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Abstract

Background: Position-specific priors (PSP) have been used with success to boost EM and Gibbs sampler-based
motif discovery algorithms. PSP information has been computed from different sources, including orthologous
conservation, DNA duplex stability, and nucleosome positioning. The use of prior information has not yet been
used in the context of combinatorial algorithms. Moreover, priors have been used only independently, and the
gain of combining priors from different sources has not yet been studied.

Results: We extend RISOTTO, a combinatorial algorithm for motif discovery, by post-processing its output with a
greedy procedure that uses prior information. PSP’s from different sources are combined into a scoring criterion
that guides the greedy search procedure. The resulting method, called GRISOTTO, was evaluated over 156 yeast TF
ChIP-chip sequence-sets commonly used to benchmark prior-based motif discovery algorithms. Results show that
GRISOTTO is at least as accurate as other twelve state-of-the-art approaches for the same task, even without
combining priors. Furthermore, by considering combined priors, GRISOTTO is considerably more accurate than the
state-of-the-art approaches for the same task. We also show that PSP’s improve GRISOTTO ability to retrieve motifs
from mouse ChiP-seq data, indicating that the proposed algorithm can be applied to data from a different
technology and for a higher eukaryote.

Conclusions: The conclusions of this work are twofold. First, post-processing the output of combinatorial
algorithms by incorporating prior information leads to a very efficient and effective motif discovery method.
Second, combining priors from different sources is even more beneficial than considering them separately.

Background
An important part of gene regulation is mediated by
specific proteins, called transcription factors (TF), which
influence the transcription of a particular gene by bind-
ing to specific sites on DNA sequences, called transcrip-
tion factor binding sites (TFBS). Such binding sites are
relatively short segments of DNA, normally 5 to 25
nucleotides long. Discovering TFBS’s is a challenging
task, mainly because they exhibit a high degree of
degeneracy making them difficult to distinguish from
random artifacts. For this reason, algorithms for motifs
discovery often suffer from impractical high false posi-
tive rates and return noisy models that are not useful to

characterize TFBS’s. Some extra knowledge, carefully
selected from the literature, has been incorporated in
motif discovery methods in order capture a variety of
characteristics of the motif patterns. This extra knowl-
edge is used during the process of motif discovery.
Some interesting works in this line of research made use

of the DNA structure for motif discovery. These works
take into consideration the bendability of a region, as well
as the nucleotide position in DNA loops, to determine
sequence accessibility [1-3]. A quite different and particu-
larly interesting work was devised by R. Lavery [4-10]. In
one approach [4], the atomic structure of the protein,
which specifically bounds to a fragment of DNA, was used
to calculate the binding energy needed for the full combi-
natorial space of base sequences. Binding sites were
selected considering an energy cutoff. This result suggests
that the crystallographic structure of a protein-DNA
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complex indeed contains enough information to locate the
binding sequences of a protein. Recently, a general
approach was proposed which allows the incorporation of
almost any type of information into the class of motif dis-
covery algorithms based on Gibbs sampling [11]. This
extra information is incorporated in a position-specific
prior (PSP) and it amounts for the likelihood that a motif
starts in a certain position of a given DNA sequence. The
most effective PSP’s have been built in a discriminative
way by taking into account not only the sequence-sets that
were bounded by some profile TF, but also sequence-sets
that were not bounded. This is accordant to the evidence
that the discovery of regulatory elements is improved by
employing discriminative approaches [12]. A PSP is built
in pre-processing time and then used to bias the optimiza-
tion procedure towards real motifs. Prior information such
as orthologous conservation, DNA duplex stability,
nucleosome positioning and transcription factor structural
class have been shown to be very effective when used with
Gibbs sampler-based PRIORITY algorithm [11,13-16].
The popular MEME algorithm also pointed out that PSP’s
are beneficial when used with EM procedures [17]. This
approach has not yet been used in the context of combina-
torial algorithms for the same task. Moreover, the infor-
mation given by PSP’s from different sources was never
combined, although there is evidence that predicting pro-
tein-DNA interactions can be improved by integrating
diverse information [18].
Meanwhile, chromatin immunoprecipitation (ChiP)

followed by ultra-high-throughput sequencing, known as
ChiP-seq, brought new challenges for motif discovery
[19]. As a result of direct sequencing of all DNA frag-
ments from ChiP assays, ChiP-seq is able to unravel
DNA sites, across the entire genome, where a specific
protein binds. Regions of high sequencing read density
are referred to as peaks to capture the evidence of high
base-specific read coverage. Peaks are found by peak
finding algorithms [20], which is called peak calling,
yielding a set of DNA fragments of ChiP-enriched geno-
mic regions. Usually, DNA fragments of size ±100 bp
are extracted around top peaks and then a motif discov-
ery tool is used to find for overrepresented sequences
[21]. Some authors have further exploited the informa-
tion provided by these binding peaks by devising priors
that use coverage profiles as motif positional preferences
[22,23].
In this paper, we extend the RISOTTO combinatorial

algorithm [24] in a greedy fashion to take into account
prior information in a PSP format. RISOTTO is a con-
sensus-based algorithm that exhaustively enumerates all
motifs of a certain size by collecting their occurrences,
at a given distance, from a set of co-regulated DNA
sequences [24-27]. Since methods based on the detec-
tion of overrepresentation of TFBS’s in co-regulated

