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ABSTRACT
Amyotrophic Lateral Sclerosis (ALS) is the most common
neurodegenerative disorder of young adults. ALS patients
usually present a rapidly progressive motor weakness caused
by motor neuron demise. Death occurs in a few years,
mainly due to respiratory failure. Therefore, adequate pre-
diction of respiratory insufficiency has great importance in
ALS management. We propose a prognostic model based
on time windows, where a set of initial evaluations is used
to predict the probability that an ALS patient will require
non-invasive ventilation (NIV) k days after the last observa-
tion. Data includes clinical features, functional impairment
scores and different respiratory measures. Our experimen-
tal results suggest a good performance, achieving an area
under the receiver operating characteristics curve (AUC) of
84.64%, 75.86% and 77.06% for, respectively, the windows
of 90, 180 and 365 days, using a Bayesian classifier, which
can provide a risk measure associated to respiratory failure.

Categories and Subject Descriptors
H.2.8 [Database applications]: Data Mining; H.3.3
[Information Search and Retrieval]: File organization;
J.3 [Computer Applications]: Life and Medical Sciences

General Terms
Experimentation, Performance, Verification
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Amyotrophic Lateral Sclerosis, Data Mining, Prognostic
prediction, Time windows
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1. INTRODUCTION
Amyotrophic Lateral Sclerosis (ALS) is a devastating mo-

tor neuron disease usually associated to a rapidly progressive
functional impairment, due to denervation of limb, bulbar,
axial and respiratory muscles [11]. Given that respiratory
insufficiency (RI) accounts for the majority of deaths in
ALS [11], better predictive factors for hypoventilation are
crucial to preserve quality of life (QoL) and prolong sur-
vival [18], by timely adaptation to non-invasive ventilation
(NIV) [2, 5].

Many biological and clinical problems have been tack-
led using data mining, from cancer and cardiovascular dis-
eases [3], to neurodegenerative diseases, such as Alzheimer’s
Disease and Parkinson’s Disease [17]. Regarding ALS,
examples in the literature are almost entirely based on
population-based approaches, resorting to statistical anal-
yses, as Kaplan-Meier survival tables and multivariable
Cox proportional hazard regression models [8] pursuing
the identification of prognostic factors. These include
respiratory measures, such as the forced vital capacity
(FVC) and the maximal inspiratory and expiratory pres-
sures (MIP/MEP) [4, 12], onset age and site of disease on-
set (bulbar vs. spinal onset), disease duration until the di-
agnosis [14, 16], gender [16], and the ALS Functional Rat-
ing Scale (ALSFRS-R) score [12, 14]. ALSFRS-R translates
functional impairment and incorporates a respiratory sub-
score, which yields prognostic value by itself [12]. Recently,
diaphragmatic motor responses by phrenic nerve stimulation
were also identified as an independent prognostic factor for
hypoventilation and survival in ALS [15].

In this work, we propose a new supervised patient-driven
learning strategy based on time windows to address an im-
portant clinical question: “Given the patient’s initial condi-
tion, will he/she need NIV after a given period of time?”.
To achieve this goal, we developed an innovative prognostic
model able to evaluate the patient’s initial set of data and,
according to it, infer whether the patient will require NIV,
or not, within a determined time window. Five hundred and
seventeen ALS patients have been followed in our ALS Clinic
in the last 10 years. Demographic characteristics, respira-
tory function tests, functional scores and neurophysiological
data were recorded.

Given the original dataset, we trained the predictive mod-
els using 75% of the patients (training set), to find the best
preprocessing techniques and classifiers’ parameters, accord-
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Figure 1: Problem formulation.

ing to metrics such as the area under the receiver oper-
ating characteristics (ROC) curve (AUC), sensitivity and
specificity. We used state-of-the-art classifiers, available in
Weka [10]. The models were tested using the remaining
25% of patients achieving AUC values of 84.64%, 75.86%
and 77.06% for, respectively, the windows of 90, 180 and
365 days, using a Bayesian classifier.

We present and discuss the methods comprising the work-
flow, from the preprocessing techniques and creation of
learning examples, to the analysis and comparison of the
predictive power of using a number of time points (patient’s
history), instead of using only the last known condition for
the patient. We also study the use of temporal dynamics,
as well as specific models for two progression groups. We
present and discuss the results for the different models and
finally draw the main conclusions and outline future work.

2. METHODS
In this work an important clinical question is addressed, as

illustrated in Figure 1: “Given an initial set of patient evalu-
ations, can we predict whether that patient will require NIV
k days after the last observation?”. Patients were adapted
to NIV if required following international guidelines [2].

We propose a supervised learning strategy using data from
the patient’s first evaluations to predict whether the pa-
tient will require NIV within the considered time window
of k days. If this happens, it is considered that the patient
evolved, and thus the corresponding Evolution label is used
as the class to train and test our predictive models. The
workflow is presented in Figure 2. We start by preprocess-
ing the original data, grouping together the exams that be-
long to the same evaluation, labeling the instances (patients)
according to the mentioned Evolution class (considering the
time window of k days), and choosing how many time points
are to be included in the models and how the temporal infor-
mation is used. Furthermore, two subgroups of patients were
considered: slow and fast progressors, taking into consid-
eration their ALSFRS temporal evolution. Afterwards, the
training set (75% of the patients) is used to build the predic-
tive models, optionally applying techniques such as feature
selection (FS) and oversampling (SMOTE [6]). Resorting to
5 x 10-fold cross validation (CV), the best parameters for
each model are chosen. Finally, final models are applied to
the test set (remaining 25% of original instances), evaluat-
ing the predictive power. In the following subsections, the
individual steps are presented and discussed.
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Figure 2: Workflow of the proposed strategy for ALS
prognostic prediction.

