperformance of
learning methods based on LL to the term CLLðB∣TÞ being poten-
tially much smaller than the second term in (4). Unfortunately, CLL
does not decompose over the network structure, and therefore
there is no closed-form equation for optimal parameter estimates
for the CLL scoring criterion. The first works in this line of research
split the problem into two distinct generative–discriminative tasks:
(i) find optimal-CLL parameters and optimal LL-structure [20,41] and;
(ii) find optimal-CLL structure and optimal LL-parameters [2,21].
Although showing promising results, these hybrid approaches
present a problem of computational nature. Indeed, optimal-CLL
parameters have been achieved by resorting to gradient descent
methods, and optimal-CLL structures have been found only with

global search methods, making both methods very inefficient.
Recently, a least-squares approximation to CLL that enables full
discriminative learning of BNCs in a very efficient way has been
proposed [8]. This paper extends further this work dealing with
mixtures of BNs where the components of the mixtures are
learned with distinct regimes.

3. Hybrid learning of a two-component multinet

Herein, we present the concepts related to two-component
mixtures of BNs and motivate the hybrid procedure to learn them.
Then, we establish our decomposable scoring criterion for learning
the mixture foreground. Finally, we provide methods for parameter
and structure learning based on the proposed model selection
criterion.

3.1. Two-component multinets

Probabilistic mixtures of general graphical models were intro-
duced by Geiger and Heckerman [19] and since then they have
been utterly applied in several domains [29,18]. Mixtures of
arbitrary graphical models are also called Bayesian multinets
(BM). The main advantage of BMs is that they allow to represent
context-specific independences. We find these context-specific
independences when a subset of variables exhibit certain condi-
tional independences for some, but not all, values of a conditional
variable.

For convenience, we introduce some additional notation for
BMs intended to be learned from data T ¼ fx1;…; xNg, where
xt ¼ ðx1t ;…; xnt ; ctÞ. The last component of each instance in T is the
value of the class variable C, that is, ct is the value of the class
variable C in the tth instance of T. In binary classification tasks, this
variable ranges over the set C¼ f0;1g. It is also useful to associate
to each index of an instance of T its corresponding class value.
More precisely, consider the map η : f1;…;Ng-C, where ηðtÞ ¼ ct .
Moreover, for xt ¼ ðx1t ;…; xnt ; ctÞ and cAf0;1g we set the following
notation:

x�
t ¼ ðx1t ;…; xnt Þ; Ic ¼ η�1ðcÞ and Tc ¼ fx�

t : tA Icg:
Loosely speaking, Ic is the set of indexes of the instances in Twhere
the class variable takes the value c, and Tc is the set of instances,
excluding the class variable, for which the class variable takes the
value c.

A two-component Bayesian multinet, or two-component mixture
of Bayesian networks, is a triple M¼ 〈fλcgc ¼ 0;1;B0;B1〉 where
λc ¼ PðC ¼ cÞ is called the mixing proportion and each Bc is a BN
over fX1;…;Xng. The BN for each value c is called the local Bayesian
network for c. For the sake of simplicity, we omit λ1 from the two-
component mixture model M as λ1 ¼ 1�λ0, referring abusively to
it as

M¼ 〈λ0;B0;B1〉:

Without loss of generality, we henceforth call class 0 the back-
ground and class 1 the foreground; that is, B0 is the mixture
background model and B1 is the mixture foreground model.

A BM defines a unique joint probability distribution given by

PMðX1;…;Xn;CÞ ¼ λCPBC ðX1;…;XnÞ:
The standard procedure to learn BMs is to compute

λ̂c ¼ P̂ T ðC ¼ cÞ ¼Nc

N
; ð5Þ

from data, where Nc ¼ jTcj is the number of instances in the data
T where the class variable C takes the value c and P̂ T is the
distribution induced by the observed frequency estimates (OFE).
Each local BN Bc is then learned independently over the subset Tc.
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Predictions are made by choosing the class variable that max-
imizes the posterior probability PMðC∣X1;…;XnÞ.

3.2. Learning approach

Before establishing the discriminative scoring criterion for
learning the foreground of a two-component BM we motivate
the proposed learning approach.

As mentioned before, the envisaged learning procedure will be
decoupled in foreground and background learning. The rationale
for this approach is that we want to distinguish some particular
concepts (the foreground) from a miscellaneous of other concepts
forming the background. This is common in many real-word
applications. For instance, in medicine, a physician may want to
distinguish a given disease (under study) from a set of other
diseases and/or healthy patient data. Several other examples arise
from computational molecular biology where, for instance, detect-
ing special signals from the DNA sequence is of the utmost
importance. A DNA sequence comprises both coding and non-
coding regions, possibly containing special regulation signals and
noise, respectively. In this context, one may want to elicit a certain
signal and distinguish it from the remaining background signals
and/or noise (see Section 4.1 for a detailed example).

Although the envisaged hybrid approach is intuitive per se,
there is also a strong motivation for decoupling the learning in a
generative–discriminative procedure. Undoubtedly, understanding
the pros and cons of generative and discriminative learning is
crucial to devise hybrid approaches that enjoy the best properties
of both worlds. In our framework, background data is usually
noisy, highly complex and may have multiple and overlapping
concepts. Generative learning seems to deal with this type of data
better. In order to be able to use discriminative methods to learn
the background the amount of data needed would be much larger,
posing two different problems: (i) such amount of data may not be
available; (ii) the learning might become imbalanced producing
classifiers with a huge bias to the majority class. On the other
hand, since the foreground class is usually less complex with
very well defined patterns, a small amount of data is enough for
accurate predictions with discriminative methods.

Before proceeding, it is worthwhile pointing out the differences
between pure generative and the proposed hybrid learning of BMs.
In pure generative learning each local BN Bc is learned using only
the data Tc (disregarding T1� c) [19]. In the proposed hybrid
procedure, B0 is learned generatively whereas B1 is learned
discriminatively. Thus, while T0 is sufficient to learn B0, both T0
and T1 are required to learn B1. Indeed, in order to distinguish the
foreground from the background, information from both classes is
needed and therefore both the observations from T0 and T1 are
relevant. In what follows, we will provide a discriminative scoring
criterion to learn B1 from the full dataset T. We henceforth assume
that B0 was already learned with some generative learning
procedure in the literature and that λ0 and λ1 were computed as
in (5).