DNA sequences are known to face problems detecting
weak motifs, we propose to post-process the RISOTTO
output by modifying top motifs in a greedy fashion,
guided by the information given by the prior. The
rational for this approach is that the combinatorial algo-
rithm exploits the full space of possible motifs pointing
out good candidates. Afterwards a greedy search is per-
formed over these initial guesses and good motifs are
up-weighted by the prior. The reduction of the search
space attained in the greedy search by using the output
of a combinatorial algorithm makes the proposed
algorithm, called GRISOTTO, very efficient.
A great advantage of GRISOTTO is its ability to com-

bine priors from different sources. This is achieved by
considering a convex combination of the information
given by all priors resulting in an information-theoreti-
cal scoring criterion called Balanced Information Score
(BIS). To unravel the benefits of using BIS with GRI-
SOTTO we focus on discovering motifs in 156 bench-
mark datasets from ChIP-chip data from yeast. We
considered three different priors already used by
PRIORITY, namely, orthologous conservation [14,16],
DNA duplex stability [15] and nucleosome positioning
[11]. By combining the information of these three priors
together in BIS we guided the GRISOTTO greedy
search and achieved considerably more accurate results
than by using the priors separately. Moreover, we
further verified that GRISOTTO is at least as accurate
as the PRIORITY and MEME algorithms when using
the same priors separately.
We also gauge GRISOTTO with 13 mouse ChiP-seq

data. In this evaluation we used two different priors pro-
viding extra information from orthologous conservation
[17] and coverage profiles given by ChiP-seq assays [23].
Results show that orthologous conservation was able to
uncover motifs that resemble ones already reported by
previous works on the same data [17,21]. However, the
PSP built from the ChiP-seq assays was not very benefi-
cial to GRISOTTO, as it reported exactly the same
motifs as the uniform prior for which any position in
the DNA sequences is likely to contain a motif. We
attributed this to the fact that the information contained
in this prior is already encoded in the BIS score. Indeed,
coverage profiles indicate overrepresentation, expressed
via high sequencing read density, and the BIS score is a
weighted balance between overrepresentation and priors.
Besides effectiveness, GRISOTTO also showed to be

very efficient, taking around 2 to 3 seconds per yeast
sequence-set, that have around 200 sequences of
500 bp, and 1 to 4 minutes per mouse sequence-set,
that have from around 1000 to 40000 sequences of 200
bp. These computational times were obtained using one
core of an Intel 2.4 GHz Core 2 Duo and include the
generation of the initial starting points by RISOTTO.
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We conclude that post-processing the output of combi-
natorial algorithms guided with the information given
by single or combined priors yields an efficient approach
that shows great promise in extending the power of
motif discovery tools.

Methods
Herein, we present the GRISOTTO algorithm for motif
discovery. The proposed algorithm uses the RISOTTO
[24] output as starting points of a greedy procedure that
aims at maximizing a scoring criterion based on com-
bined prior information. Our approach diverges from
EM (used in MEME [17]) and Gibbs sampling (used in
PRIORITY [11,13-16]) as we do not consider latent vari-
ables and do not use a background model. Moreover,
instead of maximizing the likelihood, we propose a scor-
ing criterion based on the balanced information of
observing the DNA sequences and the priors given a
candidate motif. We called this score Balanced Informa-
tion Score (BIS). Furthermore, instead of reporting
a PSSM, GRISOTTO returns the IUPAC string that
is best fitted, according to BIS, via a greedy search
procedure.

GRISOTTO algorithm
We next introduce some notation needed to describe
the GRISOTTO algorithm (refer to Table 1). Start by

considering that we have a set of N co-regulated DNA
sequences henceforward denoted by f = (fi)i = 1, ..., N. The
length of the each sequence fi is ni, that is,
fi = (fij)j=1, ...,ni. Moreover, consider that Sp contains
some prior information in a PSP format about the domain
in study, with p = 1 ... ℓ, where ℓ is the number of priors
(eventually zero). We denote by S = 〈S1, ..., Sℓ〉 the list of
all priors. The goal of GRISOTTO is to report a single
motif of a fixed size k, that is, an IUPAC string of size k.
The IUPAC alphabet is henceforward denoted by Σ.
The pseudocode of GRISOTTO is depicted in Algo-

rithm 1. The algorithm starts by running RISOTTO to
extract, at least zmin, and at most zmax, motifs of size k
(see details in Additional File 1). From the RISOTTO
output, the top z motifs are collected in a set called C
(Step 2) and constitute the starting points of the GRI-
SOTTO greedy procedure, called GGP (Step 4). Briefly,
GGP starts with a motif m ∈ C and returns the best
fitted motif, according to BIS, by updating each position
in m with an IUPAC symbol until no local improve-
ments can be achieved. In Step 5-6 the variable r, that
stores the output of the algorithm, is updated whenever
the GGP procedure returns a motif with a BIS score
higher than the current stored one. Note that in Step 2
the result variable r is initialized with the empty motif ε.
We consider that the empty motif ε has the minimum
possible BIS scoring value.

Table 1 Definition of terms used in describing the algorithms presented in Methods.

Symbol Meaning

Σ alphabet (usually DNA or IUPAC)

f input sequences

fi i-th input sequence

fij j-th position of the i-th input sequence

N number of input sequences

ni length of fi
k motif size

Sp p-th prior (in PSP format)

ℓ number of priors (it can be zero)

S S = 〈S1, ..., Sℓ〉 is the list of all priors

zmin minimum number of motifs expected to be returned by a RISOTTO run

zmax maximum number of motifs expected to be returned by a RISOTTO run

z number of top motifs post-processed from RISOTTO output

C the set with the z top motifs to be post-processed by GRISOTTO

m motif of size k

m〈i, a〉 motif m where the i-th position (starting with 0) is replaced by a Î Σ

ε empty motif (its BIS score is the minimum possible value)

fi[j ... j + k - 1] k-long segment of the i-th input sequence that starts at position j