2.1 Data Preprocessing
In this section, the preprocessing stage is discussed, in-

cluding the creation of snapshots and the learning examples
based on time windows, together with other techniques such
as FS and SMOTE, used to improve predictive power.

2.1.1 Creating Snapshots
The data used in this work consists of both static (demo-

graphic data) and temporal information (different clinical
evaluations). Originally, the data were organized in a file
per type, such as demographic, respiratory, functional, mus-
cle analysis, and other exams. Since a patient is not able to
perform all prescribed exams in a single day, rather than a
few weeks or months, it was necessary to consider the tem-
poral organization of the different exams, grouping them in
a single evaluation, or snapshot, representing the patient’s
condition at the time. The followed strategy to achieve this
goal was proposed in previous work [1], where bottom-up
hierarchical clustering was used to group the temporally-
related exams, taking into account constraints, namely not
allowing two evaluations of the same exam to belong to the
same snapshot, and keeping class coherence. The latter was
introduced to prevent changes of the NIV status within a
given evaluation, resulting in more consistent snapshots [1].
If such changes occur, a new snapshot (with new exams)
begins. The result of creating snapshots from the original
data is illustrated in Figure 3.

2.1.2 Creating Learning Examples

Evolution Class.
After transforming the data into snapshots, and since our

goal is to predict the evolution of the NIV status, learning
examples with the corresponding class label were built. Fig-
ure 4 shows the Evolution (E) class and how the labels are
computed from the changes in the NIV status within the
specified time window of k days: E = 1, if the patient needs
external ventilation (NIV) within a time window of k days,
or E = 0, if the respiratory condition does not change in that
interval. This approach is relevant for the clinical practice,
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Figure 3: Transformation of original data into snap-
shots, grouping batches of exams together. Vital
capacity (VC) and maximum inspiratory pressure
(MIP) are examples of respiratory measures; NIV
is non-invasive ventilation.

allowing clinicians to identify higher risk patients in what
concerns the development of hypoventilation. We decided
to use k values of 90, 180 and 365 days, taking into account
that appointments are typically separated by three months,
as recommended elsewhere [2]. Analyzing Figure 4 in more
detail, we notice the relabeling of the first snapshot for both
patients 1 and P, where the latter evolves to require NIV
within the window of k days after i. We focus only on NIV
status evolution, and thus the snapshots where the patient
already requires NIV at the beginning of the time window
are discarded (patient 2 in Figure 4). Moreover, a snapshot
is discarded if we do not have information regarding the NIV
status after k days from the snapshot time, since we could
not safely label it as evolving, or not. For instance, the last
information available for patient 3 in Figure 4 allows a gap
between j and i + k days where we do not know if the NIV
status changed. As the time window increases, the probabil-
ity of evolving to require NIV increases, and more snapshots
are discarded due to the aforementioned reasons.

T First Snapshots.
In previous work [1] we used the computed snapshots as

instances to achieve NIV diagnosis, discarding any temporal
relations. In this work, each patient is an instance, com-
prised of its initial set of snapshots, to predict NIV prognosis
within a time window. As a first analysis, we assessed the
predictive power of using only a few of the initial snapshots
(2 or 3 time points (TP)), and compared it with the one ob-
tained when using only the last of those snapshots (second
or third). These numbers were chosen in order to guaran-
tee that we have more than 100 patients with such tempo-
ral data, given that many patients were not followed for a
longer time frame, or did not survived. Hence, according to
the number of snapshots chosen to be used, and consider-
ing the discarded snapshots as previously explained, Table 1
shows the class distribution for the different time windows
and number of considered time points, where we see that
as the time window increases, the total number of patients

Pat ID Snapshot Date (j days) … NIV

1 1 j = i 0

1 2 j ≥ i + k 0

2 1 j = i 1

3 1 j = i 0

3 1 i < j < i + k 0

…
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Figure 4: Creating the Evolution class label, given
the changes of the NIV status in a given time win-
dow of k days after i.

available decreases, while the proportion of evolving patients
increases, in general. Figure 5 shows the final format of the
input files regarding the T time points considered, with a
patient per row and temporal evaluations distributed along
the columns.

k #TP Patients Evolution (E) No Evolution (¬E)

90
2 285 51 (17.89%) 234 (82.11%)

3 211 40 (18.96%) 171 (81.04%)

180
2 223 42 (18.83%) 181 (81.17%)

3 202 71 (35.15%) 131 (64.85%)

365
2 181 104 (57.46%) 77 (42.54%)

3 133 25 (18.80%) 108 (81.20%)

Table 1: Class distribution for time windows of 90,
180 and 365 days. # TP is number of time points.

Temporal Dynamic Patterns.
In the initial set of snapshots, as shown in Figure 5, each

feature’s temporal evaluations are treated independently.
This may lead to the loss of significant temporal informa-
tion, which could improve the predictive power of the mod-
els. Thus, one way to consider the temporal dynamics of the
attributes is to build new variables representing the tempo-
ral pattern, as shown in Figure 6. These variables can be
provided as new features or used in combination with the
previous features, to assess if the performance improves.

Progression Groups.
Although some patients present a very slow progression,



the mean survival from symptom onset ranges from 2 to 5
years [7]. In order to explore distinct disease progression
rates, two groups of patients were considered: slow and fast
progressors. This was performed by computing the median
numerical slope of the ALSFRS total scores, as in (1), for
all training patients.

Slope =
ALSFRS ScoretT − ALSFRS Scoret1

T
, (1)

where T is the number of snapshots of a given patient.
Since in this computation we used all the available time

points for each patient, this analysis is a preliminary attempt
to assess if specific models for different progression groups
can be used to improve prognosis, even though in clinical
practice it is very difficult to infer the rate of progression
after just the first set of appointments.

