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Abstract

We introduce a polynomial-time algorithm to learn Bayesian networks whose structure is
restricted to nodes with in-degree at most k and to edges consistent with the optimal branch-
ing, that we call consistent k-graphs (CkG). The optimal branching is used as an heuristic for
a primary causality order between network variables, which is subsequently refined, according
to a certain score, into an optimal CkG Bayesian network. This approach augments the search
space exponentially, in the number of nodes, relatively to trees, yet keeping a polynomial-time
bound. The proposed algorithm can be applied to scores that decompose over the network
structure, such as the well known LL, MDL, AIC, BIC, K2, BD, BDe, BDeu and MIT scores.
We tested the proposed algorithm in a classification task. We show that the induced classifier
always score better than or the same as the Naive Bayes and Tree Augmented Naive Bayes
classifiers. Experiments on the UCI repository show that, in many cases, the improved scores
translate into increased classification accuracy.

1 Introduction

Bayesian networks [14] allow efficient and accurate representation of the joint probability distri-
bution over a set of random variables. For this reason, they have been widely used in several
domains of application where uncertainty plays an important role, like medical diagnosis and
modeling DNA binding sites. Learning Bayesian networks consists of finding the network that
best fits, for a certain scoring function, the data. This problem is not straightforward. Cooper [3]
showed that the inference of a general Bayesian network is a NP-hard problem, and later, Dagum
and Luby [5] showed that even finding an approximate solution is NP-hard.

These results led the community to search for the largest subclass of Bayesian networks for
which there is an efficient structure learning algorithm. First attempts confined the network to
tree structures and used Edmonds [7] and Chow-Liu [2] optimal branching algorithms to learn the
network. More general classes of Bayesian networks have eluded efforts to develop efficient learning
algorithms. Indeed, Chickering [1] showed that learning the structure of a Bayesian network is
NP-hard even for networks constrained to have in-degree at most 2. Later, Dasgupta [6] showed
that even learning 2-polytrees is NP-hard. Due to these hardness results exact polynomial-time
bounded approaches for learning Bayesian networks have been restricted to tree structures.

Consequently, the standard methodology for addressing the problem of learning Bayesian net-
works became heuristic search, based on scoring metrics optimization, conducted over some search
space. Many algorithms have been proposed along these lines, varying both on the formulation
of the search space (network structures, equivalence classes of network structures and orderings
over the network variables), and on the algorithm to search the space (greedy hill-climbing, simu-
lated annealing, genetic algorithms, tabu search, etc). Although searching in the space of network
structures was commonly considered as the standard choice, more recently it has been shown



that searching the space of orderings [16] empirically outperforms the standard baseline of greedy
hill-climbing, modified with a tabu list and random restarts, over the space of network structures.

There are several reasons why orderings have recently been attracting so much attention [16, 9].
First, orderings provide a first clue on the causality of the network variables, which can then be
refined in subsequent processing. By itself, this observation is of limited use, since determining an
appropriate ordering is a difficult problem. Nevertheless, if the search is conducted in the space
of orderings, instead of networks structures, there is a severe decrease in the search space, which
eases the task. Second, given an ordering on the network variables, finding an optimal bounded
in-degree network consistent with it is not NP-hard [16] (unless P=NP). Indeed, if the in-degree
of a node is bounded to k, this task can be accomplished in O(nk) time, where n is the number of
variables in the network. Finally, given a network consistent with some ordering on the variables,
there is no need to check for network cycles, since it is guaranteed that the network will always
be acyclic.

The contribution of this paper assents in taking the topological order of the optimal branching
as an heuristic for a causality order between the network variables. Moreover, the optimal network
consistent with the topological order will always score better than, or the same as, the optimal
branching. By taking these two observations into account, we obtain an exact polynomial-time
algorithm for learning subclasses of Bayesian networks which are more general than branchings
and intersect, but are not contained in, polytrees. This class consists of directed acyclic graphs of
in-degree at most k that are consistent with the optimal branching, henceforward called consistent
k-graphs (CkG). We show that this class is exponentially larger, in the number of variables, when
compared to trees. The proposed algorithm copes with scoring functions that decompose over the
network structure. Well known scores with this property are those based on information theory,
such as log likelihood (LL), Akaike information criterion (AIC), Bayesian information criterion
(BIC), minimum description length (MDL); and Bayesian scoring function such as K2, Bayesian
Dirichlet (BD) and its variants (BDe, BDeu), and mutual information test (MIT).