3.3. Model selection

Herein, we present the new discriminative scoring criterion to
learn the foreground of a two-component BM. This new score will
be used to select the foreground model that best fits the (condi-
tional) distribution underlying the data.

It is convenient to extend the notation introduced in the
previous sections to cope with the discriminative learning of B1
within a mixture M¼ 〈λ0;B0;B1〉. Henceforth, the usage of the
superscript 1 means that we are referring to the BN B1 only.
We denote by Π1

Xi
the parents of Xi in B1 and by qi

1 the number of
parent configurations of Π1

Xi
. Moreover, we denote by N1

ij1k the

number of instances in the data T where the variable Xi takes its
kth value, the attributes in Π1

Xi
take their jth configuration wij

1, and
the class variable C takes the value 1; N1

ij0k is defined similarly as
the number of instances in the data T where the variable Xi takes
its kth value, the attributes in Π1

Xi
take their jth configuration

wij
1, and the class variable C takes the value 0. Finally, θ1ijk denotes

the probability PB1 ðXi ¼ xik∣Π
1
Xi
¼w1

ijÞ, representing the parameters
of B1.

In the context of a BM M¼ 〈λ0;B0;B1〉 for binary classification
tasks, we have that

PMðct ∣y1t ;…; ynt Þ ¼
λct PBct

ðy1t ;…; ynt Þ
λct PBct

ðy1t ;…; ynt Þþλð1� ct ÞPBð1� ct Þ
ðy1t ;…; ynt Þ

: ð6Þ

To simplify notation, let

Ut ¼ λct PBct
ðy1t ;…; ynt Þ and Vt ¼ λð1� ct ÞPBð1� ct Þ

ðy1t ;…; ynt Þ;

hence, expression (6) can be rewritten as

PMðct ∣y1t ;…; ynt Þ ¼
Ut

UtþVt
:

In this case, the conditional log-likelihood of T for M has the
following form:

CLLðM∣TÞ ¼ ∑
N

t ¼ 1
log

Ut

UtþVt

� �
:

To efficiently discriminate between the foreground and the
background we need to derive a decomposable scoring criterion.
Unfortunately, log ðUtþVtÞ does not decompose over the mixture
components B0 and B1, but log ðUtÞ and log ðVtÞ do. In order to
achieve decomposability we need to determine which expressions
involving the logarithm of Ut and Vt would result in a decom-
posable scoring criterion with a closed-form expression. Despite
the overwhelming number of possibilities the properties of the
logarithm highly constrain the number of candidate expressions
which would result in a decomposable score. Therefore, in order
to decompose CLLðM∣TÞ over the two-component network struc-
tures, the function

f ðUt ;VtÞ ¼ log
Ut

UtþVt

� �
;

needs to be approximated by

f̂ ðUt ;VtÞ ¼ α log ðUtÞþβ log ðVtÞþγ;

where Ut and Vt are probabilities.
To analytically obtain the real numbers α, β and γ that best

approximate f̂ to f we need to make some reasonable stochastic
assumptions about Ut and Vt, even if they do not hold true exactly.
As Ut and Vt correspond to joint probabilities that are very small,
we follow the reasoning of Carvalho et al. [8] and assume that
ðUt ;VtÞ �Unifð½0; p�2Þ, for some small probability p. In this case, the
values for the constants α;β and γ that minimize the mean square
error were computed analytically in [8] and are given by

α¼ π2þ6
24

; β¼ π2�18
24

and γ ¼ π2

12 lnð2Þ� 2þðπ2�6Þ log ðpÞ
12

� �
:

This results in the following decomposable approximation for the
CLL

CLLðM∣TÞ ¼ ∑
N

t ¼ 1
log

Ut

UtþVt

� �
� ∑

N

t ¼ 1
ðα log ðUtÞþβ log ðVtÞþγÞ:

ð7Þ
In [8] it is shown that this approximation is unbiased, i.e.,

E½f̂ ðUt ;VtÞ� f ðUt ;VtÞ� ¼ 0, and that it minimizes the variance, i.e.,
E½ðf̂ ðUt ;VtÞ� f ðUt ;VtÞÞ2� is minimal. As we shall see later in this
paper, the dependence of γ on p is irrelevant as γ will be included
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in a constant that will be disregarded, since it has no role in the
model selection.

As the sum over t in (7) is ranging over all the dataset T we
can decouple the sum in two parts, one accounting for the
contribution of T0 and another for the contribution of T1. In this
way, we have that

CLLðM∣TÞ ¼ CLLðM∣T0ÞþCLLðM∣T1Þ:
Moreover, assuming that both the mixing proportion λ0 and the
background model B0 were (previously) generatively learned (and
so are fixed), and knowing that λ1 ¼ 1�λ0, we only need to learn
the foreground model B1. In this case, we have that

CLLðB1∣T0Þ � ∑
tAT0

ðα log ðUtÞþβ log ðVtÞþγÞ

¼ ∑
tA I0

ðα log ðλ0PB0 ðx�
t ÞÞþβ log ðλ1PB1 ðx�

t ÞÞþγÞ

¼ ∑
tA I0

β log ðPB1 ðx�
t ÞÞ

 !
þ ∑

tA I0

ðα log ðλ0PB0 ðx�
t ÞÞ

þβ log ðλ1ÞþγÞ

¼ ∑
tA I0

β log ðPB1 ðx�
t ÞÞ

 !
þK0;

where K0 accounts for the (fixed) contribution of B0; λ0; λ1 and γ to
CLLðB1∣T0Þ. The notation with B1 as argument in CLL, instead of
M¼ 〈λ0;B0;B1〉, emphasizes that the criterion is a function of the
foreground model B1 only, since B0, λ0 and λ1 are fixed. Similarly,

CLLðB1∣T1Þ � ∑
tAT1

ðα log ðUtÞþβ log ðVtÞþγÞ

¼ ∑
tA I1

ðα log ðλ1PB1 ðx�
t ÞÞþβ log ðλ0PB0 ðx�

t ÞÞþγÞ

¼ ∑
tA I1

α log ðPB1 ðx�
t ÞÞ

 !
þ ∑

tA I1

ðα log ðλ1Þ

þβ log ðλ0PB0 ðx�
t ÞÞþγÞ

¼ ∑
tA I1

αlog ðPB1 ðx�
t ÞÞ

 !
þK1;

where K1 accounts for the (fixed) contribution of B0; λ0; λ1 and γ
to CLLðB1∣T1Þ. Since the constants K0 and K1 are irrelevant for
maximizing CLLðB1∣T0Þ and CLLðB1∣T1Þ, respectively, we can drop
them. Therefore, we define the mixture-based factorized conditional
log-likelihood (mfCLL) scoring criterion as

mfCLLðB1∣TÞ ¼ ∑
tA I0

β log ðPB1 ðx�
t ÞÞ

 !
þ ∑

tA I1

α log ðPB1 ðx�
t ÞÞ

 !