ID
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…
Att1
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Figure 5: Example of an input file comprising two
attributes, along T time points, for P patients.
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Figure 6: Transforming sequential evaluations into
a pattern representing temporal dynamics.

2.2 Classification
The preprocessing step yields a different dataset accord-

ing to the chosen time window. In this work we study three
different values: 90, 180 and 365 days. These preprocessed
data are given as input to different classifiers, available in
Weka [10], including k-Nearest Neighbor (kNN) with IBK im-
plementation, Näıve Bayes (NB), Decision Tree (DT) with
J48 algorithm as well as Random Forest (RF), Support Vec-
tor Machines (SVM) using SMO implementation with polyno-
mial (SVM P) and Gaussian (SVM G) kernels, and Logistic
Regression (LR) using the SimpleLogistic implementation.
To build the predictive models, we trained the classifiers
with 75% of the patients using stratified 5 x 10-fold CV [13]
as well as a grid search to find the best set of parameters for
each classifier (not shown due to space constraints).

Furthermore, we evaluated how FS and SMOTE impacted
the performance of the predicted models. For the first, we
used a wrapper approach available in Weka, where we chose
NB as the underlying classifier. We applied FS on the train-
ing set to select the relevant features and use them later in
the test set. Nonetheless, the oversampling, SMOTE [6] in
Weka, is applied to each CV train fold, interpolating known

samples of the minority class with synthetic ones, thus ren-
dering the training set more balanced (or even reversing the
unbalance). We chose to use SMOTE values of 100, 200, 300,
400 and 500%, where a 100% value means that the minority
class instances are doubled. Note that these techniques (FS
and SMOTE) can be used simultaneously.

3. RESULTS AND DISCUSSION
We present and discuss the results of the stratified 5 x

10-fold CV [13] scheme using the training set (75% of the
original patients), to assess the best learning examples and
classifier parameters. We present the AUC, sensitivity and
specificity, as it is current practice, although other metrics
were also obtained, as computed from the confusion matrix.
Afterwards, we show the results of applying the best prog-
nostic models obtained for the different time windows to the
test set (25% of the initial dataset).

3.1 Training Set
Tables 3, 4 and 5 show, respectively, the results of AUC,

sensitivity and specificity obtained with the training set un-
der stratified 5 x 10-fold CV, for the different time windows,
number of time points (TP) and type of learning examples.

When analyzing the utility of using the first 2 or 3 TP,
or snapshots, and comparing with resorting only to the 2nd

or 3rd ones (Orig vs. Last in Table 3), we found that, for
the windows of 180 and 365 days, the AUC was significantly
better when we used 3 TP (vs. 3rd) and 2 TP (vs. 2nd),
respectively, with a p ≤ 0.036 assessed with a Wilcoxon
Signed-Ranks Test [9]. However, we found that using only
the 2nd snapshot for the 180 days window returned gen-
erally, although not significantly (p = 0.123), better AUC
values across the different classifiers, with the exception of
LR, comparing to 2 TP. Although there are no statistical
significant differences of AUC for the window of 90 days un-
der this comparison (Orig vs. Last), we can see that the best
performing classifiers, such as NB and RF, seem to benefit,
even if marginally, from using more snapshots. In terms of
sensitivity (Table 4), the results are poor, and we can see
that, in general, for windows of 90 and 180 days, sensitivity
increases when only the last snapshot is considered, while
the contrary happens for most classifiers for 365 days. The
opposite behavior is seen for specificity (Table 5).

Regarding the combination of patterns to represent tem-
poral dynamics with the original variables (Orig vs. Dyn in
Table 3), we found that it only significantly improved the
AUC for the window of 365 days using 3 TP (p = 0.017),
whereas it significantly decreased the AUC for the windows
of 90 days using 2 TP, and 180 days (both 2 and 3 TP)
(p ≤ 0.05). We note, however, that for the windows of
180 and 365 days using 3 TP, the best results for including
dynamic temporal patterns were obtained when FS was ap-
plied, resulting in a very reduced set of features, including
both original attributes, at a given time point, and the com-
puted dynamic temporal patterns. The selected features are
shown in Table 2. This is especially relevant for the window
of 365 days (3 TP model), given it outperformed the orig-
inal set of features using only four features, including the
carbon dioxide pressure (PCO2) and phrenic nerve ampli-
tude (PhrenMeanAmpl) at time point 2, the ALSFRS score
at time point 3, and the dynamic temporal pattern repre-
senting the variations of the vital capacity (VC) measure.

This supports the importance of taking the temporal re-



Window #TP Selected Features

180 3
MIPt1

ALSFRSDyn

RDyn

365 3

PCO2t2
PhrenMeanAmplt2

ALSFRSt3
VCDyn

Table 2: Selected features for windows of 180
and 365 days using 3 TP and including dynamic
temporal patterns: maximum inspiratory pressure
(MIP), ALS Functional Rating Scale (ALSFRS) and
respiratory subscore (R), carbon dioxide pressure
(PCO2), phrenic nerver mean amplitude (Phren-
MeanAmpl) and vital capacity (VC). tT is the time
point T and Dyn is the dynamic temporal pattern.

lationships between evaluations of the same variable into
account. This is, however, a first attempt, requiring further
analysis and improvements. In fact, with exception of few
classifiers, especially for 365 days, we can observe that, in
general, both the sensitivity and specificity (Tables 4 and
5) decrease when temporal dynamic patterns are included.