Sp[i, j] prior probability at the j-th position of fi
ji annotated position for fi with maximum BIS score for a motif m

Pm probability distribution given by the PSSM induced by m

ap the weight of the p-th prior

l coefficient to balance priors and over-representation contribution
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Algorithm 1 GRISOTTO, Greedy RISOTTO

GRISOTTO(DNA sequences f , list of priors S = 〈S1,
..., Sℓ〉)

1. run RISOTTO(k,zmin,zmax);
2. let r = ε and C be the list of the first z motifs
returned in Step 1;
3. for each motif m in C
4. let m = GGP(m, f, S);
5. if (BIS(r,f ,S)<BIS(m,f ,S))
6. let r = m;
7. return r;

It remains to explain the GGP procedure given in
Algorithm 2. The general idea of the algorithm is to
process each position of the motif m, received as para-
meter, in a greedy fashion. Variable i identifies the motif
position being processed. It is initialized with the value
0 (Step 1), the first position of m, and it is incremented
in a circular way using modular arithmetics (Step 9).
GPP terminates when k consecutive positions of the
motif m being considered can not be improved, accord-
ing to BIS, and so m remains unchanged for a complete
k-round. This information is stored in variable t that
counts how many consecutive positions of m have not
been modified. Variable t is initialized with 0 (Step 1)
and controls the outer cycle (Step 2-9), which termi-
nates when t = k. The Boolean flag changed is read in
the outer cycle (Step 7) to detect whether the i-th posi-
tion of the motif has been modified inside the body of
the inner cycle (Step 6). It is initialized in each run of
the outer cycle with false (Step 3). The inner cycle (Step
4-6) tries to improve the BIS score of m by updating its
i-th position with each letter a Î Σ. We denote by m〈i,
a〉 the motif m where the i-th position of m was
replaced by the letter a. Whenever the BIS score of m〈i,
a〉 is greater than the BIS score of m (Step 5) three vari-
ables are updated: (i) motif m is updated to m〈i, a〉; (ii)
variable t is reset to its initial value, forcing a complete
k-round from that point on; and (iii) flag changed is
turned to true. After the inner cycle, in Step 7, we test
whether the i-th position of m was not modified by
checking the value of the flag changed. If that is the
case, variable t is incremented (Step 8). Next, in Step 9,
variable i is incremented so that the next position of m
can be inspected.
Algorithm 2 GGP, GRISOTTO greedy procedure

GGP(motif m, DNA sequences f, list of priors S =
〈S1, ..., Sℓ〉)

1. let t = 0 and i = 0;
2. while (t <k)
3. let changed = false;
4. for each a in Σ

5. if (BIS(m〈i, a〉, f ,S)>BIS(m, f ,S))
6. let m = m〈i, a〉, t = 0 and changed =
true;
7. if (not changed)
8. let t = t + 1;
9. let i = (i + 1) mod k;
10. return m;

We note that the GGP procedure converges since
the BIS score is upper-bounded. Next, we derive and
present in detail the BIS score.

Balanced information score
Start by noticing that a motif m of size k written in
IUPAC can be easily translated into a PSSM with
dimension 4 × k (for details see Additional file 1). More-
over, observe that if we had to guess in which position
m occurs in sequence fi that would be the position ji
that maximizes Pm(fi[ji ... ji + k - 1]) where Pm(w) is the
probability of observing the DNA word w by the PSSM
induced by m and fi[ji ... ji + k - 1] is the k-long segment
of fi that starts at position ji. In other words, such ji
annotates the position in which we believe the motif m
occurs in fi. Henceforward consider that we annotate for
each sequence fi the respective position ji where m
occurs with higher probability (refer to Table 1).
Following Shannon, the self-information of a probabil-

istic event with probability p is given by - log(p). If the
event is very rare, the self-information is very high. On
the other hand, if the event has probability close to 1,
observing such event gives us almost no information.
So, by assuming that m occurs independently in each
sequence of f, the self-information that m occurs in all
sequences of f in the annotated positions is given by

N∑
i=1

− log(Pm(fi[ji . . . ji + k − 1])). (1)

Note that the above sum is zero (its minimal value) if
the motif m occurs with probability 1 in all annotated
positions and, moreover, the sum is not upper-bounded.
Considering that the priors are in PSP format, their

information can be easily computed from the annotated
sequences. Indeed, the self-information given by the
prior Sp of observing the annotated positions ji, for all
1 ≤ i ≤ N, is computed as

N∑
i=1

− log(Sp[i, ji]),

where Sp[i, j] is the prior probability stored at the j-th
position of the i-th sequence in the Sp PSP file. Having
this, it remains to understand how the information from
different priors can be combined. Actually, priors come
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from different sources [11,13-16], and some of these
sources might have more quality or be more relevant
for motif discovery than others. A simple way to heuris-
tically combine prior information is to multiply the con-
tribution of each prior by a constant ap that measures
the belief in the quality/relevance of each prior Sp and
consider a balanced sum of all self-informations.
In order to keep the resulting value with the same mag-
nitude of each component, we consider a convex

combination, that is,
∑�

p=1 αp = 1. Thus, the combined

self-information is computed as

�∑
p=1

(
αp

N∑
i=1

− log(Sp[i, ji])

)
. (2)

Following a similar idea, we balance with a constant l
Î (0, 1] the self-information given by the occurrence of
the motif in (1) with the self-information given by the
priors in (2), obtaining in this way the following expres-
sion:

λ

N∑
i=1

− log(Pm(fi[ji . . . ji + k − 1])) + (1 − λ)
�∑

p=1

(
αp

N∑
i=1

− log(Sp[i, ji])

)
=

−
N∑
i=1

⎛
⎝λ log(Pm(fi[ji . . . ji + k − 1]) + (1 − λ)

�∑
p=1

αp log(Sp[i, ji]))

⎞
⎠ .