The paper is organized as follows. In Section 2, we briefly revise Bayesian networks and
present the Chow-Liu tree learning algorithm and its extension for general decomposable scores.
In Section 3, we introduce the main contribution of this paper, the exact optimization algorithm
for searching CkG’s. In Section 4, we apply our approach to classification and present some
experimental results. Finally, in Section 5 we draw some conclusions and discuss future work.
The proofs of all statements presented in this paper are given in Appendix.

2 Basic concepts and results

In this section we introduce some notation, while recalling relevant concepts and results concerning
Bayesian networks which are directly related with the contribution of this paper.

2.1 Bayesian networks

A Bayesian network is a triple B = (X, G, Θ). The first component X = (X1, . . . , Xn) is a finite
random vector where each random variable Xi ranges over a finite domain Di. We denote the joint
domain D = Πn

i=1Di. The second component G = (N,E) is a directed acyclic graph with nodes
N = {X1, . . . , Xn} and edges E representing direct dependencies between the variables. The third
component Θ encodes the parameters {θxi|Πxi

}x∈D of the network, where θxi|Πxi
= PB(xi|Πxi)

for each possible value xi of Xi, and Πxi of ΠXi , where ΠXi denotes the set of parents of Xi in
G. A Bayesian network defines a unique joint probability distribution over X given by

PB(X1, . . . , Xn) =
n∏

i=1

θXi|ΠXi
.

We denote the set of all Bayesian networks with n variables by Bn.



Informally, a Bayesian network encodes the independence assumptions over the component
random variables of X. An edge (i, j) in E represents a direct dependency of Xj to Xi. Moreover
Xi is independent of its non descendants given its parents ΠXi

in G.
The problem of learning a Bayesian network given data T consists on finding the Bayesian

network that best fits the data T . In order to quantify the fitting of a Bayesian network a scoring
function φ : Bn × Dm → R is considered. In this context, the problem of learning a Bayesian
network can be recasted to the following optimization problem. Given a dataset T = {x1, . . . ,xm}
and a scoring function φ, the problem of learning a Bayesian network is to find a Bayesian network
B ∈ Bn that maximizes the value φ for T .

Several scoring functions have been proposed in the literature [4, 10, 12, 15]. The discussion
of the advantages and disadvantages of each of these functions is outside the scope of this paper.

2.2 Chow-Liu tree learning algorithm and extensions

A tree Bayesian network is a Bayesian network where the underlying directed acyclic graph is
a directed tree. Finding the tree Bayesian network that maximizes the LL score given data T
can be done in polynomial time by the Chow-Liu tree learning algorithm [2]. The main idea of
the algorithm is to consider a complete weighted undirected graph, where each undirected edge
between Xi and Xj is weighted with the conditional mutual information between Xi and Xj .
Given this, the problem reduces to determining a maximal weighted (undirected) spanning tree.
After computing such spanning tree, a direction has to be assigned to each edge of the tree. This
is done by choosing an arbitrary node as the tree root and then setting the direction of all edges
to be outward from it. The resulting directed tree is called Chow-Liu tree or optimal branching
and it is computed in O(n2 log(n) + n2m) time.

The Chow-Liu tree learning algorithm was originally proposed for maximizing the LL score
but it can be easily adapted to deal with any scoring function that is decomposable and score
equivalent. We recall that a scoring function φ is decomposable if it can be written as

φ(B, T ) =
n∑

i=1

φi(ΠXi , T ). (1)

Moreover, a scoring function is said to be score equivalent if it assigns the same value to all directed
acyclic graphs that are represented by the same essential graph. All interesting scoring functions
in the literature are decomposable, since it is unfeasible to learn undecomposable scores. LL, AIC,
BIC and MDL are decomposable and score equivalent, whereas K2, BD, BDe, BDeu and MIT are
decomposable but not score equivalent.

According to Heckerman et al [10], finding the optimal branching for decomposable and score
equivalent scoring functions reduces to weighting each undirected edge between Xi and Xj by
φj({Xi}, T ) − φj(∅, T ), which is equal to φi({Xj}, T ) − φi(∅, T ) by score equivalence of φ, and
to find a maximal weighted (undirected) spanning tree. In this case the optimal branching is
computed in O(n2 log n+n2γ(T )) time, where γ(T ) is an upper bound for computing φj({Xi}, T )
and φj(∅, T ) (in most cases γ(T ) = |T | = m).