Considering the separation into slow and fast progressors,
and in order to conclude that there is a real benefit in us-
ing specific predictive models, we should observe a statis-
tical significant improvement for both groups, when com-
pared to the original learning examples. Nevertheless, we
couldn’t find such significance, although, in general, we can
see marginal improvements for both groups for the win-
dow of 90 days using 3 TP (and at least for one group
using 2 TP). Regarding sensitivity and specificity, there is
a great variability, where in some cases, the “slow” group
presents an increased sensitivity and decreased specificity
while the “fast” group shows a decreased sensitivity and in-
creased specificity, or vice-versa. The strategy to correctly
classify new patients into slow or fast progressors is a dif-
ferent and interesting problem, which we wish to address
in future work. However, this shows the potential of cre-
ating specific models for subgroups of patients to improve
prognosis.

Taking into consideration the analysis using the 2 TP or 3
TP model, we concluded that there are no significant differ-
ences across the three time windows. Nonetheless, studying
each individually we found that, for the window of 90 days,
the 2 TP model significantly outperformed 3 TP (p < 0.001)
across all classifiers and different learning examples. Signif-
icant differences can also be observed for the 365 days win-
dow, although in this case the AUC is increased for the 3
TP model (p < 0.001), suggesting that, when predicting an
event in a longer time window, it may be better to use more
initial snapshots.

In order to compare the performance of the different clas-
sifiers, we applied the Friedman test (as suggested in [9])
in IBM SPSS Statistics 22, concluding that there are sta-
tistical significant differences between the AUC values. We
analyzed the pairs comparison, with significance values cor-
rected for multiple testing and found that kNN, NB and RF
performed significantly better than DT, LR and both SVMs
(polynomial and Gaussian kernels) (p ≤ 0.014). Moreover,

we verified that the top performing classifier, according to
the mean test rank, was NB. Although this analysis is based
on AUC values, NB presents other advantages: it is virtually
non-parametric, and returns a numerical confidence on the
result, which can be used by the clinician as a risk measure.
For these reasons, we proceed to the test set with only NB.

3.2 Test Set
After choosing the best classification models based on a

stratified 5 x 10-fold CV using the training set, we proceeded
to study their performance on the test set (remaining 25%
of patients). As usual, we use all the available training
instances to train the final models used in the test phase.
These results allow us to know what to expect in terms of
predictive power when dealing with new, unknown, patients’
data. Table 6 shows the results of AUC, sensitivity and
specificity obtained for the test set, with the chosen classifier
NB. We note that we dismissed the progression groups from
this analysis. Although the groups are promising in terms
of improving prognosis, we first must solve the problem of
classifying new patients according to their progression, using
only the initial time points, which we leave for future work.

Comparing the results of AUC in Table 6 with Table 3,
we did not find any significant differences across all time
windows and learning examples. In fact, for the 90 days
window we observe that the test results are always within
or above the confidence interval (mean±standard deviation)
obtained for the train set. The same does not happen for
the other two time windows, especially for the 2 TP model,
where we see that the test results are under the confidence
interval. This might be a result of overfitting the models
when the variables are in lower number, as it is the case in
the 2 TP model.

Another interesting result is the fact that, exception made
to the 2nd TP model for 180 and 365 days, the test results
when using only the last snapshot are better than the train
results. In fact, some of the conclusions we drew for the
training set are now reverted, such as for the 180 days win-
dow, where now using only the last snapshot yields better
AUC for the 3 TP model and worse for the 2 TP model.
This justifies the use of an independent test set, to validate,
or refute, previous conclusions. Nonetheless, we believe that
these models can be very useful in the clinical practice, es-
pecially when using Bayesian classifiers such as NB, which
can return confidence values in the prognosis.

4. CONCLUSIONS
In this work we propose a new patient-driven approach

for predicting RI in ALS, based on time windows and using
different types of learning examples. The key question ad-
dressed is whether we can predict if a patient will evolve to
require NIV k days after an initial set of evaluations. Al-
though we use the same data used in previous work [1] and
the same strategy to build the patients’ snapshots, we are
not interested in the simple NIV diagnosis, but on the prog-
nosis of the evolution of NIV status. Furthermore, while
in [1] each patient’s snapshot was used as a model instance,
in this work each patient represents an instance, to grasp
more of the underlying temporal relationships between vari-
able evaluations. Different types of learning examples and
time windows were used (90, 180 and 365 days), in an at-
tempt to investigate whether there are any improvements
when using a set of initial snapshots versus using the last



one; or introducing temporal dynamics of variables in the
form of patterns. Furthermore, we made a first attempt at
developing specific models for two progression groups. In
the last case, even though the results show some promise,
the initial classification into slow and fast progressors is still
critical, and should be achieved with only the initial snap-
shots.

We performed a stratified 5 x 10-fold CV using the train-
ing set, to choose the best classifier models and assess the im-
pact of the different learning examples. Finally, we applied
the best models to the test set, and obtained AUC values of
84.64%, 75.86% and 77.06% for, respectively, the windows
of 90, 180 and 365 days using NB classifier models. The re-
sults did not allow us to clearly conclude whether the use of
the last snapshot yields consistently better or worse results
than using a set of snapshots. However, when comparing
the use of 2 or 3 snapshots, the general conclusion is that, if
available, more time points should be considered. Regarding
the introduction of temporal dynamics, our initial approach
of patterns did not return significant improvements. How-
ever, we plan to use other strategies to explore the temporal
nature of data, namely Dynamic Bayesian Networks.

The proposed approach, based on time windows, shows
promise in ALS prognostic prediction, and is especially rel-
evant given that the overall disease progression is very fast,
usually leading to RI in just a few years. Thus, the possi-
bility of earlier intervention, translating into improvements
of the patients’ QoL, and even healthcare effectiveness, rises
as a crucial aspect of this type of patient-driven analysis.
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Table 3: AUC values obtained using the train set (stratified 5 x 10-fold CV). TP is time points; Orig is the
original data; Last is the last snapshot; Dyn is the inclusion of temporal dynamic patterns; Slow and Fast are
the two progression groups. SMOTE is oversampling of the minority class; FS is feature selection.