(3)

The closer the above expression is to zero the less
(balanced) self-information follows from observing a
candidate motif m in the annotated positions of both
the DNA sequences and the priors. Indeed, we expect
motifs to occur in the annotated positions of both the
DNA sequences and the priors with high probability.
Therefore, the goal is to find a motif m that minimizes
such information. Next, and for the sake of simplifica-
tion, we drop the minus sign in (3), that is, we consider
the final scoring criterion, called balanced information
score (BIS), defined as

BIS(m, f , S) =
N∑
i=1

⎛
⎝λ log(Pm(fi[ji . . . ji + k − 1]) + (1 − λ)

�∑
p=1

αp log(Sp[i, ji])

⎞
⎠ , (4)

and restate our goal to finding a motif m that maxi-
mizes (4). Note that BIS(m, f, S) is always non-positive
and, therefore, is upper-bounded by 0.
For the BIS score in Equation (4) to be well-defined it

remains to determine the values of the constants l and
ap for all 1 ≤ p ≤ ℓ. Whenever there is no knowledge
about the quality of the priors the values of such con-

stants should be uniform, that is, λ =
1
2
and αp =

1
�
for

all 1 ≤ p ≤ ℓ. Usually, it is possible to refine heuristically
these constants by evaluating the usefulness of each
prior in well-know domains.
Finally, it is not obvious how to translate back the

combined information into a combined prior that could

be used in an EM or Gibbs sampler-based algorithm.
These techniques need that such prior reflects the prob-
ability of finding a motif in a certain position of the
DNA sequences in order to correctly bias, in each itera-
tion step, the expected log-likelihood of the candidate
motif occurring in the positions given by the latent vari-
able. On the other hand, GRISOTTO incorporates prior
information in BIS resulting in a theoretical-information
scoring criterion that measures the information of
observing the candidate motif in the annotated positions
of both the DNA sequences and the priors. These anno-
tated positions are computed only once, for each candi-
date motif, in such a way that the balanced contribution
to the BIS score of the DNA sequences and the priors
in those positions is maximal. The higher the value of
the BIS score, the higher the probability that a candidate
motif occurs in the annotated positions of both the
DNA sequences and the priors. Therefore, GRISOTTO
reports the motif, among all candidate ones, that maxi-
mizes the BIS scoring criterion.

Results
The GRISOTTO algorithm was implemented in Java.
Source code and binaries are available at http://kdbio.
inesc-id.pt/~asmc/software/grisotto.html. A C implemen-
tation of the RISOTTO combinatorial algorithm, needed
by GRISOTTO, is also available. Source code and execu-
tables can also be found at the GRISOTTO webpage.
We start the evaluation of the effectiveness of GRI-

SOTTO by measuring the benefits of using single and
combined priors in finding motifs in yeast ChiP-chip
data. This data is now a gold standard with several
priors available, providing an unbiased experimental
assay for motif discovery tools. It contains a human-
curated set of 156 motifs known to be present in
156 sequence-sets (one motif per sequence-set). Motif
finder tools are asked to report a single motif for each
sequence-set, which is then compared with the human-
curated one. Human-curated motifs are called through-
out this work as literature motifs, known motifs or even
true motifs. Details about the data, priors, evaluation
methodology, and results can be found in the following
ChiP-chip data subsection.
We also provide an additional check on the value of

using priors with GRISOTTO from data with different
characteristics - a higher eukaryote with sequence data
derived from a different technology. On this account,
we evaluate the performance of GRISOTTO in 13
sequence-sets from mouse ChiP-seq data. Details of this
assessment can be found in ChiP-seq data subsection.

ChiP-chip data
We gauge the performance of GRISOTTO by measur-
ing the benefits of using BIS for finding motifs in
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156 sequence-sets experimentally verified to bind differ-
ent TF’s in yeast. These datasets were collected by
PRIORITY researchers [11] and were compiled from the
work of Harbison et al. [28]. More precisely, Harbison
et al. profiled the intergenetic binding locations of 203
TF’s under various environmental conditions over 6140
yeast intergetecic regions. From these only intergenetic
sequences reported to be bounded with a p-value ≤
0.001 for some condition were considered by the
PRIORITY researchers. Moreover, only sequence-sets
with at least size 10 bounded by TF’s with a known con-
sensus from the literature were considered, resulting in
156 sequence-sets. Presently, these datasets are being
used to benchmark several motif discovery tools
[11,14-17,28-35] as they provide a reliable and fair assay
over real data.
Three different PSP’s were incorporated in BIS to

boost GRISOTTO motif discoverer, namely, priors
based on evolutionary conservation [14,16], destabiliza-
tion energy [15], and nucleosome occupancy [11]. All
these priors were devised by PRIORITY researchers and
were kindly made available by the authors (personal
communication). The popular MEME algorithm was
also evaluated with the evolutionary conservation-based
prior [17] devised by PRIORITY researchers. Since the
sequence-sets and priors used to evaluate GRISOTTO
were exactly the ones used in PRIORITY and MEME
and, moreover, the criterion used to determine a correct
prediction by the algorithms was also the same, we were
able to make direct comparisons with their published
results. PRIORITY and MEME had already shown that
the use of these priors is advantageous when combined
with Gibbs sampling and EM techniques. Herein we aim
at investigating if the same improvements are also
achieved by GRISOTTO. Moreover, we evaluate if com-
bining priors is beneficial.
Following the approach of PRIORITY, we let GRI-

SOTTO look for a single motif of size 8 in each of the
156 yeast sequence-sets, since priors were computed for
8-mers. The results provided by MEME considered a
modification of the priors, adapting them for k-mers of
different sizes. As a consequence, MEME was able
to report accurately a large number of long motifs.
Although we acknowledge that MEME’s approach
improves the capacity to discover motifs, we keep the ori-
ginal priors used in PRIORITY. Moreover, to measure
the accuracy of GRISOTTO we used exactly the same
metric as the one previously used by the PRIORITY and
MEME researches. This metric compares the single motif
reported by the discoverer, for each of the 156 yeast
sequence-sets, to a literature motif by computing a scaled
version of the Euclidean distance between the true motif
and the reported one. A more complete explanation of
this metric can be found in Additional file 1.

