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Abstract. Class imbalance affects medical diagnosis, as the number of
disease cases is often outnumbered. When it is severe, learning algorithms
fail to retrieve the rarer classes and common assessment metrics become
uninformative. In this work, class imbalance is approached using neu-
ropsychological data, with the aim of differentiating Alzheimer’s Disease
(AD) from Mild Cognitive Impairment (MCI) and predicting the con-
version from MCI to AD. The effect of the imbalance on four learning
algorithms is examined through the application of bagging, Bayes risk
minimization and MetaCost. Plain decision trees were always outper-
formed, indicating susceptibility to the imbalance. The näıve Bayes clas-
sifier was robust but suffered a bias that was adjusted through risk mini-
mization. This strategy outperformed all other combinations of classifiers
and meta-learning/ensemble methods. The tree-augmented näıve Bayes
classifier also benefited from an adjustment of the decision threshold.
In the nearly balanced datasets, it was improved by bagging, suggesting
that the tree structure was too strong for the attribute dependencies.
Support vector machines were robust, as their plain version achieved
good results and was never outperformed.
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1 Introduction

Alzheimer’s Disease (AD) is the most common form of dementia among the
elderly, affecting 26 million worldwide in 2006 [1]. It remains incurable and its
prevalence is estimated to increase given the aging of the world population.

AD progression is categorized in (1) preclinical AD, (2) mild cognitive im-
pairment (MCI) due to AD and (3) dementia due to AD [2]. Characterizing the



stage is of the utmost importance for managing the disease, as small delays in
AD onset and progression would lead to significant reductions in its global bur-
den [1]. However, the boundaries between the stages are unclear, making this
an extremely challenging task [3]. As advanced diagnosis techniques are expen-
sive, invasive and often unavailable, medical doctors rely on neuropsychological
assessments. Maximizing the information provided by neuropsychological tests
has thus been subject to attention [4, 5]. In this context, given that each MCI
patient is subject to cognitive tests several times before progressing to dementia,
datasets used for diagnosis contain more MCI evaluations than dementia-labeled
evaluations. Furthermore, datasets used for prognosis assimilate the fact that 10-
15% of the patients with cognitive complaints progress to dementia each year [2].
Neuropsychological data is hence prone to class imbalance.

Class imbalance is the disparity in the proportions of different classes in
datasets used for classification. It affects classification in two ways. First, pre-
dictive models neglect the accuracy over the minority. Overcoming this problem
involves understanding how classifiers are affected and proposing solutions. Sec-
ond, the imbalance makes assessment metrics uninformative. For example, if we
consider a majority class that corresponds to 90% of the data, an all-majority
classifier has no predictive power and yet leads to a 90% accuracy. In this context,
the aim of this work is to study the effect of the imbalance of neuropsychological
data on four state-of-the-art algorithms. The classification tasks are differenti-
ating MCI from AD (diagnosis) and predicting the conversion from MCI to AD
(prognosis) in patients with cognitive complaints. The algorithms are decision
trees (DT), the näıve Bayes (NBayes) classifier, the tree-augmented näıve (TAN)
Bayes classifier, and Support Vector Machines (SVMs). They are used as base
classifiers for the other strategies. Bagging, MetaCost and the minimization of
Bayes risk are applied to those classifiers in order to understand their behavior
and improve their performance. In addition, assessment metrics for imbalanced
data are discussed. Each classifier revealed different behaviors. In particular, DT
were unstable and plain SVMs were robust to the imbalance. The best results
were achieved when the NBayes was used with risk minimization.

This paper is organized as follows: Section 2 describes the problem of class
imbalance and the solutions that have been proposed. Assessment metrics for
imbalanced data are briefly discussed. In Section 3, we report the experiment
setup, including a description of the data, preprocessing, training and evaluation
steps. The results are presented and discussed in Section 4.

2 Learning from imbalanced data

Class imbalance can be defined as the proportion of minority instances over the
total number of instances. The majority class is hereafter considered the negative
class, and the minority the positive. This type of imbalance is in fact between-
class imbalance. It can bias the learners towards the overrepresented class, while
the minority may go unlearned. As the imbalance grows, we not longer aim at
maximizing accuracy. Instead, we want classifiers to pay more attention to the
minority class, without jeopardizing the performance over the majority [6, 7].
The specific consequences of the imbalance depend on the algorithm [8–13].