AUC

DT kNN SVM P SVM G NB RF LR

90d

2 TP

Orig + SMOTE(200%) 61.07 ± 5.34 70.14 ± 1.59 66.39 ± 2.59 65.08 ± 1.77 72.42 ± 1.22 73.19 ± 1.77 66.92 ± 4.36
Last + SMOTE(400%) 65.65 ± 2.94 72.67 ± 3.65 66.16 ± 1.84 66.19 ± 0.87 71.37 ± 1.67 73.35 ± 0.48 65.52 ± 2.75
Dyn + SMOTE(200%) 58.10 ± 1.96 67.24 ± 1.20 63.19 ± 1.80 62.63 ± 2.57 70.39 ± 1.70 70.94 ± 4.39 61.24 ± 2.37
Slow + SMOTE(200%) 63.97 ± 3.59 73.01 ± 3.77 65.25 ± 1.45 66.23 ± 2.51 74.40 ± 3.15 74.47 ± 4.01 63.24 ± 4.19
Fast + SMOTE(200%) 59.29 ± 9.08 75.81 ± 1.78 69.03 ± 3.28 68.80 ± 2.00 76.32 ± 1.27 75.24 ± 1.88 76.06 ± 4.03

3 TP

Orig + SMOTE(400%) 57.21 ± 3.02 68.32 ± 2.39 56.33 ± 1.91 60.61 ± 2.94 65.11 ± 1.62 68.23 ± 4.34 59.40 ± 4.76
Last + SMOTE(100%) 60.96 ± 4.35 59.31 ± 2.12 51.18 ± 1.74 51.05 ± 1.85 61.40 ± 1.74 54.30 ± 3.07 59.46 ± 5.88
Dyn + SMOTE(400%) 57.37 ± 4.97 65.78 ± 3.49 57.49 ± 2.07 56.39 ± 2.16 60.36 ± 2.18 66.20 ± 5.53 59.52 ± 4.18
Slow + SMOTE(500%) 49.94 ± 6.71 80.18 ± 3.43 59.28 ± 5.01 65.41 ± 5.49 72.90 ± 1.95 74.78 ± 2.93 74.28 ± 1.94
Fast + SMOTE(100%) 64.67 ± 5.22 74.32 ± 2.64 66.40 ± 2.13 63.01 ± 2.41 69.84 ± 0.95 73.63 ± 1.81 68.64 ± 3.15

180d

2 TP

Orig + SMOTE(300%) 67.44 ± 5.52 74.94 ± 2.69 65.75 ± 3.79 65.28 ± 3.02 74.12 ± 2.00 73.81 ± 3.87 69.36 ± 3.95
Last + SMOTE(500%) 72.15 ± 3.85 76.62 ± 4.59 70.13 ± 1.67 72.25 ± 3.97 77.84 ± 1.58 76.13 ± 1.79 63.26 ± 4.13
Dyn + SMOTE(300%) 66.92 ± 3.90 72.51 ± 2.52 64.47 ± 1.34 63.32 ± 3.53 70.30 ± 1.54 73.48 ± 1.24 70.80 ± 4.45
Slow + SMOTE(400%) 66.37 ± 6.23 74.08 ± 0.53 69.72 ± 0.95 70.29 ± 2.42 73.00 ± 0.84 71.85 ± 3.26 68.28 ± 5.12
Fast + SMOTE(200%) 56.14 ± 7.82 82.46 ± 1.88 60.08 ± 4.56 58.89 ± 6.37 80.16 ± 2.50 74.84 ± 3.82 72.76 ± 4.25

3 TP

Orig + SMOTE(200%) 68.30 ± 3.68 72.54 ± 2.84 70.75 ± 1.73 70.66 ± 3.26 71.26 ± 1.22 75.05 ± 1.22 73.68 ± 3.82
Last + SMOTE(400%) 62.36 ± 1.92 72.63 ± 1.29 66.05 ± 0.49 65.47 ± 1.04 70.27 ± 1.50 68.93 ± 3.10 73.72 ± 2.74
Dyn + FS 68.16 ± 1.76 69.98 ± 1.43 62.96 ± 0.85 63.80 ± 0.37 68.48 ± 2.05 66.67 ± 1.41 66.74 ± 2.35
Slow + SMOTE(300%) 64.95 ± 5.29 74.12 ± 1.61 67.75 ± 2.90 68.19 ± 2.72 75.31 ± 0.86 72.92 ± 4.03 65.72 ± 3.39
Fast + SMOTE(100%) 73.20 ± 2.68 68.03 ± 1.57 68.24 ± 5.61 68.88 ± 5.57 74.39 ± 1.47 70.77 ± 2.97 71.70 ± 2.80

365d

2 TP

Orig + SMOTE(300%) 61.50 ± 8.85 69.03 ± 1.74 70.14 ± 3.60 69.10 ± 2.60 71.32 ± 2.02 69.80 ± 2.20 46.64 ± 5.18
Last + SMOTE(500%) 53.86 ± 3.42 61.47 ± 2.89 65.90 ± 2.08 64.90 ± 0.83 65.16 ± 3.67 62.03 ± 3.41 49.20 ± 6.00
Dyn + SMOTE(400%) 61.03 ± 3.50 70.84 ± 2.27 65.29 ± 2.69 65.52 ± 2.13 71.10 ± 2.24 68.75 ± 5.89 51.32 ± 5.02
Slow + SMOTE(200%) 58.43 ± 7.85 65.50 ± 3.95 61.89 ± 2.92 60.09 ± 2.63 66.64 ± 3.13 63.25 ± 3.66 40.38 ± 6.10
Fast + SMOTE(200%) 56.88 ± 8.29 60.97 ± 5.75 56.96 ± 5.12 57.33 ± 4.58 59.63 ± 5.15 56.45 ± 4.92 45.04 ± 6.45