The results of GRISOTTO, as well as those of state-
of-the-art motif discoverers, are summarized in Table 2.
Detailed results of GRISOTTO can be found in Addi-
tional file 2 while details about the evaluation methodol-
ogy, including, parameter settings and running times,
can be found in Additional file 1. A brief explanation
about the priors is given in the following sections.
Evolutionary conservation-based priors
Diverse methods for motif discovery make use of ortho-
logous conservation to assess wether a particular DNA
site is conserved across related organisms, and thus
more likely to be functional. A comprehensive work
along this line was done by PRIORITY researchers
[14,16], where an orthologous conservation-based prior
was devised to improve their Gibbs sampler-based motif
discovery method. This prior was built in a discrimina-
tive way by taking into account not only sequence-sets
that were bounded by some profiled TF (the positive
set) but also sequence-sets that were not bounded by
the same TF (the negative set). In this way the prior
reflects not only the probability that a W -mer at a cer-
tain position is conserved but of all the conserved
occurrences of this W -mer what fraction occurs in the
bound sequence-set. Conserved occurrences are found
by searching if a W -mer in a reference sequence also
occurs in most of its orthologous ones regardless of its
orientation or specific position. For this particular case,
the evolutionary conservation-based prior was used for
each intergenetic region in S. cerevisiae and it used the
orthologous sequences from six related organisms,
namely, S. paradoxus, S. mikatae, S. kudriavzevii,
S. bayanus, S. castelli and S. kluyveri. The prior was
named discriminative conservation-based prior (DC) and
was made available, in a PSP format, at PRIORITY
webpage.
Herein, we gauge the performance of GRISOTTO

when this exact DC prior is incorporated into the BIS
scoring criterion. Results comparing GRISOTTO-DC
with PRIORITY-DC[16], MEME-DC[17], and other
state-of-the-art algorithms, can be found in Table 2.
Results show that GRISOTTO-DC correctly predicted
83 motifs out of the 156 experiments, whereas PRIOR-
ITY-DC found 77 and MEME:ZOOP-DC 81. We con-
clude that GRISOTTO performed at least as well as
PRIORITY and MEME:ZOOP when the same DC PSP
was used. A closer inspection of detailed results of GRI-
SOTTO, in Additional file 2 reveals that GRISOTTO-
DC found 15 motifs that PRIORITY-DC did not, while
PRIORITY-DC found only 10 motifs that GRISOTTO-
DC did not.
Destabilization energy-based priors
Information about DNA double-helical stability has
also been collected into a PSP to boost the PRIORITY
Gibbs sampler-based algorithm [15]. The rational
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for the information contained in this prior is based in
the fact that, in general, the energy needed to destabi-
lize the DNA double helix is higher at TFBS’s than at
random DNA sites. The PSP resulting from this effort
was built in a discriminative way, just as for the DC
prior, and was named discriminative energy-based prior
(DE).
We evaluated the DE prior within GRISOTTO.

Results comparing GRISOTTO-DE with PRIORITY-
DE[15], and other state-of-the-art algorithms, can be
found in Table 2. This table shows that GRISOTTO-DE
correctly predicted 80 motifs out of the 156 experi-
ments, whereas PRIORITY-DE found only 70. We con-
clude that GRISOTTO performed quite well when the
DE prior was used, with an improvement of 14% over
correct predictions relatively to PRIORITY, raising the
overall proportion of successful predictions in 6% (from
45% to 51%). As before, we made a closer examination
of the detailed results included in Additional file 2
which revealed that GRISOTTO-DE found 19 motifs
that PRIORITY-DE did not, whereas PRIORITY-DE
found only 9 motifs that GRISOTTO-DE did not.
Nucleosome occupancy-based priors
Nucleosome occupancy has also been used in motif dis-
covery. The rationale for this approach is that Eukaryo-
tic genomes are packaged into nucleosomes along
chromatin affecting sequence accessibility. There are
two main works in the literature to predict genome-
wide organization of nucleosomes in Saccharomyces cer-
evisiae [36-38]. Taking into account the work of Segal

et al. [38] the PRIORITY researchers [11] devised an
informative prior based on a discriminative view of
nucleosome occupancy. The prior was named discrimi-
native nucleosome-based prior (DN ).
GRISOTTO was evaluated with the DN prior incor-

porated in the BIS score. Results comparing GRI-
SOTTO-DN with PRIORITY-DN , and other state-of-
the-art algorithms, can be found in Table 2. This table
shows that GRISOTTO-DN correctly predicted 77
motifs out of the 156 experiments, while PRIORITY-DC
found 70. We conclude that GRISOTTO outperformed
PRIORITY when DN prior was used, with an improve-
ment of 10% over correct predictions. A closer investi-
gation of detailed results in Additional file 2 unravels
that GRISOTTO-DN found 13 motifs that PRIORITY-
DN did not, whereas PRIORITY-DN found 6 motifs
that GRISOTTO-DN did not.
Combining priors
Despite considerable effort to date in developing new
potential priors to boost motif discoverers, PSP’s from
different sources have not yet been combined. Actually,
although having some degree of redundancy, because,
for instance, the positioning of nucleosomes may be cor-
related with DNA double helix stability, it is easy to
conclude by a closer inspection of the detailed results in
Additional file 2 that different PSP’s still report a con-
siderable number of disjoint motifs (refer to Additional
file 1 for further details). As a matter of fact, PRIORITY
researchers have already noticed this fact [15]. However,
it is not a trivial task determining how to translate the

Table 2 Comparison of GRISOTTO with state-of-the-art methods over ChiP-chip data.