¼ ∑
n

i ¼ 1
∑
q1i

j ¼ 1
∑
ri

k ¼ 1
βN1

ij0k log ðθ1
ijkÞ

 !

þ ∑
n

i ¼ 1
∑
q1i

j ¼ 1
∑
ri

k ¼ 1
αN1

ij1k log ðθ1
ijkÞ

 !

¼ ∑
n

i ¼ 1
∑
q1i

j ¼ 1
∑
ri

k ¼ 1
ðαN1

ij1kþβN1
ij0kÞ log ðθ1

ijkÞ: ð8Þ

The choice of the scoring criterion to use is particularly relevant
when the complexity of the BN structure grows. For instance,
the LL scoring criterion in (2) tends to favor complete network
structures since adding an edge never decreases the likelihood on
the training data. This phenomenon leads to overfitting which is
usually avoided by adding a complexity penalty to the LL. Most
common penalties are information-theoretic and so based on
compression. In this case, the score of a BN B is related to the
compression that can be achieved over the data with an optimal
code induced by B. The overall idea is to choose a representation of
the data which allows to express it with the shortest possible
length (usually measured in bits).

Rissanen proposed to assume that only integers are used to
encode the parameters of a BN B and to use the optimal (universal)
code for integer to encode them [37,38]. In this case, the number of
bits required to represent B is

KðBÞ ¼ 1
2 log ðNÞ B ;jj

where jBj is the total number of parameters of B. This approach
led to the development of the minimum description length (MDL)
scoring criterion defined as

MDLðB∣TÞ ¼ LLðB∣TÞ�KðBÞ:
The MDL criterion has also been used in the context of multi-

nets [18] and discriminative learning [26]. For multinets, the MDL
penalty of M is given by

KðMÞ ¼∑
c
KðBcÞþ1

2
log ðNÞð C �1Þ;

����
which is the sum of the MDL penalties of each local BN Bc jointly
with the multinomial for the class. Usually, the MDL penalty of the
multinomial of the class is not considered as it is irrelevant for
maximizing the score (because it is constant given the dataset). As
in generative learning of multinets, in our hybrid procedure the
(generative) background B0 does not depend on the foreground
network B1, and the (discriminative) foreground B1 considers the
background network B0 fixed. Therefore, a MDL penalized version
of the mfCLL score should only take into account the foreground
structure B1. Such penalized version, called mfCLLMDL, can be
straightforwardly obtained by subtracting the MDL penalty to (8)
resulting in the following decomposable score:

mfCLLMDLðB1∣TÞ ¼mfCLLðB1∣TÞ�
1
2
lnðNÞ ∑

n

i ¼ 1
ðri�1Þ � q1i : ð9Þ

3.4. Parameter learning

It this section we derive the values of the parameters θ1ijk that
maximize mfCLL in (8); the same parameters maximize (9). We are
able to obtain the optimal values of θ1ijk by assuming that they are
lower-bounded. This lower bound on θ1ijk follows from adopting
pseudo-counts, commonly used in BNCs and BMs to smooth
observed frequencies with Dirichlet priors and increase the quality
of the classifier [18]. Pseudo-counts correspond to the common
sense assumption that there are no situations with probability
zero. Indeed, it is a common mistake to assign probability zero to
an event that is extremely unlikely, but not impossible [28].

Theorem 3.1. Let N040 be the number of pseudo-counts. The
parameters θ1ijk that maximize (8) are given by

θ1
ijk ¼

N1
ijþk

N1
ijþ

ð10Þ

where

N1
ijþk ¼

αN1
ij1kþβN1

ij0k if αN1
ij1kþβN1

ij0kZN0

N0 otherwise

(

and

N1
ijþ ¼ ∑

ri

k ¼ 1
N1

ijþk;

constrained to θ1
ijkZN0=N1

ijþ for all i; j and k.

Proof. Note that

mfCLLðB1∣TÞ ¼ ∑
n

i ¼ 1
∑
qi

j ¼ 1
∑
ri

k ¼ 1
ðαN1

ij1kþβN1
ij0kÞ log ðθ1

ijkÞ
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¼ ∑
n

i ¼ 1
∑
qi

j ¼ 1
∑
ri

k ¼ 1
N1

ijþk log ðθ1
ijkÞ|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

ðaÞ

þððαN1
ij1kþβN1

ij0kÞ�N1
ijþkÞ log ðθ1

ijkÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
ðbÞ

0BB@
1CCA:

ð11Þ
Observe that if N1

ijþkZN0 then N1
ijþk ¼ ðαN1

ij1kþβN1
ij0kÞ. Thus the

summand (b) in (11) is only different from zero when ðαN1
ij1kþ

βN1
ij0kÞoN0. In this case N1

ijþk ¼N0 which implies that

ðαN1
ij1kþβN1

ij0kÞ�N1
ijþko0:

So, the value for θ1ijk that maximizes the summand (b) is the
minimal value for θ1ijk, that is, N0=N1

ijþ ¼N1
ijþk=N

1
ijþ . Finally, by

Gibb's inequality, we derive that the distribution for θ1ijk that
maximizes the summand (a) in (11) is θ1

ijk ¼N1
ijþk=N

1
ijþ . Since the

maximality of the summands (a) and (b) is obtained with the same
distribution, we have that the values for θ1ijk that maximize (8) are
given by θ1

ijk ¼N1
ijþk=N

1
ijþ . □

The role of the pseudo-counts N0 is to guarantee that no
counting N1

ijþk can be below N0. By plugging the parameters
obtained in (10) into the mfCLL criterion in (8), we obtain

dmfCLLðG1∣TÞ ¼ ∑
n

i ¼ 1
∑
q1i

j ¼ 1
∑
ri

k ¼ 1
ðαN1

ij1kþβN1
ij0kÞ log

N1
ijþk

N1
ijþ

 !
: ð12Þ

The notation with G1 has argument instead of B1 ¼ ðX;G1;Θ1Þ
emphasizes that once the parameters Θ1 are decided upon, the
criterion is a function of the network structure G1 only. The MDL
penalized version of (12) is given straightforwardly by

dmfCLL
MDL

ðG1∣TÞ ¼ dmfCLLðG1∣TÞ�
1
2
lnðNÞ ∑

n

i ¼ 1
ðri�1Þ � q1i : ð13Þ

Next, we show that mfCLL in (12) is not score equivalent; and
consequently the same applies for (13). Two BNs are said to be
equivalent if they can represent precisely the same set of distribu-
tions. Verma and Pearl [42] showed that this is equivalent to check
if the underlying DAGs of the two BNs have the same skeleton and
the same v-structures. A score-equivalent scoring criterion is one
that assigns the same score to equivalent BN structures [10,44,13].