3 TP

Orig + SMOTE(200%) 74.87 ± 2.93 69.27 ± 1.41 70.97 ± 2.65 69.33 ± 1.94 75.35 ± 1.64 68.66 ± 2.09 66.72 ± 3.75
Last + SMOTE(200%) 72.99 ± 4.46 72.07 ± 1.42 66.47 ± 1.73 67.11 ± 2.03 72.60 ± 1.47 70.01 ± 2.58 65.84 ± 3.48
Dyn + FS 73.60 ± 1.43 77.74 ± 1.75 76.71 ± 1.60 77.73 ± 1.77 79.16 ± 1.71 78.83 ± 2.11 68.64 ± 1.98
Slow + SMOTE(400%) 58.26 ± 9.63 73.57 ± 4.32 64.52 ± 3.67 64.71 ± 5.56 73.98 ± 4.62 71.00 ± 7.88 68.44 ± 8.12
Fast + SMOTE(300%) 58.47 ± 3.80 61.66 ± 3.80 63.33 ± 6.59 62.39 ± 6.85 71.33 ± 4.05 60.28 ± 4.31 64.02 ± 5.29

Table 4: Sensitivity values obtained using the train set (stratified 5 x 10-fold CV). TP is time points; Orig
is the original data; Last is the last snapshot; Dyn is the inclusion of temporal dynamic patterns; Slow and
Fast are the two progression groups. SMOTE is oversampling of the minority class; FS is feature selection.

Sensitivity

DT kNN SVM P SVM G NB RF LR

90d

2 TP

Orig + SMOTE(200%) 36.57 ± 4.70 29.71 ± 3.26 42.29 ± 4.70 39.43 ± 3.13 40.57 ± 2.39 29.14 ± 3.73 40.00 ± 5.36
Last + SMOTE(400%) 39.43 ± 3.13 44.57 ± 3.83 41.71 ± 5.57 44.57 ± 4.33 41.14 ± 5.19 38.86 ± 6.26 37.14 ± 10.49
Dyn + SMOTE(200%) 28.57 ± 2.86 26.86 ± 5.93 39.43 ± 6.19 32.57 ± 7.72 34.29 ± 2.86 26.29 ± 8.18 32.00 ± 6.16
Slow + SMOTE(200%) 42.35 ± 2.63 37.65 ± 3.22 44.71 ± 3.22 45.88 ± 2.63 37.65 ± 7.89 29.41 ± 11.77 37.64 ± 11.47
Fast + SMOTE(200%) 37.65 ± 8.92 36.47 ± 4.92 43.53 ± 5.26 41.18 ± 4.16 41.18 ± 0.00 35.29 ± 0.00 45.88 ± 6.41

3 TP

Orig + SMOTE(400%) 32.14 ± 11.01 27.86 ± 11.68 30.00 ± 5.42 40.71 ± 4.07 16.43 ± 4.07 22.14 ± 4.66 28.58 ± 10.10
Last + SMOTE(100%) 20.00 ± 4.07 20.00 ± 3.19 7.86 ± 12.47 11.43 ± 11.95 32.86 ± 2.99 17.14 ± 8.89 25.70 ± 5.87
Dyn + SMOTE(400%) 34.29 ± 11.46 35.00 ± 5.87 27.14 ± 5.98 24.29 ± 5.30 8.57 ± 1.96 21.43 ± 5.65 26.42 ± 5.99
Slow + SMOTE(500%) 24.00 ± 8.94 44.00 ± 15.17 26.00 ± 8.94 72.00 ± 13.04 6.00 ± 5.48 20.00 ± 7.07 32.00 ± 8.37
Fast + SMOTE(100%) 36.47 ± 4.92 18.82 ± 4.92 43.53 ± 3.22 36.47 ± 4.92 28.24 ± 9.67 11.77 ± 0.00 34.12 ± 8.75

180d

2 TP

Orig + SMOTE(300%) 47.74 ± 7.70 41.94 ± 7.90 43.87 ± 6.69 45.16 ± 6.04 36.13 ± 5.77 38.71 ± 8.22 46.46 ± 10.35
Last + SMOTE(500%) 54.84 ± 7.57 66.45 ± 8.72 56.13 ± 3.68 63.23 ± 8.41 43.23 ± 3.68 49.68 ± 5.86 43.20 ± 4.90
Dyn + SMOTE(300%) 49.68 ± 6.29 34.84 ± 6.99 43.23 ± 5.86 38.71 ± 5.10 31.61 ± 2.70 37.42 ± 7.77 48.38 ± 6.44
Slow + SMOTE(400%) 54.78 ± 7.90 66.96 ± 13.95 64.35 ± 1.94 55.65 ± 3.64 42.61 ± 7.78 53.91 ± 7.28 46.08 ± 6.59
Fast + SMOTE(200%) 33.33 ± 16.67 6.67 ± 9.13 23.33 ± 9.13 20.00 ± 13.94 13.33 ± 7.45 3.33 ± 7.45 16.68 ± 11.77

3 TP

Orig + SMOTE(200%) 67.08 ± 7.13 41.67 ± 3.61 60.42 ± 2.95 59.17 ± 5.63 46.25 ± 3.09 51.25 ± 4.06 60.44 ± 5.71
Last + SMOTE(400%) 55.00 ± 5.63 62.08 ± 3.42 58.33 ± 3.90 60.83 ± 9.36 45.83 ± 5.71 53.33 ± 4.56 65.44 ± 2.39
Dyn + FS 37.50 ± 2.55 17.08 ± 3.09 43.33 ± 3.42 44.17 ± 2.72 48.75 ± 1.86 39.17 ± 3.42 35.86 ± 4.74
Slow + SMOTE(300%) 52.50 ± 10.04 59.17 ± 5.43 53.33 ± 6.85 53.33 ± 5.43 52.50 ± 2.28 53.33 ± 4.56 53.34 ± 6.19
Fast + SMOTE(100%) 79.11 ± 2.53 60.44 ± 1.86 78.22 ± 3.65 76.89 ± 7.47 74.67 ± 2.98 77.78 ± 2.72 52.16 ± 4.35