Algorithm Description Successes % Ref

PhyloCon Local alignment of conserved regions 19 12% [29]

PhyME Alignment-based with EM 21 13% [30]

MEME:OOPS MEME with OOPS model 36 23% [31]

MEME:ZOOPS MEME with ZOOPS model 39 25% [31]

MEME-c MEME without conserved bases masked 49 31% [28]

PhyloGibbs Alignment-based with Gibbs Sampling 54 35% [32]

Kellis et al. Alignment-based 56 36% [33]

CompareProspector Alignment-based with Gibbs sampling 64 41% [34]

Converge Alignment-based with EM 68 44% [35]

MEME:OOPS-DC MEME with OOPS model and DC priors 73 47% [17]

PRIORITY-DC Gibbs sampler with DC priors 77 49% [16]

MEME:ZOOP-DC MEME with ZOOPS model and DC priors 81 52% [17]

GRISOTTO-DC GRISOTTO with DC priors 83 53% -

PRIORITY-DE Gibbs sampler with DE priors 70 45% [15]

GRISOTTO-DE GRISOTTO with DE priors 80 51% -

PRIORITY-DN Gibbs sampler with DN priors 70 45% [11]

GRISOTTO-DN GRISOTTO with DN priors 77 49% -

GRISOTTO-CDP GRISOTTO with combined priors 93 60% -

The results of motif discoverers were taken from R. Gordân et al. [16] and T. L. Bailey et al. [17].

All priors used were devised by R. Gordân, A. J. Hartemink and L. Narlikar [11,14-16].
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BIS combined information into a PSP that can be used
in EM or Gibbs sampler-based algorithms.
In order to gauge the potential of combined priors, we

incorporated in the BIS score the three DC, DE and
DN priors. We call the final prior combined discrimina-
tive prior (CDP). Results show that GRISOTTO-CDP is
the more accurate motif discoverer for the 156
sequence-sets being evaluated. It correctly predicted 93
motifs, while GRISOTTO-DC found 83, GRISOTTO-
DE 80 and GRISOTTO-DN 77. In this way GRI-
SOTTO-CDP accomplished an improvement of at least
12% over correct predictions, when compared with GRI-
SOTTO variants considering the priors individually.
This raises the overall proportion of successful predic-
tions in 7%, on top of the improvements already
attained in the previous sections, over these 156 yeast
sequence-sets. Moreover, when comparing GRISOTTO-
CDP with state-of-the-art motif discoverers (refer to
Table 2), the final proportion of successful predictions
was raised to 60%, while the best known previous value,
to our knowledge, was 51% attained by MEME-DC[17].
This leads us to conclude that combining priors from
different sources is even more beneficial than consider-
ing them separately.

ChiP-seq data
Herein we measure the accuracy of GRISOTTO in TF
motif discovery on 13 mouse ChiP-seq data. This data
was gathered by Chen et al. [21] where whole-genome
binding sites of 13 sequence-specific TFs (Nanog, Oct4,
STAT3, Smad1, Sox2, Zfx, c-Myc, n-Myc, Klf4, Essrb,
Tcfcp2l, E2f1, and CTCF) were profiled in mouse ES
cells using the ChiP-seq approach. Sequences of ±100
bp size from the top 500 binding peaks were selected
for each factor, repeats were masked, and the Weeder
[39] tool was used to find overrepresented sequences
unravelling 12 of the 13 factors (excluding E2f1).
We assess the quality of GRISOTTO in discovering

motifs from mouse ChiP-seq data with two priors. First,
an orthologous conservation-based PSP was used as
information for higher organisms is now available.
Indeed, there are already such PSP’s for yeast, fly,
mouse and even human [14,16,17]. Second, a binding
peak-based PSP was tried as ChiP-seq assays provide an
intrinsic positional prior that can be computed from
base-specific coverage profiles. This prior has recently
been employed in motif discoverers [22,23] with success.
As for ChiP-chip data, we let GRISOTTO find for a

single motif of size 8, since priors were computed for 8-
mers. However, as human-curated motifs are not avail-
able for this ChiP-seq data, we made only a resem-
blance, based on a 6-window match, between the motifs
reported by GRISOTTO with those outputted by Chen
et al. [21] and MEME [17] for the same data.