Theorem 3.2. The dmfCLL scoring criterion is decomposable and non-
score equivalent.

Proof. Decomposability follows directly from the definition in
(12). Concerning non-score equivalence, it suffices to provide a
counter-example where two equivalent structures do not score the
same. To this purpose consider a two-node multinet (n¼2) and
T ¼ fð0;0;1Þ; ð0;1;1Þ; ð1;1;0Þ; ð1;1;1Þg as the training set. The struc-
tures G� X1-X2 and H� X2-X1 for B1 are equivalent, but it is
easy to check that dmfCLLðG∣TÞa dmfCLLðH∣TÞ. □

Since learning using undecomposable scores is, in general, an
expensive task, most of the interesting scoring criteria in the
literature are decomposable. However, it is possible to employ
undecomposable scores in a non-expensive way, considering prior
assumptions on the possible network structures [9]. In addition,
both score-equivalent and non-score-equivalent decomposable
scores can be learned efficiently, although the algorithms to learn
them are different. Non-score-equivalent scores typically perform
better than score-equivalent ones [13,44].

3.5. Structure learning

In this section we briefly discuss two well-known algorithms
for local score-based learning. The algorithm for hybrid learning of
the foreground and the background is then presented, profiting
from these discussions.

For decomposable scores, optimal networks can be learned
locally being the global score of the network taken as a sum or a
product of the local contributions of the score. Notwithstanding,
local score-based learning is efficient only if restricted to certain
structures, like trees [12,16] and consistent κ-graphs (CκG) [6].
Unrestricted BN structure learning is known to be NP-hard [11],
even for decomposable scores. Thus, to achieve efficient hybrid
learning of BMs we restrict our attention to trees and CκG
networks.

Tree BNs are learned using the Chow–Liu's [12] or Edmonds'
[16] algorithms. The first is used with score-equivalent scoring
criteria and the latter with nonscore-equivalent ones. The Chow–

Liu's algorithm simply finds the maximum spanning tree from a
complete weighted graph. Edmonds' algorithm finds the max-
imum directed spanning tree from a directed weighted graph,
where edges from A to B and B to A might weight differently. In
both algorithms, each edge of the complete graph is weighted
with the local contribution of the edge for the global score.
Because of this, only decomposable scores can be applied. The
optimal tree is found in OðNn2Þ time for both Chow–Liu's and
Edmonds’ algorithms.

Although very efficient, tree networks significantly restrict the
possible dependencies between variables since it only allows one
parent per node. Consistent κ-graphs overcome this shortcoming,
allowing for dependencies that are consistent with a topological
order of the optimal tree [6]. In detail, after obtaining the optimal
tree the breadth-first search (BFS) order of this tree is considered.
Then, each node may have at most κ parents, provided that the
parents are smaller than the node in the BFS order. For a fixed κ,
CκG networks can be learned in polynomial-time. Moreover, the
optimal CκG network always scores better than the optimal tree.

We are now able to present the algorithm for learning two-
component mixtures of BNs for binary classification tasks. The
learning procedure, presented in Algorithm 1, relies on two other
algorithms that learn each mixture component B0 and B1. It starts
by computing the mixing proportions λ¼ 〈λ0; λ1〉 as in (5). Then, it
generatively learns the background model B0, and discriminatively
learns the foreground model B1. The overall procedure is therefore
hybrid.

Algorithm 1. Hybrid learning of two-component multinets.

(1) Compute the mixing proportions λ0 ¼ N0
N and λ1 ¼ 1�λ0.

(2) Learn generatively from T0 the BN B0.

(3) Learn discriminatively from T, with the dmfCLL score or a
score thereof, the BN B1.

It is important to notice that any BN learning algorithm that copes
with decomposable scores can be used in Step 3 of Algorithm 1.
For instance, Chow–Liu's [12] or Edmonds' [16] algorithms can be
used to learn tree-like structures. Moreover, CκG network structures
[6] can also be learned. Although trees and CκGs are usually good
candidates, as they offer efficient and optimal solutions, heuristic
algorithms like greedy Hill climber can also be employed. The only
premise is that the algorithm should be based on local score
optimization, in order to be able to employ in Step 3 the mfCLL
scoring criterion in (12), or a penalized version of it as in (13).
Concerning Step 2, only T0 is considered to learn the background
model B0 and any generative learning algorithm can be employed.

The time complexity of Algorithm 1 only depends on the time
complexity of the algorithms employed to learn B0 and B1 in steps
2 and 3. For instance, if tree-like structures are learned in both
steps then the resulting algorithm is linear in the size of the data T,
that is, OðNn2Þ. However, if CκG-like structures are learned in any
(or both) of the steps then the algorithm is OðNnκþ1Þ time.
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4. Experimental results

In this section we present the experimental methodology along
with the results and their interpretation. We start by presenting
a particular setting in the field of computational biology where
discriminative learning of mixtures of BNs plays an important role.
We then compare our results with previous works in this same
core, mainly focusing on BN-based models. Moreover, we perform
a deep comparison with state-of-the-art classifiers. The best of
these mixtures is then evaluated with UCI medical diagnosis
datasets.

We implemented the CκG-mixture model and mfCLL scoring
criterion in Mathematica 7.0 on top of the Combinatorica package
[34]; plain CκG models were already implemented on top of this
package by the authors [7]. Both plain and penalized versions of
mfCLL, given by Eqs. (12) and (13), were implemented. In our
experiments we used κ¼2 since it showed to be a good tradeoff
between efficiency and expressiveness [6].