2.1 Solutions to class imbalance

Proposed solutions for class imbalance can be divided into data-level strategies
and algorithm-level or cost-sensitive(CS) strategies [14]. Data-level solutions re-
sample the dataset to obtain optimal class proportions [8, 15]. They involve
undersampling the majority class or oversampling the minority. Random re-
sampling has some disadvantages [16]. To overcome the overfitting caused by
random oversampling, Synthetic Minority Over-sampling Technique (SMOTE)
has been developed [17]. This method may lead to overgeneralization, which can
be avoided by adaptive synthetic sampling [18,19].

Instead of manipulating the data, CS solutions draw the attention of the
classifiers to the minority by means of a cost. Costs are scores attributed to cor-
rect or incorrect classifications, for instance according to the class. The existence
of non-uniform unknown misclassification costs is closely related to class imbal-
ance. The relation between both problems is task-specific and method-specific.
Nonetheless, while cost-insensitive solutions lead to sub-optimal performances
in both cases [20], CS approaches offer a solution to both problems [21]. In ef-
fect, there is an equivalence between varying the class proportion, the class prior
probabilities or the misclassification costs [9,22]. Zadrozny et al. [23] divided CS
approaches in three categories:

1. CS model inference: costs are incorporated directly in the classifier induction
algorithm [24, 25]. These techniques are out of the scope of this work since
they focus on a single learning algorithm.

2. CS decision making : as opposed to minimizing the misclassification rate,
class predictions are made according to the minimization of the expected
loss [9, 26]. This requires class-membership probabilities to be inferred by
the classifiers and knowledge of the costs.

3. CS ensembles: cost-sensitivity is introduced into ensemble methods [14, 27].
Examples include CS Boosting [14] and MetaCost [27].

In the following paragraphs, we introduce the minimization of Bayes risk, as
a way to minimize the expected loss, together with MetaCost.

Minimizing Bayes risk The scores attributed to different predictions are rep-
resented in a cost matrix, as depicted in Table 1. C(k, j) is the cost of classifying
a class-j instance as k.

Table 1. Cost matrix

predicted negative predicted positive
C(0, 0) C(1, 0) real negative
C(0, 1) C(1, 1) real positive

The optimal solution is the one that minimizes the loss function for all instances,
over all class hypotheses [26]. Since the predictions made for each instance are
independent, this is equivalent to classifying each instance Xi with the class k
that minimizes a quantity known as conditional risk [28]:



L(Xi|k) =
∑

i
P (j|Xi)C(k, j), (1)

where P (j|Xi) is the probability of class j given Xi, with 1 ≤ i ≤ |D|, and D
is the dataset. To use this strategy, class-membership probability estimates are
required. It follows that accurate classifications depend on accurate estimates. As
such, deciding upon a class can be viewed as estimating a score and comparing
it to a decision threshold. In binary classification, most algorithms consider a
0.5 threshold. Changing the cost matrix is a way of adjusting the threshold [9].

But how to tackle the problem of unknown costs? Choosing a cost ratio
equivalent to inverting the class proportions would not account for the different
severity of the errors [29]. The problems related to class proportion and unknown
costs can be tackled by searching for the best cost setup [21]. In this work, the
optimal cost setup is sought by means of fixed class cost ratios (see Section 3).

MetaCost This approach led to significant cost reductions in many datasets,
while dealing with poor or non-existing probability estimates. It uses bagging [6]
to train several weak models. Then, the class-membership probabilities of each
instance are estimated by averaging the estimates of the weak models, or through
voting in case they are not provided. Using those probabilities, each training
instance is relabeled with the class that minimizes the total expected cost (1).
Finally, the classifier is trained on the relabeled data to build the final model.