Evolutionary conservation-based priors
Orthologous conservation-based priors for mouse ChiP-
seq data were obtained by MEME researchers [17] fol-
lowing a similar methodology as PRIORITY-DC for the
yeast ChiP-chip data ones. As before, this new mouse
prior received the shorthand name DC. We incorporated
the DC prior into the BIS score and ran GRISOTTO. In
Figure 1, motifs reported by Chen et al. and MEME-DC
are shown along side motifs found by GRISOTTO-DC
for the 13 mouse sequence-sets. Recall that Chen et al.
only reported 12 out of the 13 motifs, excluding the
E2f1 motif, so in this case the TRANSFAC [40] motif is
shown instead. MEME-DC and GRISOTTO-DC were
able to retrieve all motifs. Moreover, the number of
sequences of these sequence-sets vary from 1038 to
38238 and, due to efficiency issues, MEME-DC was only
able to run over 100 sequences randomly chosen from
each sequence-set. GRISOTTO-DC was able to use all
of them taking only 1-4 minutes, per sequence-set, to
report a motif.
Because sequences-sets are very large, some of the

reported motifs became highly degenerated. Actually,
only 6 out of the 13 motifs seem to be highly conserved,
namely, CTCF, Esrrb, Klf4, n-Myc, Tcfc and c-Myc. For
these, even allowing for IUPAC symbols during the
greedy search results in highly conserved motifs. There-
fore, for this data, we searched for IUPAC strings that
allow only two positions to have degenerate IUPAC
symbols.
By a closer inspection of Figure 1 we conclude that

motifs reported by GRISOTTO-DC are strongly similar
to the ones reported by Chen et al. and MEME-DC.
Have in mind that GRISOTTO outputs an IUPAC, and
not a PSSM, but we used, in a 6-window size, the same
color scheme as PSSM’s to make the resemblance with
reported motifs easier.
Binding peak-based priors
Hu el al. [23] devised a prior using coverage profile
information provided by the ChiP-seq approach. This
grounds in the belief that motifs are tightly packed near
the peak summit - the location inside each peak with
the highest sequence coverage depth. As a result, prior
probabilities were set to be proportional to a discretized
Student’s t-distribution with 3 degrees of freedom and
rescaled such that they form a step function with a fixed
25 bp step-size. The prior probabilities are symmetric
and centered at the peak summits. As such prior is
intrinsically a positional one we built a PSP resuming
the described probabilities for the 13 mouse ChiP-seq
data and ran GRISOTTO.
Our results show that direct use of binding peak-based

priors does not help GRISOTTO much. Actually, the
motifs reported by this prior were exactly the same as
using the uniform prior (recall that for the uniform
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Figure 1 Comparison of GRISOTTO-DC with Chen et al. and MEME-DC. Motifs reported by Chen et al. [21] and MEME-DC[17] are shown
along side motifs found by GRISOTTO-DC for the 13 mouse ChiP-seq data. Chen et al. only reported 12 out of the 13 motifs, excluding the E2f1
motif, so in this case the TRANSFAC [40] motif is shown instead.
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prior any position in the DNA is likely to contain a
motif). Moreover, when combined with the DC prior
GRISOTTO reported precisely the same motifs as DC
prior alone. These findings suggest that GRISOTTO is
unable to retrieve any useful information from the bind-
ing peak-based prior. We attributed this to the fact that
part of the information contained in the binding peak-
based prior is already encoded in the BIS score. Indeed,
peak summits indicate an overrepresentation of a motif
in a certain locus. Such overrepresentation is already
weighted in the BIS score (recall Equation (1) and (4) in
page 8-9). Notwithstanding, it seems reasonable that for
short sequences of 200 bp (namely, ±100 bp around the
peak summits) the coverage-based prior has no real
impact on motif discovery. For longer sequences, the
effective resolution of the peak summits seems to pro-
vide useful information [22,23].

Discussion
Wasserman and Sandelin [41] noticed that the discovery
of TFBS’s from a nucleotide sequence alone suffers from
impractical high false positive rates. This was termed
the futility theorem as nearly every predicted TFBS has
no function in vivo. This problem has been studied and
addressed by taking into consideration information in
and beyond the TFBS’s, such as orthologous conserva-
tion [16,17], nucleosome positioning [11,42], DNA
duplex stability [14] and coverage profiles obtained from
ChiP-seq assays [22,23].
Following this line of research we have verified in the

present study that post-processing the output of
RISOTTO with prior knowledge from different sources
is beneficial for motif discovery. RISOTTO is a consen-
sus-based method that enumerated exhaustively all
motifs by collecting their occurrences, up to a fixed
Hamming distance, from input sequences. The Ham-
ming distance between two string measures the mini-
mum number of substitutions required to change one
string into the other. As a result, a set of overrepre-
sented motifs is reported and then ordered by their
biological relevance according to some statistical signifi-
cance test [24,26,27]. This ordered list is retrieved in a
classical way from the nucleotide sequence alone and, as
previously mentioned, it is of particular importance
to introduce a bias from available priors. Following
this goal, we noticed that the top 10 motifs from the
RISOTTO ordered list could be greedily modified to
have a good BIS score. The greedy procedure would
modify these motifs introducing some noise allowed
by the prior and up-weighting weak motifs that were
masked during the combinatorial and/or statistical
significance test. Certainly, we would not expect
RISOTTO, or any other combinatorial algorithm, to
report completely outlandish motifs, as motif discovery

problem is indeed a combinatorial problem that
accounts for overrepresentation of a string in a set of
DNA sequences. However, prior information provides
valuable guidance on how to describe a motif that goes
beyond neighborhoods (defined by the Hamming
distance or any similar distance) of the consensus
sequence. GRISOTTO incorporates such information in
the BIS score providing in this way a broader definition
of overrepresentation of a motif in the input sequences.
Currently, a significant point of discussion is related

with the use of prior information as a post-processing
step of RISOTTO, and not within the RISOTTO proce-
dure itself. For the sake of simplicity, consider we are
looking for motifs of a fixed size k. Combinatorial algo-
rithms take into consideration overrepresentation of
motifs to extract them. This extraction is exhaustive, by
iteratively extending candidate strings of size 1 ... k - 1,
letter by letter of the DNA alphabet, and checking in
each step if the extended string is still overrepresented
in the sequence-set. Usually, complex data structures,
such as suffix-trees, are employed to extend the candi-
date string. Whenever an extension fails to be overre-
presented in the input sequences that extension is
disregarded and another one is attempted. Only exten-
sions that reach the size k are reported.
Conversely, prior information only asserts if a sub-