4.1. Modeling transcription factor binding sites

An important part of gene regulation is mediated by specific
proteins, called transcription factors (TF), which influence the
transcription of a particular gene by binding to specific sites on
DNA sequences, called transcription factor binding sites (TFBS). Such
binding sites are relatively short strings of DNA, normally 5–25
nucleotides long. A nucleotide is a letter of the DNA alphabet,
given by Σ ¼ fA;C;G;Tg. Usually, these binding sites are moder-
ately conserved strings so that they are recognized by the TF as
sites to bind and start transcription of a particular gene.

When dealing with the TFBS representation one needs a
collection of known binding sites, which in practice consists of a
collection of moderately conserved DNA substrings. These strings
are then aligned and trimmed to have the same size. The size of
the binding sites corresponds to the number of features of the
probabilistic models used to represent them. Each feature is
nominal and ranges over the DNA alphabet. TFBS models are
ultimately needed to discriminate binding regions from non-
binding ones. This is a classification task. To this end, the collection
of known binding sites is labeled as “binding”, and joined to a
collection of non-binding sites that are labeled as “non-binding”,
and a classification task is performed. As DNA is a single sequence,
“non-binding” instances correspond to subsequences of DNA that
are not TFBSs. These non-binding sequences are usually retrieved
from surrounding regions of TFBSs, typically from upstream
regions of genes, and then trimmed to have the same size as
binding instances.

A commonly used representation of TFBSs is a position-specific
scoring matrix (PSSM). It is defined by a matrix where each entry
(i,b) is the probability of nucleotide b being at the ith position in
the collection of binding sites. This representation assumes inde-
pendence of nucleotides in the binding sites. Although popular,
this simplistic independence assumption paved the way for more
complex models that account for nucleotide interactions [32].
Barash et al. [1] already obtained good results modeling TFBSs
with generatively learned tree BNs and mixtures of trees. More
recently Carvalho et al. [7] also contributed in this direction by
proposing pure generative C2G models to represent TFBSs. Herein,
we evaluate the extent to which the hybrid C2G-mixture models
are beneficial in representing TFBSs.

In TFBS representation there is no reason to think that a unique
BN is suitable to represent the co-regulated DNA sequences (the
background) and, at the same time, a TFBS within such region (the
foreground). Indeed, the background contains several signals along
with noise, as it might contain both coding and non-coding DNA
regions, whereas the foreground contains a collection of binding

sites moderately conserved. These two separate regimes are,
almost certainly, the reason why tree-mixture models have shown
to be better suited than plain tree models for TFBS representation
[1]. When compared with tree mixtures [1], CκG-mixture models
allow important nucleotide interactions to be captured. In this
context, CκG models allow for κ dependencies between nucleo-
tides whereas tree models allow only for one interaction (and
PSSM models for none). Due to this fact, CκG allows for
v-structures in its underlying DAG and so exhibits the so-called
induced dependencies, where totally unrelated propositions
become relevant to each other when new facts are learned.
In the case of TFBSs these dependencies may capture, for instance,
that the first position of a TFBS is independent of the second one,
unless a certain nucleotide occurs in the third position. PSSM and
tree models are unable to provide such dependencies.

4.1.1. Evaluating Bayesian network-based models
We evaluated the performance of hybrid C2G-models in TFBS

representation comparing them with state-of-the-art BN-based
models. We performed our evaluation on the same 89 benchmark
datasets used by Barash et al. [1]. These datasets were taken from
the TRANSFAC database [43], containing hundreds of biologically
validated TFBSs.

These 89 sequence-sets, each one corresponding to a fore-
ground data T1, were extracted from aligned binding sites of
Saccharomyces cerevisiae for which there were 20 or more sites.
Therefore, the minimum number of instances in T1 is 20, whereas
the largest T1 contains 80 instances. Each feature in T1 corresponds
to a specific position of the binding sites (first feature is the first
position, second feature is the second position, and so on). In each
of these positions there is a letter of the DNA alphabet, and
so features are nominal and contain the letters A, C, G or T. The
number of features in the 89 sequence-sets ranges from 6 to 24,
corresponding to the size of the binding sites.

The background data T0 was gathered from the upstream
regions of genes of the same organism (in this case, Saccharomyces
cerevisiae). This corresponds to non-binding sites in the DNA. In
practice, 1000 non-binding sequences were collected for each
dataset T0. The goal of classification is to distinguish binding sites
in T1 from non-binding sites in T0.

The resulting 89 datasets comprise both the foreground and the
background data, with an additional feature that was added to
represent the respective class variable; instances in T0 were
labeled with 0, whereas instances in T1 were labeled with 1. Thus,
the number of instances of the final 89 datasets varies from 1020
to 1080, and the number of features varies from 7 to 25, after
including the class variable.

For each dataset we evaluated some relevant two-component
mixtures pairs B0–B1, namely, tree–tree, tree–C2G, C2G–tree and
C2G–C2G. These mixtures were tested with the mfCLL scoring
criterion, with and without the MDL penalty. In order to provide a
baseline for comparison of the proposed hybrid models, we also
evaluated them with (generative) LL and MDL scoring criteria, as
firstly proposed by Barash et al. [1]. These resulted in the sixteen
candidate models, presented in Table 1, eight of them hybrid and
the other eight generatively learned. We improved the perfor-
mance of BNs by smoothing the parameter estimates according to
a Dirichlet prior [23], which in practice corresponds to adding a
certain amount of pseudo-counts uniformly. The smoothing para-
meter was set to 0.5 as it is common practice.

The accuracy of each mixture is defined as the percentage of
successful predictions on the test sets of each dataset. Accuracy
was measured via stratified five-fold cross-validation, using the
methods described by Kohavi [27]. Throughout the experiments,
we used the same cross-validation folds for every classifier. Scatter
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plots comparing the accuracies of the proposed methods are
depicted in Fig. 1. Points above the diagonal line represent cases
where the method shown in the vertical axis performed better

than the one on the horizontal axis. For space considerations, only
eight (one against seven) out of the sixteen tested models are
depicted and compared with the best mixture, C2G–C2G–
mfCLLMDL. Nonetheless, the results for the remaining models are
discussed along this section.

As suggested in [14], we also compared the performance of the
classifiers using Wilcoxon signed-rank tests. This test is applicable
when paired classification accuracy differences, along the datasets,
are independent and non-normally distributed. Alternatively, a
paired t-test could have been used but we applied the former as
the Wilcoxon signed-rank test is more conservative than the
paired t-test. We concluded that hybrid mixtures of C2G models
significantly outperformed the remaining mixtures. However, as
expected, the MDL penalty was needed in order to control
the complexity of the resulting C2G local models. Results compar-
ing the mixtures analyzed in Fig. 1 with the four most
promising hybrid mixtures are depicted in Table 2. Each entry in
the table has the p-value of the significance test for the corre-
sponding pairs of classifiers. The double arrow points to the best
classifier, in terms of classification rate, when the p-value is
smaller than 0.05.