2.2 Assessment metrics for imbalanced learning

The accuracy and the error rate involve ratios between sums of instances of dif-
ferent classes. As such, they are uninformative in imbalanced data [30]. A high
accuracy can correspond to a correctly classified majority, and hide a misclassi-
fied minority. Alternatively, authors have turned their attention to other metrics.
Besides the area under the Receiver Operating Characteristic (ROC) curve, two
other single assessment metrics are frequently used in imbalanced learning: the
geometric mean (G-mean) [8, 11, 29] and the F-measure [14]. These metrics are
defined from the ratios computed from the confusion matrix, such as the True
Positive Rate (TPR), also known as recall, the True Negative Rate (TNR), the
False Positive Rate(FPR), and the Precision. The G-mean is defined as [31]:

G−mean =
√
TPR× TNR.

The shortcoming of this metric is that it can be optimistic in large imbalances.
Given the learning bias, the TNR can be very high regardless of the actual
learning ability, and the effect spreads to the G-mean4. This shortcoming is
largely avoided by the F-measure [32]:

F −measure =
(1 + β2) ·Recall · Precision

β2Recall + Precision
,

4 This also occurs in ROC space metrics. The learning bias can cause the FPR to be
low even if a large number of false positives occurs.



where typically β = 1, leading to the harmonic mean of recall and precision.
Unlike the FPR, which compares the false positives with the total number of
negatives, precision compares the false positives with the true positives [32]. In
an imbalanced set, the number of true positives is smaller than the total number
of negatives and thus negative misclassifications are better captured. In addition,
the harmonic mean of two values is closer the lowest of them than the arithmetic
mean. As such, a high F-measure assures both a high precision and recall [10].
For these reasons, it is our metric of choice. A limitation of the F-measure is the
fact that it disregards the performance of the negative class.

3 Methods

3.1 Data description

The Cognitive Complaints Cohort (CCC) [4] is a study conducted at Instituto de
Medicina Molecular (IMM) to investigate dementia on subjects with cognitive
complaints. The CCC database comprises the results of neuropsychological tests
applied to subjects respecting the inclusion criteria specified by Silva et al. [33].
The tests correspond to the Battery of Lisbon for the Assessment of Dementia
(BLAD), proposed by Garcia [34]. The battery is validated for the Portuguese
population and comprises tests targeting different cognitive domains. The test
results are mapped to the stage of dementia provided by medical doctors in
the categories: normal, pre-MCI, MCI and dementia due to AD. The latter is
simply denoted as AD. The database contains 1642 evaluations of 950 subjects
and 162 attributes. Each evaluation is an instance and the attributes are the
neuropsychological tests. The original classes are the aforementioned stages.

3.2 Data preprocessing

The first step was the removal of normal and pre-MCI instances. This was fol-
lowed by the elimination of non-informative attributes, as well as instances of
patients evaluated only once, given their uselessness in prognosis. At last, re-
moving instances with more than 90% missing values yielded 677 instances of
336 patients and 157 attributes, with yet nearly 50% of missing values.

The diagnosis of dementia was done considering each evaluation as an inde-
pendent instance. Dementia prognosis required relabeling the MCI evaluations
according to the progression to dementia of the corresponding patient, withing a
given time frame. The prognosis classes are evolution (Evol) and non-evolution
(noEvol) to dementia, and 2, 3 and 4-year time frames are considered. The
datasets were divided into training and validation data. The training data was
used to build and test the models through cross-validation (CV). The validation
data was used in a final assessment of the models built with the CV data, as in
a hold-out (HO) test. The HO data contains 25% of the original data, sampled
in a stratified way. No different evaluations of the same patient are contained in
both CV and HO datasets. The final datasets are summarized in Table 2.

Preprocessing involved two final procedures: attribute selection and missing
value imputation. Correlation-based feature subset selection [35] was performed



on the training data and extrapolated to the validation data. Mean-mode missing
value imputation was used on the training data. A more sophisticated technique
was also tested [36] but it introduced a learning bias. Mean-mode imputation
avoided this bias, providing a straightforward solution to the problem.

Table 2. Summary of the datasets, with their learning aim and imbalances.