sequence of a fixed size W in a certain position of the
DNA sequences is likely to be a motif. It is not straight-
forward to use prior information in combinatorial algo-
rithms because they would need to know if a sub-string
of size 1 ... k - 1 is likely to be a motif. However, in one
hand, it is space-wise unfeasible to have priors for mul-
tiple values of W . On the other hand, priors for small
or large values of W have no information whatsoever,
as either they are very common (occur in all input
sequences) or very rare (occur only once or never). Our
work, as well as state-of-the-art ones [11,14-17], have
shown that an efficient and effective solution is to
consider W = k = 8.
Besides this discussion, there are two obvious advan-

tages of using prior information at a post-processing
step. First, the greedy-search procedure is independent
from the starting points provided by the combinato-
rial algorithm, allowing any method to be employed
(for instance, Weeder [39], SMILE [26], RISO [27],
RISOTTO, etc). Another advantage is that while new
priors are devised, we do not need to re-compute
previous starting points, being sufficient to run the
greedy-search procedure of the GRISOTTO algorithm.
In closing, we stress that the BIS score was used

throughout the experiments with sequence-sets known
to be bound by a TF. Therefore, it was only used to dis-
cover the positions of each sequence-set where the
motif occurs. Another possible application of the BIS
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score would be to detect the fraction of sequences that
are likely to have site predictions. There are two possi-
ble ways to adapt GRISOTTO to this new problem:
(i) derive a threshold of the BIS score contribution of a
sequence above which the sequence is likely to have site
predictions; (ii) incorporate an input parameter in the
GRISOTTO greedy procedure, usually called quorum,
that amounts for the fraction of sequences that have
binding site predictions. None of these approaches
seems straightforward and are out of the scope of this
paper, hence they were left as a future research topic.

Conclusions
The GRISOTTO algorithm post-processes in a greedy-
fashion the output of RISOTTO taking into account
prior information available about the domain. In prac-
tice, this introduces some extra knowledge taken from
the literature, or computed from the sequences, that will
help in characterizing motifs. The algorithm is flexible
enough to combine several priors from different sources.
Each prior is given a weight reflecting the confidence on
the information contained in it and its relevance for
motif discovery. In this way, priors can be introduced
at will giving rise to a scoring criterion based on the
convex closure of the information given by each prior.
Prior information has previously been shown to be

beneficial when used with EM and Gibbs sampler-based
motif discoverers. We have shown here that they can
also be of great benefit to boost combinatorial algo-
rithms such as RISOTTO. We emphasize that the goal
of this paper is not to introduce new priors, but to show
that priors can also be advantageous to assist and
improve the output of combinatorial algorithms such as
RISOTTO. Moreover, we have shown that combining
priors is very promising in further extending the power
of motif discovery algorithms.
We gauge the effect of adding prior information to

GRISOTTO over 156 well-studied sequence-sets from
yeast TF ChiP-chip experiments. For each sequence-
set, motif discoverers were asked to report a single
PSSM motif that was then compared with the known
PSSM for the TF pulled down in the ChIP-chip experi-
ment. Prior information from different sources was
used, including, orthologous conservation, nucleosome
occupancy, and destabilization energy. The use of
exactly the same priors in EM and Gibbs sampler-
based motif discoverers, namely, MEME and PRIOR-
ITY, respectively, has been shown to dramatically
improve their performance. In this work, we show that
this boost can be also achieved by GRISOTTO that
performed at least as well as PRIORITY and MEME
when each prior was considered individually. The great
advantage of GRISOTTO was accomplished by the

combination of priors. Indeed, when GRISOTTO
compromised the three mentioned priors in a convex
combination of their information it achieved an
improvement of about 15% over correct predictions
relatively to the best motif discoverer (MEME-DC[17]),
at our present knowledge, for exactly the same experi-
ments. The final proportion of successful predictions is
now at 60%, attained with 93 correct predictions from
GRISOTTO-CDP (with only 81 correct predictions of
MEME-DC) out of the 156 experiments.
Finally, we also confirm the benefit of using GRI-

SOTTO with 13 sequence-sets from a higher eukaryote
ChiP-seq data, namely, the mouse. In this assessment two
priors were used, including, orthologous conservation and
base coverage profiles obtained from the ChiP-seq assays.
We concluded that, as for ChiP-chip data, the ortholo-
gous conservation-based prior was of great convenience,
being able to unravel 13 motifs strongly similar to the
ones reported by other tools and found in the TRANS-
FAC database. In respect to the coverage-based prior,
their direct use as a positional prior was not favorable,
having been comparable to the uniform prior. We believe
this is due to the fact that the BIS score already accounts
for overrepresentation in the input sequences which we
suspect mimics the information contained in this new
prior, turning the prior redundant.

Additional material

Additional file 1: Detailed set up and evaluation methodology of
GRISOTTO. This additional file presents in detail three topics needed to
make the paper self-contained. First, is describes the call to RISOTTO
algorithm found in Step 1 of the Algorithm 1. Second, it includes the
inter-motif distance used to compute successful predictions from motif
discoverers, along with PSSM representation of IUPAC strings reported by
GRISOTTO. Finally, it contains relevant information about the evaluation
methodology, including, parameter settings and running times. This
makes the results presented in this paper reproducible along with the
data and algorithms provided in the GRISOTTO webpage.

Additional file 2: Detailed results of GRISOTTO. Additional details
about experimental results of GRISOTTO presenting actual predictions
sequence-set by sequence-set for various positional priors. It also
presents results of PRIORITY taken from the supplementary material of
the original papers.
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