365d

2 TP

Orig + SMOTE(300%) 46.00 ± 10.84 48.00 ± 6.71 57.00 ± 7.58 53.00 ± 4.47 49.00 ± 7.42 48.00 ± 5.70 20.00 ± 0.00
Last + SMOTE(500%) 37.00 ± 7.58 48.00 ± 6.71 57.00 ± 4.47 55.00 ± 9.35 40.00 ± 7.91 41.00 ± 10.84 22.00 ± 5.70
Dyn + SMOTE(400%) 49.00 ± 7.42 62.00 ± 5.70 44.00 ± 6.52 42.00 ± 5.70 25.00 ± 5.00 49.00 ± 12.45 29.00 ± 6.52
Slow + SMOTE(200%) 37.78 ± 14.91 31.11 ± 4.97 35.56 ± 4.97 28.89 ± 6.09 37.78 ± 6.09 31.11 ± 9.30 19.98 ± 4.96
Fast + SMOTE(200%) 29.09 ± 7.61 34.55 ± 9.96 34.55 ± 7.61 30.91 ± 8.13 38.18 ± 4.07 30.91 ± 8.13 23.66 ± 10.38

3 TP

Orig + SMOTE(200%) 65.64 ± 2.78 28.46 ± 4.10 70.51 ± 3.39 68.46 ± 3.22 76.15 ± 3.46 61.28 ± 1.07 61.54 ± 8.39
Last + SMOTE(200%) 56.92 ± 4.85 39.74 ± 3.95 64.36 ± 3.56 56.67 ± 12.67 64.87 ± 2.33 62.82 ± 2.03 63.58 ± 3.07
Dyn + FS 66.41 ± 4.48 70.00 ± 7.34 78.72 ± 1.72 78.72 ± 1.72 75.90 ± 2.47 77.18 ± 3.32 74.36 ± 3.51
Slow + SMOTE(400%) 79.23 ± 8.86 83.85 ± 11.35 80.77 ± 8.16 77.70 ± 5.02 73.08 ± 6.08 68.46 ± 11.35 63.86 ± 6.44
Fast + SMOTE(300%) 38.95 ± 6.00 72.63 ± 4.40 60.00 ± 16.89 52.63 ± 15.35 36.84 ± 7.44 35.79 ± 11.41 71.36 ± 4.30



Table 5: Specificity values obtained using the train set (stratified 5 x 10-fold CV). TP is time points; Orig
is the original data; Last is the last snapshot; Dyn is the inclusion of temporal dynamic patterns; Slow and
Fast are the two progression groups. SMOTE is oversampling of the minority class; FS is feature selection.

Specificity

DT kNN SVM P SVM G NB RF LR

90d

2 TP

Orig + SMOTE(200%) 88.17 ± 2.39 93.54 ± 1.86 90.49 ± 3.10 90.73 ± 2.71 90.00 ± 1.81 94.02 ± 1.17 82.22 ± 2.68
Last + SMOTE (400%) 87.56 ± 0.93 83.42 ± 1.90 90.61 ± 2.22 87.81 ± 3.61 90.00 ± 0.33 88.66 ± 1.11 82.22 ± 4.80
Dyn+ SMOTE(200%) 87.32 ± 1.32 92.93 ± 1.11 86.95 ± 4.77 92.68 ± 2.62 90.24 ± 1.56 92.81 ± 3.15 84.88 ± 3.00
Slow + SMOTE(200%) 86.32 ± 2.73 87.63 ± 3.03 85.79 ± 2.85 86.58 ± 4.78 87.63 ± 1.77 90.79 ± 2.08 78.68 ± 2.87
Fast + SMOTE(200%) 84.76 ± 1.96 94.05 ± 1.68 94.52 ± 2.74 96.43 ± 1.46 94.52 ± 1.81 94.29 ± 1.55 87.14 ± 2.86

3 TP

Orig + SMOTE(400%) 81.17 ± 3.15 88.50 ± 2.97 82.67 ± 5.25 80.50 ± 6.36 92.83 ± 2.09 90.67 ± 2.31 81.02 ± 3.18
Last + SMOTE(100%) 79.17 ± 3.63 77.83 ± 4.02 94.50 ± 9.05 90.67 ± 8.96 73.33 ± 1.56 79.00 ± 2.85 84.82 ± 1.36
Dyn + SMOTE(400%) 78.83 ± 4.15 84.00 ± 3.51 87.83 ± 3.15 88.50 ± 1.49 95.83 ± 1.56 91.50 ± 2.08 85.82 ± 4.08
Slow + SMOTE(500%) 81.96 ± 7.12 85.10 ± 2.63 92.55 ± 2.56 58.82 ± 17.97 92.94 ± 2.24 90.98 ± 3.56 86.28 ± 3.66
Fast + SMOTE(100%) 88.06 ± 5.68 89.25 ± 1.25 89.25 ± 2.45 89.55 ± 3.50 81.79 ± 2.67 89.55 ± 2.79 83.30 ± 3.73