Learning task Abbreviation Imbalance Minority class
distinguish MCI from AD CV Diag 15.7% AD
predict MCI-to-AD conversion in 2 years CV 2Y 36.5% Evol
predict MCI-to-AD conversion in 3 years CV 3Y 47.6% noEvol
predict MCI-to-AD conversion in 4 years CV 4Y 32.4% noEvol
distinguish MCI from AD HO Diag 8.3% AD
predict MCI-to-AD conversion in 2 years HO 2Y 22.2% Evol
predict MCI-to-AD conversion in 3 years HO 3Y 41.1% Evol
predict MCI-to-AD conversion in 4 years HO 4Y 41.9% noEvol

3.3 Classification

Bagging, risk minimization, and MetaCost were applied to the NBayes classi-
fier, TAN Bayes classifier, DT and SVMs. The strategies were chosen since they
can be applied to any classifier and give insight about its behavior. The NBayes
classifier was used with kernel density estimation since it showed superior re-
sults compared to using a normal distribution, in all datasets. The TAN Bayes
classifier was used due to its efficiency and efficacy [37].

When dealing with imbalanced datasets and DT, either no pruning or pruning
preceded by Laplace smoothing is advised [38, 39]. Hence, both methods were
tested and the best was used. The pruning confidence factor was subject to grid-
search in order to maximize F-measure for each dataset. SVMs were used with
the polynomial kernel and the Gaussian kernel function. Grid-search was also
performed for the SVM parameters. Regarding bagging and MetaCost, results
for 10 iterations were considered. Attempts with less iterations led to worse
results, while using more than 10 iterations does not provide significant bagging
improvements [6]. Given the moderate dataset size, a 100% bag size was used.
Implementations were provided by WEKA 3.6 [40].

Regarding the cost-setup, correct predictions were defined to have zero cost,
that is C(0, 0) = 0 and C(1, 1) = 0. Since the cost matrix is invariant to multi-
plication by a positive factor, the majority class error cost was kept equal to one,
and the minority error cost was varied. The goal was then to find the optimal
misclassification cost ratio (MCR):

MCR =
C(0, 1)

C(1, 0)
= C(0, 1),

which corresponds to the value that maximizes F-measure. Empirical tests showed
that the optimal MCRs were never superior to 14 (obtained applying risk min-
imization to DTs). The second highest MCR was 8 (obtained using MetaCost
with the NBayes). Since the difference in F-measure between the two cases was
only 0.02, the MCR search interval was restricted to [1, 8] with a step of 0.25.



The models were built using 10-fold CV, performed 10 times with different ran-
dom seeds. The CV partitions were the same for all methods. A Friedman ranks
test and its post-hoc Nemenyi pairwise comparisons were applied, as advised
when testing more than two algorithms over multiple datasets [41]. Rejecting
the null hypothesis of the Friedman test means that at least two of the results
of applying the base classifier, bagging, risk minimization and MetaCost come
from populations with different medians [42], that is significant differences in the
performances were found. A significance level of 0.05 was considered.

4 Results and discussion

In this section, we first present and discuss the results obtained for each classifier.
The average values of F-measure can be observed in Table 3 and the results of
the Friedman test and the pairwise comparisons are depicted in Table 4. For the
CS methods, the MCR that maximized the F-measure was selected (Table 6 in
Appendix A). Finally, we compare the best strategies for each classifier (Table 5).

Table 3. F-measure averaged over 10 CV experiments for each dataset, base classifier
and meta-learning/ensemble method. The base classifier is the classifier without any
method. For the CS methods, the MCR that maximized F-measure was selected.

classifier dataset Base classifier Bagging Risk min MetaCost
CV Diag 0.464 0.492 0.504 0.531
CV 2Y 0.514 0.551 0.578 0.621

DT CV 3Y 0.679 0.729 0.692 0.695
CV 4Y 0.579 0.607 0.604 0.630
Average 0.559 0.595 0.594 0.619
CV Diag 0.598 0.596 0.597 0.583
CV 2Y 0.636 0.640 0.693 0.655

NBayes CV 3Y 0.745 0.746 0.784 0.737
CV 4Y 0.675 0.679 0.693 0.661
Average 0.664 0.665 0.692 0.659
CV Diag 0.548 0.557 0.551 0.583
CV 2Y 0.623 0.631 0.653 0.655