From Table 2 it is clear that C2G–C2G–mfCLL is overfitting
whereas the same is not true, at least at the same scale, with tree–
C2G–mfCLL. This points out that overfitting is mainly occurring in
the background model B0. However, despite the fact that tree–
C2G–mfCLL performed better than C2G–C2G–mfCLL, Table 2 also
shows that higher accuracies were achieved with the same two-
component mixture models when using the penalized versions of
mfCLL. Actually, the combination of mfCLLMDL scoring criterion

Table 1
A total of sixteen multinets were used in the experiments. In the abbreviated name
the first word is the model employed in the background learning whereas the
second concerns the foreground. The third word indicates the score used for
learning the foreground model. The background model uses the same score as the
foreground if the model is generative, and the corresponding generative version
when the model is hybrid.

Learning Abbreviation Background Foreground

Model Score Model Score

Hybrid Tree–tree–mfCLL Tree LL Tree mfCLL
Tree–C2G–mfCLL Tree C2G
C2G–tree–mfCLL C2G Tree
C2G–C2G–mfCLL C2G C2G

Tree–Tree–mfCLLMDL Tree MDL Tree mfCLLMDL

Tree–C2G–mfCLLMDL Tree C2G

C2G–tree–mfCLLMDL C2G Tree

C2G–C2G–mfCLLMDL C2G C2G

Generative Tree–tree–LL Tree LL Tree LL
Tree–C2G–LL Tree C2G
C2G–tree–LL C2G Tree
C2G–C2G–LL C2G C2G
Tree–tree–MDL Tree MDL Tree MDL
Tree–C2G–MDL Tree C2G
C2G–tree–MDL C2G Tree
C2G–C2G–MDL C2G C2G
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Fig. 1. Scatter plots of the accuracy of different multinet classifiers compared with the penalized hybrid mixture C2G–C2G–mfCLLMDL over 89 datasets with biologically
validated TFBSs. The first two plots correspond to other penalized hybrid mixtures, the following three correspond to non-penalized hybrid mixtures, and the last two to
generative mixtures. Points above the diagonal line represent the cases where the method shown on the vertical axis performed better than the one on the horizontal axis.
C2G–C2G–mfCLLMDL was the classifier with the best performance.

A.M. Carvalho et al. / Pattern Recognition 47 (2014) 3438–3450 3445



with two-component mixtures of C2G models (first line of Table 2)
performed better than all the other considered classifiers. We conclude
that hybrid learning of two-component mixtures of C2G Bayesian
networks is beneficial, specially when the richness of the structure is
controlled using MDL to avoid overfitting.

Although not depicted in Fig. 1, nor presented in Table 2, we
also directly compared tree–tree–mfCLL with tree–tree–LL classi-
fiers, and tree–tree–mfCLLMDL with tree–tree–MDL, in order to
understand the benefits of using the mfCLL score without the
degree of freedom introduced by the C2G model. In this way, we
performed a comparison with previous results on using BN
mixtures to model TFBSs [1]. Results showed that tree–tree–mfCLL
significantly outperformed tree–tree–LL with a p-value of 2:08�
10�6 and that tree–tree–mfCLLMDL also performed significantly
better than tree–tree–MDL with a p-value of 1:37� 10�6. Further-
more, the hybrid mixture that provided the best results, C2G–
C2G–mfCLLMDL, outperformed with statistical significance both
tree–tree–mfCLL, tree–tree–mfCLLMDL, and mixtures of PSSMs.
We conclude then that a discriminative scoring criterion such as
mfCLL, with or without MDL penalty, is advantageous in classifica-
tion tasks when compared to their generative counterparts (LL
and MDL).

Our results support that hybrid multinets are suitable for TFBS
discrimination, and confirm those of Barash et al. [1] that had
already noticed that generative multinets outperform plain BN
models when modeling TFBSs.

4.1.2. Evaluating other state-of-the-art models
The usage of BNs to model TFBS is linked to the fact that they

provide an intuitive and human-readable model. Nevertheless,

discriminating TFBSs from background is mainly a classification
task and so any classifier can be used, independently of providing
or not a TFBS model capable of being interpreted or biologically
validated. Therefore, we also compared hybrid CκG-mixtures with
state-of-the-art classifiers, namely, support vector machines (SVM),
logistic regression (LogR), decision trees (DT) and k-nearest neighbor
(k-NN).

All aforementioned state-of-the-art classifiers were tested in
WEKA java package [22] and are summarized in Table 3. Concern-
ing SVM models, we used three different kernels: (i) a linear
kernel (SMO implementation in WEKA), henceforward denoted by
SVM; (ii) a polynomial kernel (SMO implementation in WEKA with
PolyKernel and exponent parameter E¼2), denoted by SVM2;
and (iii) a radial basis function (RBF) kernel also known as Gaussian
kernel (SMO implementation in WEKA with RBFKernel), which
we denote by SVMG. Following the canon in the literature [25], we
used a grid-search to find the optimal penalty parameter C and the
optimal RBF kernel parameter γ, using cross-validation. More
specifically, for linear, polynomial, and RBF kernels, we selected
C from ½10�1;1;10;102� by using five-fold cross validation on the
training set. For the RBF kernel we additionally selected γ from
½10�3;10�2;10�1;1;10� in a similar way.

In what concerns logistic regression and decision trees, Logis-
tic and J48 implementations from WEKA were used, respec-
tively, with default parameters. Concerning k-NN classifier, we
used k¼3 (IBk implementation in WEKA with parameter K¼3)
and k¼5 (IBk implementation in WEKA with parameter K¼5).
Finally, for TAN-fCLL, we improved its performance using Dirichlet
priors (see [23]) to smooth the network parameters. We achieve
this purpose by setting the alpha parameter to 0.5. In practice,
this is the default value for this parameter, and the value for which

Table 2
Wilcoxon signed-rank tests for the results obtained by multinets over 89 datasets with biologically validated TFBSs. Each entry of the table has the p-value of the significance
test for the corresponding pair of classifiers. The double arrow points to the superior learning algorithm, in terms of classification rate, when the p-value is smaller than 0.05.