180d

2 TP

Orig + SMOTE(300%) 86.51 ± 2.02 88.73 ± 0.36 87.62 ± 2.78 85.40 ± 2.78 89.21 ± 1.33 89.05 ± 1.53 80.96 ± 1.65
Last + SMOTE(500%) 83.33 ± 3.22 80.95 ± 4.09 84.13 ± 3.02 81.27 ± 5.57 88.73 ± 0.66 86.03 ± 1.33 78.74 ± 2.94
Dyn + SMOTE(300%) 83.81 ± 2.78 84.76 ± 1.81 85.71 ± 6.17 87.94 ± 3.86 90.64 ± 2.54 89.37 ± 1.65 83.48 ± 2.81
Slow + SMOTE(400%) 76.07 ± 4.72 77.71 ± 4.72 75.08 ± 0.73 84.92 ± 2.69 85.90 ± 1.87 81.31 ± 2.98 75.10 ± 3.55
Fast + SMOTE(200%) 90.16 ± 2.61 94.60 ± 1.81 96.83 ± 0.00 97.78 ± 1.42 94.29 ± 1.42 97.46 ± 2.88 92.29 ± 3.49

3 TP

Orig + SMOTE(200%) 69.03 ± 4.26 82.80 ± 3.14 81.08 ± 1.80 82.15 ± 1.63 83.01 ± 1.40 80.00 ± 2.70 74.84 ± 4.08
Last + SMOTE(400%) 63.66 ± 3.52 67.10 ± 5.41 73.76 ± 4.14 70.11 ± 8.65 79.36 ± 4.52 69.46 ± 3.00 73.10 ± 3.23
Dyn + FS 87.74 ± 1.23 88.60 ± 2.59 82.58 ± 4.65 83.44 ± 2.70 87.74 ± 1.23 78.07 ± 2.59 84.30 ± 2.49
Slow + SMOTE(300%) 71.30 ± 5.63 72.17 ± 5.83 82.17 ± 2.38 83.04 ± 3.57 82.17 ± 2.38 76.96 ± 6.07 68.26 ± 4.48
Fast + SMOTE(100%) 66.09 ± 8.36 65.22 ± 6.15 58.26 ± 10.47 60.87 ± 13.40 61.74 ± 7.78 50.44 ± 12.14 79.12 ± 7.30

365d

2 TP

Orig + SMOTE(300%) 86.30 ± 1.68 83.01 ± 2.84 83.29 ± 1.79 85.21 ± 3.55 86.85 ± 3.95 84.38 ± 3.95 74.80 ± 4.72
Last + SMOTE(500%) 73.15 ± 5.53 69.04 ± 4.40 74.80 ± 7.03 74.80 ± 8.53 84.11 ± 3.70 78.08 ± 4.84 73.16 ± 2.67
Dyn + SMOTE(400%) 85.75 ± 1.23 73.15 ± 2.49 86.58 ± 3.12 89.04 ± 1.68 92.88 ± 1.79 84.11 ± 3.95 76.70 ± 1.71
Slow + SMOTE(200%) 86.67 ± 5.56 90.77 ± 2.29 88.21 ± 3.89 91.28 ± 1.40 87.18 ± 2.56 85.64 ± 6.18 75.90 ± 7.60
Fast + SMOTE(200%) 81.25 ± 4.42 87.50 ± 5.85 79.38 ± 3.56 83.75 ± 5.14 81.25 ± 3.13 76.88 ± 5.23 73.76 ± 7.20

3 TP

Orig + SMOTE(200%) 83.67 ± 3.23 92.65 ± 5.51 71.43 ± 5.20 70.20 ± 6.71 54.69 ± 0.91 64.90 ± 6.36 61.20 ± 5.95
Last + SMOTE(200%) 80.82 ± 5.88 87.35 ± 3.35 68.57 ± 5.12 77.55 ± 11.55 65.31 ± 3.82 65.31 ± 3.82 59.18 ± 6.45
Dyn + FS 77.96 ± 3.03 77.96 ± 4.65 74.69 ± 2.74 76.74 ± 3.71 75.92 ± 3.03 75.51 ± 3.82 48.16 ± 5.52
Slow + SMOTE(400%) 38.62 ± 5.12 38.62 ± 11.28 48.28 ± 7.32 51.72 ± 8.09 58.62 ± 6.45 54.48 ± 7.48 64.14 ± 7.17
Fast + SMOTE(300%) 74.90 ± 3.77 44.71 ± 7.52 66.67 ± 9.20 72.16 ± 5.44 83.92 ± 2.56 76.08 ± 2.15 42.08 ± 12.90

Table 6: Results obtained using the test set and Näıve Bayes (NB) classifier. TP is time points; Orig is
the original data; Last is the last snapshot; Dyn is the inclusion of temporal dynamic patterns. SMOTE is
oversampling of the minority class; FS is feature selection.

NB
AUC Sensitivity Specificity

90d

2 TP
Orig + SMOTE(200%) 71.61 43.75 85.71
Last + SMOTE(400%) 75.71 43.75 90.00
Dyn + SMOTE(200%) 70.80 31.25 87.14

3 TP
Orig + SMOTE(400%) 65.44 50.00 78.43
Last + SMOTE(100%) 84.64 66.67 82.35
Dyn + SMOTE(400%) 66.34 58.33 76.47

180d

2 TP
Orig + SMOTE(300%) 63.31 27.27 83.64
Last + SMOTE(500%) 55.70 27.27 81.82
Dyn + SMOTE(300%) 60.50 36.36 85.46

3 TP
Orig + SMOTE(200%) 74.49 65.22 78.95
Last + SMOTE(400%) 75.86 73.91 65.79
Dyn + FS 60.30 34.78 84.21

365d

2 TP
Orig + SMOTE(300%) 52.57 20.00 62.86
Last + SMOTE(500%) 54.86 0.00 74.29
Dyn + SMOTE(400%) 58.29 40.00 71.43

3 TP
Orig + SMOTE(200%) 63.12 61.54 57.14
Last + SMOTE(200%) 77.06 69.23 60.71
Dyn + FS 64.35 50.00 67.86