TAN CV 3Y 0.744 0.769 0.748 0.737
CV 4Y 0.625 0.668 0.660 0.661
Average 0.635 0.656 0.653 0.659
CV Diag 0.550 0.561 0.569 0.563
CV 2Y 0.649 0.643 0.681 0.659

Polynomial-kernel CV 3Y 0.74 0.740 0.763 0.770
SVM CV 4Y 0.722 0.713 0.714 0.715

Average 0.667 0.664 0.682 0.677
CV Diag 0.556 0.579 0.579 0.576
CV 2Y 0.651 0.644 0.685 0.655

Gaussian-kernel CV 3Y 0.733 0.727 0.760 0.771
SVM CV 4Y 0.712 0.703 0.695 0.697

Average 0.663 0.663 0.680 0.675

4.1 Decision Trees

DT usually lack robustness to the imbalance. They tend to grow mixed leaves
with few minority instances that get disregarded. In addition, minority instances
may end up isolated in single leaves, leading to overfitting [8]. Accordingly, in
Table 4 it is possible to observe that plain DT were outperformed by all other
methods. Both bagging and MetaCost improved the performance of DT, which



meets the expectations given their instability [6]. Although DTs can suffer from
a learning bias, they provide inaccurate class-membership probabilities, and are
therefore bad candidates for risk minimization. Indeed, the bias was preferably
tackled through MetaCost, since it led to the highest values of F-measure in
most datasets. In the most balanced dataset, the CV 3Y dataset, MetaCost was
outperformed by bagging indicating the absence of the bias.

Table 4. Results of the Friedman tests and post-hoc pairwise comparisons over all
datasets. For each classifier, rejecting the null hypothesis corresponds to finding signif-
icantly different performances among all methods. Each entry indicates if the F-measure
obtained with the method in the corresponding column was significantly greater or
smaller than the F-measure obtained with the method in the row. The entry is blank
in case the comparison revealed no statistically significant difference.

Base classifier Bagging Risk min MetaCost Best strategy

Decision Trees p-value=1.37E-10

Base classifier - greater greater greater Bagging,

Bagging smaller - Risk min and

Risk min smaller - MetaCost

MetaCost smaller -

NBayes p-value=3.34E-12

Base classifier - greater

Bagging - greater smaller Risk min

Risk min smaller smaller - smaller

MetaCost greater greater -

TAN p-value=5.96E-5

Base classifier - greater greater Risk min

Bagging - and

Risk min smaller - MetaCost

MetaCost smaller -

Polynomial-kernel SVM p-value=1.96E-3

Base classifier -

Bagging - greater greater Base

Risk min smaller - classifier

MetaCost smaller -

Gaussian-kernel SVM p-value=3.64E-3

Base classifier -

Bagging - Base

Risk min - classifier

MetaCost -

4.2 Näıve Bayes classifier

In the NBayes classifier, computing the Maximum a Posteriori Hypothesis for
the class involves estimating the class prior probabilities and the conditional
probabilities. The imbalance mainly affects the prior probabilities, while the
conditional probabilities are calculated for each class [9]. Therefore, although
näıve Bayesian class-membership probability estimates are inaccurate [43], when
test instances are ranked according to them, they tend to be ordered according
to the class [9]. The decision threshold may thus benefit from an adjustment,
which seems to have been the case in our results. Applying risk minimization to
the NBayes classifier was statistically superior to all the approaches (Table 4).



On the other hand, the fact that conditional probabilities are skew-independent
makes the NBayes robust to the imbalance. Indeed, the plain NBayes led to the
greatest F-measure in the most imbalanced dataset (Table 3).

Since the NBayes is a stable algorithm, strategies involving bagging are typ-
ically not suitable [6]. This is clear in the results, given that bagging had no
benefit compared to the other methods, including the plain classifier. Moreover,
MetaCost was outperformed by risk minimization.