It is clear that the C2G–C2G–mfCLLMDL outperformed all other multinets with high statistical significance.

Multinet Tree–C2G C2G–C2G Tree–C2G C2G–tree C2G–tree Tree–tree Tree–tree
Score mfCLLMDL mfCLL mfCLL mfCLLMDL mfCLL MDL LL

C2G–C2G 2:6� 10�2 1:7� 10�16 1:5� 10�7 3:1� 10�2 7:2� 10�10 7:2� 10�10 6:3� 10�15

mfCLLMDL ( ( ( ( ( ( (
Tree–C2G 5:7� 10�16 8:2� 10�6 1:9� 10�2 5:0� 10�9 5:0� 10�9 2:2� 10�14

mfCLLMDL ( ( ( ( ( (
C2G–C2G 6:8� 10�16 6:8� 10�16 1:3� 10�14 1:3� 10�14 6:7� 10�13

mfCLL * * * * *
Tree–C2G 2:7� 10�6 4:8� 10�7 1:4� 10�2 1:4� 10�2

mfCLL * ( ( (

Table 3
Discriminative state-of-the-art classifiers used in the experiments. Parameters, if different from their defaults, are given parenthetically in the last column of the table.
Concerning SVMs, a grid-search was used to find the optimal penalty parameter C, and the optimal RBF kernel parameter γ using cross-validation. More specifically, for linear,

polynomial, and RBF kernels, C was selected from ½10�1;1;10;102� by using 5-fold cross validation on the training set. For the RBF kernel, γ was also selected from

½10�3 ;10�2 ;10�1;1;10� in a similar manner.

Abbreviation Classifier Implementation

DT Decision tree J48 implementation from WEKA

3-NN 3-Nearest neighbor IBk (K¼3) implementation from WEKA
5-NN 5-Nearest neighbor IBk (K¼5) implementation from WEKA

SVM Support vector machine with linear kernel SMO implementation from WEKA
SVM2 Support vector machine with polynomial kernel SMO with PolyKernel (E¼2) implementation from WEKA
SVMG Support vector machine with Gaussian kernel SMO with RBFKernel implementation from WEKA

LogR Logistic regression Logistic implementation from WEKA

TAN-fCLL Tree augmented naive BN classifier with fCLL scoring criterion TAN implementation from [8] (score¼ fCLL)

A.M. Carvalho et al. / Pattern Recognition 47 (2014) 3438–34503446



we obtained the highest average accuracy among all classifiers.
The rest of the experimental procedure was similar to the one
described in the previous section. Results are illustrated in Fig. 2
and Table 4.

From the analysis of Fig. 2 and Table 4 it is clear that C2G–
C2G–mfCLLMDL and SVM2 significantly outperformed all other
state-of-the-art classifiers. C2G–C2G–mfCLLMDL also performed
better than SVM2 although the difference was not statistically
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Fig. 2. Scatter plots of the accuracy of different state-of-the-art classifiers compared with C2G–C2G–mfCLLMDL, that was the mixture that performed better over the 89
datasets with biologically validated TFBSs (Table 2). Points above the diagonal line represent the cases where the method shown on the vertical axis performed better than
the one on the horizontal axis. C2G–C2G–mfCLLMDL was again the best classifier.

Table 4
Wilcoxon signed-rank tests for the results obtained by state-of-the-art classifiers over 89 datasets with biologically validated TFBSs. Each entry of the table has the p-value of
the significance test for the corresponding pair of classifiers. The arrow points to the superior learning algorithm, in terms of classification rate. A double arrow is used when

the difference is significant with p-value smaller than 0.05. It is clear that the C2G–C2G–mfCLLMDL and SVM2 outperformed all other classifiers with high statistical

significance. Given that C2G–C2G–mfCLLMDL requires no parameter optimization and low learning times in comparison with SVM2, we considered it to be the best strategy.

Classifier DT 3-NN 5-NN SVM SVM2 SVMG LogR TAN–fCLL

C2G–C2G–mfCLLMDL 1:8� 10�11 2:1� 10�11 9:3� 10�10 1:2� 10�11 0.25 3:5� 10�3 1:2� 10�15 1:0� 10�4

( ( ( ( ’ ( ( (
DT 1:9� 10�2 6:4� 10�4 0.18 1:3� 10�11 1:5� 10�4 6:4� 10�5 2:0� 10�8

* * ↑ * * ( *
3-NN 1:5� 10�4 0.25 1:7� 10�11 1:6� 10�8 4:7� 10�8 3:5� 10�6

* ’ * * ( *
5-NN 1:7� 10�2 1:9� 10�9 2:1� 10�6 4:4� 10�10 1:3� 10�3

( * * ( *
SVM 1:9� 10�11 2:7� 10�11 9:6� 10�13 5:7� 10�4

* * ( *
SVM2 6:8� 10�3 8:0� 10�15 2:3� 10�4

( ( (
SVMG 1:9� 10�15 9:4� 10�3

( (
LogR 1:1� 10�14

*
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significant. The main advantage of C2G–C2G–mfCLLMDL over SVM2
is its computational cost, as SVM2 needs to tune its parameters
with a time-consuming grid-search procedure, taking 2–3 orders
of magnitude more time than C2G–C2G–mfCLLMDL.

The other classifiers behaved somewhat as expected. Gaussian
SVMs significantly outperformed all the other classifiers, with the
exception of mfCLLMDL and polynomial SVMs. Among linear SVMs,
logistic regression, k-nearest neighbors, and decision trees, the 5-NN
was the one that performed the best, followed by linear SVM, 3-NN
and DT. Surprisingly, LogR attained the worst results in this setup.

4.2. Clinical data

We also tested the proposed hybrid classifier C2G–C2G–
mfCLLMDL over eight datasets from the UCI repository [30]. We
chose eight diagnosis datasets that were within the scope of
application of the proposed method—a background characterizing
the values of the attributes for healthy individuals, and a fore-
ground with the attributes for patients with a particular disease.
These datasets are described in Table 5.

The continuous-valued attributes in the datasets were discretized
in a supervised manner using the entropy-based method proposed in
[17]. For this task we used the WEKA package. Supervised discretiza-
tion was performed via weka.filters.supervised.attribute.