Again, according to Heckerman et al [10], learning the optimal branching for scoring functions
that are only decomposable, but not score equivalent, can also be done in polynomial time. In this
case, however, an edge between Xi and Xj may score differently depending on its direction, and so
a directed spanning tree must be found (instead of an undirected one). The idea is to weight each
directed edge from Xi and Xj with φj({Xi}, T ) − φj(∅, T ) and then, for each node Xr, find the
optimal directed spanning tree rooted at Xr with Edmonds’ algorithm [7] (which takes O(n2 log(n)
time). As Edmnond’s algorithm assumes a fixed root, by ranging over all potential roots we can
find an optimal branching in O(n3 log(n) + n2γ(T )) time.



3 Consistent k-graph Bayesian networks

The contribution of this paper assents in the following observations. First, the topological order of
the optimal branching is a simple and effective heuristic for a causality order between the network
variables. Second, the score of the optimal network (of bounded in-degree) consistent with the
topological order is always greater than or equal to the score of the optimal branching. Third,
there is an exact polynomial-time algorithm for learning such optimal consistent network. Finally,
the class of the networks consistent with the optimal branching is exponentially larger, in the
number of variables, when compared to trees.

We start by introducing some auxiliary concepts. A k-graph is a graph where each node has
indegree at most k. Trees and forests are 1-graphs.

Definition 3.1 (Consistent k-graph) Given a directed tree R over a set of nodes N , a graph
G = (N, E) is said to be a consistent k-graph (CkG) w.r.t R if it is a k-graph and for any edge in
E from Xi to Xj the node Xi is in the path from the root of R to Xj . Henceforward, we denote
by Ck

R the set of all CkG’s w.r.t. R.

The idea of the CkG learning algorithm, presented in Algorithm 1, is to start with the optimal
branching R and modify it in such a way that: (i) important dependencies are added to R (which
were lost due to the tree structure restriction); (ii) irrelevant dependencies are removed from R
(which were also present due to the tree structure restriction). To this effect, after computing the
optimal branching R, the algorithm ranges over each node Xi, generates the set αi of all nodes in
the path from the root of R to Xi and takes as parents of Xi the set S ⊆ αi such that φi(S, T ) is
maximal over all subsets of αi with at most k nodes.

Algorithm 1 Learning CkG networks

1. Run a (deterministic) algorithm Aφ that outputs an optimal branching R.

2. For each node Xi in R do:

(a) Compute the set αi of ancestor of i, that is, the set of nodes connecting the root of R
and Xi.

(b) For each subset S of αi with at most k nodes

i. Compute φi(S, T ).
ii. If φi(S, T ) is the maximal score for Xi, set Πi to S.

3. Output the directed graph such that the parents of a node Xi are Πi.

Theorem 3.2 Algorithm 1 constructs a CkG Bayesian network that maximizes the φ-score given
data T , which is always greater than, or equal to, the φ-score of the optimal branching computed
by Aφ. Moreover, the optimal CkG Bayesian network is obtained in O(nk+1γ(k, T )) time where
γ(k, T ) is an upper bound for computing φi(S, T ).

Theorem 3.2 shows the soundness and polynomial-time bound of the CkG learning algorithm.
At this point it remains to show that, despite considering an optimal branching to confine the
search space, the number of graphs searched increases exponentially, in the number of nodes, when
compared to trees.

Proposition 3.3 Given a tree R with n nodes there are at least (2(n−1) − 1) non-trees in Ck
R.

Figure 1 depicts relationships in terms of expressiveness between the different model networks
discussed in this paper. Observe that the search space of the CkG learning algorithm consists of
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Figure 1: Expressiveness of the network models discussed in this work. Polytree includes trees
and intersect the search space of the CkG algorithm (each scoring function φ induces a different
CkG class).

the union of all trees together with Ck
R where R is the optimal branching for the φ-score given

by a (deterministic) algorithm Aφ. Therefore, the search space of the algorithm depends on the
scoring function φ, and in particular on Aφ.

4 Experimental methodology and results

We adapted the CkG learning algorithm to classification following the work of Friedman et al [8],
where the Chow-Liu tree learning algorithm was adapted to develop the Tree Augmented Naive
Bayes (TAN) classifier. We compared the C2G classifier, with TAN and the well known Naive
Bayes (NB) classifier.