4.3 Tree-Augmented Näıve Bayes classifier

Table 4 shows that the best methods for the TAN Bayes classifier were risk min-
imization and MetaCost, while bagging provided no benefit. As the NBayes, the
TAN Bays classifier may benefit from an adjustment of the decision threshold,
given the potential bias in prior probabilities. The effect of using risk minimiza-
tion on this classifier has not been extensively studied in the literature. One
study showed that the TAN Bayes was improved compared to the NBayes, when
risk minimization or resampling followed by F-measure threshold optimization
were employed [44]. However, if minority class dependencies are incorrectly mod-
eled by the TAN Bayes network [10], shifting the threshold does not seem to be
adequate. The effect of risk minimization on this learner is thus unpredictable.
In our results, although risk minimization outperformed the plain classifier, it
did not maximize F-measure in any dataset.

TAN Bayes classifiers are not good candidates for bagging [45]. However,
imposing a tree structure to rare data can be too strong and lead to overfitting.
In this case, bagging-based methods can be useful. This seems to have been the
case, as MetaCost maximized the F-measure in the most imbalanced datasets. In
the nearly-balanced datasets, CV 3Y and CV 4Y, the best results were obtained
with bagging, possibly given the absence of a bias in the prior probabilities.

4.4 Support Vector Machines

Two behaviors were described for SVMs in imbalanced data [11]. If the imbalance
is moderate, they perform well, while in severe imbalances, SVMs are likely to
classify everything as majority. Plain SVMs were never outperformed by the
other methods, indicating their robustness (Table 4). Indeed, the greatest CV
imbalance is 15.7%, which is a moderate imbalance. In Gaussian-kernel SVMs,
different datasets were better modeled by different methods. No method was
statistically superior to the others.

SVMs do not predict class-membership probabilities with high accuracy. Fur-
thermore, in case the data is non-separable, biasing the output of the model
does not provide any benefit. Nonetheless, the highest values of F-measure for
the most imbalanced datasets were obtained through risk minimization with
polynomial-kernel SVMs, revealing that a learning bias was present. In spite of
SVM stability, if the dataset is small or the minority is rare, SVMs can overfit
the data and thus benefit from bagging [13]. A fact that may corrupt the success
of bagging is that SVM parameters are optimized for one of the 10 rounds of
CV. This optimization is lost when the training data is changed. This appears



to have been the case of polynomial-kernel SVMs, as bagging did not improve
the base classifier and was outperformed by the CS methods.

A final note goes to the validation results. They were consistent to the CV
results for the DT and for the NBayes classifier. DT were always outperformed
and the NBayes was preferentially improved by risk minimization. The results
obtained for the TAN Bayes classifier and SVMs were not very consistent with
the CV results. The TAN Bayes not improved by MetaCost, as was the case in
CV. Possibly, the increase in the size of the training data reduced th instability
that rendered this classifier suitable for ensembling. The SVMs benefited from
risk minimization in the CV test and from MetaCost in the HO test.

4.5 Comparison of the best strategies for each classifier

The best strategies for each classifier were also compared through a Friedman
test and Nemenyi pairwise comparisons (Table 5). All strategies outperformed
strategies with DTs as base learner, which led to the lowest values of F-measure.
Combining risk minimization with the NBayes classifier achieved greater values
of F-measure than all other strategies except polynomial-kernel SVMs. There-
fore, and given the efficiency and simplicity of the combination the NBayes with
risk minimization, it is the preferred strategy.

Table 5. Results of the Friedman tests and post-hoc pairwise comparisons between
the best strategies for each classifier. The p-value is 2.41E-41.