Table 5
Description of the UCI datasets used in the experiments. All these eight datasets
were collected from clinical data: (1) breast cancer; (2) heart disease from
Cleveland patients; (3) diabetes patient records retrieved from automatic electronic
recording device and paper records; (4) echocardiogram from patients that suffered
heart attacks; (5) hepatitis disease; (6) mammographic masses from breast cancer
screening; (7) Pima Indians diabetes; and (8) thyroid disease.

Dataset Features Train Test

Breast 10 683 CV-5
Cleve 14 296 CV-5
Diabetes 9 768 CV-5
Echo 12 132 CV-5
Hepatitis 20 80 CV-5
Mammo 6 961 CV-5
Pima 9 768 CV-5
Thyroid 5 215 CV-5

Table 6

Accuracy attained by each classifier over the eight datasets described in Table 5. The best classifier was the C2G–C2G–mfCLLMDL followed by TAN-fCLL. The accuracy is
annotated with the standard deviation, which is computed according to the binomial formula

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
acc � ð1�accÞ=m

p
, where acc is the classifier accuracy and m is the size of the

dataset.

Dataset C2G–C2G DT 3-NN 5-NN SVM SVM2 SVMG LogR TAN-fCLL

mfCLLMDL

Breast 97.66 95.90 96.93 96.93 97.51 96.05 96.63 96.63 97.66
70.58 70.76 70.67 70.67 70.60 70.75 70.69 70.69 70.58

Cleve 82.77 76.69 80.41 82.77 82.09 72.97 78.38 81.42 82.77
72.19 72.46 72.31 72.19 72.23 72.58 72.39 72.26 72.19

Diabetes 79.17 77.60 77.86 77.73 77.47 76.56 77.86 78.65 78.91
71.47 71.50 71.50 71.50 71.51 71.53 71.50 71.48 71.47

Echo 79.03 79.03 74.19 79.03 75.81 79.03 79.03 70.97 72.58
73.54 73.54 73.81 73.54 73.77 73.54 73.54 73.95 73.88

Hepatitis 93.75 85.00 91.25 92.50 83.75 87.50 87.50 78.75 90.00
72.71 73.99 73.16 72.71 72.94 74.12 73.70 74.57 73.35

Mammo 83.86 83.37 78.31 80.36 81.69 85.06 84.46 82.41 82.89
71.19 71.20 71.33 71.28 71.25 71.15 71.17 71.23 71.21

Pima 78.39 77.21 76.82 76.69 78.91 76.95 77.08 78.26 78.52
71.49 71.51 71.52 71.53 71.47 71.52 71.52 71.49 71.48

Thyroid 94.88 94.42 93.49 92.56 94.88 94.88 94.88 88.84 94.42
71.50 71.57 71.68 71.79 71.50 71.50 71.50 72.15 71.50

Table 7
Wilcoxon signed-rank tests for the results obtained by state-of-the-art classifiers over the datasets in Table 5. Each entry of the table has the p-value of the significance test
for the corresponding pair of classifiers. The arrow points to the best of the two learning algorithms, in terms of classification rate. A double arrow is used when the

difference is significant with p-value smaller than 0.05. The symbol � means that the models attained equivalent results. C2G–C2G–mfCLLMDL was again the best strategy.

Classifier DT 3-NN 5-NN SVM SVM2 SVMG LogR TAN-fCLL

C2G–C2G–mfCLLMDL 0.011 0.007 0.018 0.021 0.029 0.029 0.007 0.030

( ( ( ( ( ( ( (
DT 0.500 0.336 0.417 0.417 0.015 0.264 0.176

� ↑ ↑ ↑ * ’ ↑
3-NN 0.102 0.117 0.500 0.336 0.363 0.117

↑ ↑ � ↑ ’ ↑
5-NN 0.472 0.312 0.500 0.181 0.400

’ ’ � ’ ↑
SVM 0.466 0.336 0.092 0.221

↑ ↑ ’ ↑
SVM2 0.140 0.264 0.221

↑ ’ ↑
SVMG 0.136 0.312

’ ↑
LogR 0.007

*
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Discretize, with default parameters. Moreover, instances with
missing values were removed from the datasets.

The accuracy of each classifier was measured via stratified five-fold
cross-validation. Throughout the experiments, we used exactly the
same folds, hence, the same informationwas available for training and
testing all classifiers. The accuracy results are presented in Table 6.
Similar to the previous section, we compared the performance of the
classifiers using Wilcoxon signed-rank tests (Table 7).

From the analysis of Tables 6 and 7 it is clear that the hybrid
mixture C2G–C2G–mfCLLMDL outperformed significantly all the
other classifiers. The TAN-fCLL classifier also performed well
however, it only significantly outperformed LogR.

5. Conclusions

In this paper we proposed a new scoring criterion, which we
called mfCLL, for learning two-component mixtures of BNs. The
new score is used to discriminatively learn the concepts in one of
the components of the mixture—the foreground. On the other
hand, background concepts are learned generatively, providing an
overall hybrid procedure for binary classification tasks. This new
score is decomposable and the parameters that maximize it are
known, allowing for score-based learning procedures to be
employed very efficiently.

The benefits of this new scoring criterion were evaluated on a
large suite of 89 benchmark datasets from computational biology
for the task of TFBS representation. Results showed that, among all
candidate multinets, the hybrid C2G–C2G–mfCLLMDL mixture was
the one that provided the best discriminative power to distinguish
TFBSs from non-binding regions in comparison with the existing
generative models. In addition, a comparison with other state-of-
the-art classifiers, also showed that C2G–C2G–mfCLLMDL signifi-
cantly outperforms SVMs with linear and Gaussian kernels, logistic
regression, decision trees, and k-nearest neighbors for k¼3 and
k¼5. Moreover, C2G–C2G–mfCLLMDL showed to behave similar to
polynomial SVMs. Notwithstanding, learning mfCLL-based mix-
tures is considerably more efficient than learning SVMs, being 2–3
orders of magnitude faster for the 89 considered datasets.

In addition, we also gauged the merits of C2G–C2G–mfCLLMDL

with eight UCI diagnosis datasets within the scope of application
of the proposed method. The results showed that in this case C2G–
C2G–mfCLLMDL outperformed significantly all other classifiers.

We conclude that the hybrid C2G–C2G–mfCLLMDL classifier is a
good choice when the data is split in foreground and background,
where the background is noisy and consists of a possible mis-
cellaneous of concepts whereas the foreground contains a single
and well defined concept.

Directions for future work include the study of the asymptotic
behavior of mfCLL and the usage of mfCLL in unsupervised
learning.
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