DT+ DT+ DT+ NBayes+ TAN+ TAN+ Poly Gaussian

Bag Risk MetaCost Risk Risk MetaCost SVM SVM

DT+Bag - greater greater greater greater greater

DT+Risk - greater greater greater greater greater

DT+MetaCost - greater greater greater greater greater

NBayes+Risk smaller smaller smaller - smaller smaller smaller

TAN+Risk smaller smaller smaller greater -

TAN+MetaCost smaller smaller smaller greater -

Polynomial SVM smaller smaller smaller -

Gaussian SVM smaller smaller smaller greater -

Dataset F-measure

CV Diag 0.49 0.50 0.53 0.60 0.55 0.58 0.55 0.56

CV 2Y 0.55 0.58 0.62 0.69 0.65 0.65 0.65 0.65

CV 3Y 0.73 0.69 0.70 0.78 0.75 0.74 0.75 0.73

CV 4Y 0.61 0.60 0.63 0.69 0.66 0.66 0.71 0.71

Average 0.59 0.59 0.62 0.69 0.65 0.66 0.67 0.66

5 Conclusions

In this work, we examined the effect of the imbalance of neuropsychological
data on DT, NBayes, TAN Bayes and SVMs, in the diagnosis and prognosis
of dementia in patients with cognitive complaints. The most consistent results
were obtained for DT and NBayes. The first learner benefited from any meta-
learning/ensemble strategy, namely MetaCost, while the second is clearly im-



proved by the risk minimization. As a consequence and given the good perfor-
mances obtained by the NBayes classifier combined with risk minimization, this
is our method of choice for reliable and predictable results in neuropsychological
data. SVMs were robust to the imbalances, but it was not possible to conclude
which method is the best match for it.

Directions for future work include the study of an assessment strategy that
can avoid the optimism of the G-mean and complement the F-measure by fo-
cusing on the majority class. Moreover, it would be relevant to compare the
presented results with a resampling method, such as SMOTE, and observe its
effect on each classifier. A final comment goes to the other challenges posed by
the data, such as the high attribute dimensionality, and the high percentage of
missing values. A deeper study of these problems could reduce the effect of the
class skew and make the neuropsychological tests more informative.
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6 Appendix A. Misclassification Cost Ratios

classifier dataset Risk min MetaCost
CV Diag 7.75 5
CV 2Y 6. 4

DT CV 3Y 5.25 5
CV 4Y 4.5 3.5
Average 5.88 4.38
CV Diag 1.75 1
CV 2Y 7.5 4

NBayes CV 3Y 7.75 6.75
CV 4Y 1.5 4.75
Average 4.63 4.13
CV Diag 3.5 1
CV 2Y 2.75 4

TAN CV 3Y 1.25 6.75
CV 4Y 3 4.75
Average 2.63 4.13
CV Diag 1.5 1.25
CV 2Y 2.5 2.5

Polynomial-kernel CV 3Y 2 1.5
SVM CV 4Y 1.25 2.5

Average 1.82 1.94
CV Diag 4.5 2.5
CV 2Y 2.75 2.5

Gaussian-kernel CV 3Y 2.5 2.25
SVM CV 4Y 1.25 1.5

Average 2.75 2.19

Table 6. MCRs that maximized the value of F-measure in the CS methods.

7 Appendix B. Validation results using optimal MCRs

classifier dataset Base classifier Bagging Risk min MetaCost
HO Diag 0.444 0.5 0.367 0.391

DT HO 2Y 0.267 0.364 0.4 0.36
HO 3Y 0.7 0.776 0.795 0.815
HO 4Y 0.595 0.629 0.618 0.6

HO Diag 0.516 0.5 0.516 0.457
NBayes HO 2Y 0.429 0.429 0.556 0.529

HO 3Y 0.818 0.818 0.824 0.824
HO 4Y 0.647 0.686 0.722 0.718

HO Diag 0.6 0.522 0.48 0.5
TAN HO 2Y 0.581 0.417 0.6 0.565

HO 3Y 0.818 0.769 0.836 0.753
HO 4Y 0.667 0.686 0.651 0.619

HO Diag 0.5 0.5 0.467 0.552
Polynomial-kernel HO 2Y 0.435 0.381 0.632 0.615

SVM HO 3Y 0.721 0.781 0.806 0.806
HO 4Y 0.667 0.667 0.667 0.684

HO Diag 0.48 0.48 0.488 0.533
Gaussian-kernel HO 2Y 0.435 0.455 0.6 0.615

SVM HO 3Y 0.733 0.762 0.806 0.841
HO 4Y 0.647 0.667 0.647 0.706

Table 7. Values of F-measure obtained by training the models on the CV datasets
and testing them on the corresponding HO datasets. MCRs in Table 6 were used.