As suggested by Friedman et al [8] we improved the performance of both TAN and CkG
classifiers by introducing an additional smoothing operation. This is particularly important in
small datasets where the estimation of the conditional probabilities, given the parent attributes
plus the class variable, is unreliable. NB classifiers are almost not affected by this problem since the
data is partitioned according to the class variable and, usually, the class variables are adequately
represented in the training set. The parameters of TAN and CkG networks were smoothed using
Dirichlet priors [10]. This amounts to adding 5 pseudo instances with conditional probabilities,
given the parent attributes plus the class variable, distributed according to the frequency of the
corresponding attribute in the training set.

We ran our experiments on several data sets from the UCI repository [13]. The accuracy
of each classifier is based on the percentage of successful predictions on the test sets of each
data set. Accuracy was measured via the holdout method for larger training sets, and via 5-fold
cross-validation for the smaller ones [11]. Results are presented in Table 1, where the accuracy is
annotated by a 95% confidence interval.

To avoid overfitting, we used the MDL score in smaller data sets. On the other hand, for larger
ones, which in principle are closer to the asymptotic limit, we used the LL score. In smaller data
sets we observed that almost all the learned C2G networks were forests, which were translated
in a small gain of accuracy compared with TAN networks. On larger data sets, namely, chess,
letter and segment, a significant gain was achieved and obviously the resulting C2G networks
were indeed proper C2G networks. These C2G networks were expected, since the LL score always
prefers more complex structures.

5 Conclusions

The main contribution of this paper is to consider the topological order of the optimal branching
as a simple and effective heuristic for a primary causality order between the network variables.
This order is then refined in subsequent structure learning such that: (i) important dependencies
are added; (ii) irrelevant dependencies are removed.



Data set n |DC | Train Test NB TAN C2G
letter 16 26 15000 5000 74.80±1.20 84.93±0.99 88.01±0.90
satimage 36 6 4435 2000 82.99±1.64 88.53±1.39 88.68±1.39
chess 36 2 2130 1066 88.13±1.93 92.24±1.60 95.70±1.20
segment 19 7 1540 770 71.76±1.21 75.55±1.14 79.33±1.07
vehicle 18 4 846 CV-5 62.96±1.66 71.24±1.56 71.24±1.56
diabetes 8 2 768 CV-5 76.99±1.52 78.17±1.49 78.69±1.48
soybean-large 35 19 562 CV-5 91.07±1.21 90.54±1.24 91.25±1.19
vote 16 2 435 CV-5 91.30±1.86 93.04±1.68 93.04±1.68
waveform 21 3 300 4700 81.23±1.12 80.63±1.13 81.49±1.11
heart 13 2 270 CV-5 83.71±2.25 83.71±2.25 84.07±2.23
glass 9 7 214 CV-5 94.29±1.61 94.29±1.61 95.24±1.47
iris 4 3 150 CV-5 93.33±2.04 93.33±2.04 94.00±1.94
lymphography 18 4 148 CV-5 78.62±3.40 84.83±2.98 82.07±3.19
hepatitis 19 2 80 CV-5 93.75±2.71 90.00±3.35 91.25±3.16

Table 1: Description of the data sets used in the experiments jointly with the experimental results
of the approaches discussed in this paper. Larger training sets were tested with the LL score,
whereas smaller ones were tested with the MDL score. The results are presented by decreasing
size of the training set.

As a consequence, we introduce a new class of networks, the consistent k-graph Bayesian net-
works (CkG), which are more general than trees and intersect, but are not contained in, polytrees
(c.f. Figure 1). Moreover, we show that an optimal CkG can be found in polynomial time, while
augmenting the search space exponentially, in the number of nodes, relatively to trees. The CkG
learning algorithm can be applied to any decomposable score. We show that the score of the
optimal CkG is always greater than or equal to the score of the optimal branching.

The algorithms presented in this paper were implemented and applied to classification. Pre-
liminary experiments show that, in many cases, the improved scores translate into increased clas-
sification accuracy. A detailed account of these results is being prepared.

Future work can proceed in different directions. First, it would be interesting to consider a
total order, instead of a partial one (as the one induced by the topological order of the optimal
branching) since it will increase, in general, the search space significantly. The breath-first search
order of the optimal branching seems to be a good candidate. Second, it would also be interesting
to combine and compare more exhaustively our approach with other state-of-the-art Bayesian
network learning methods, namely, with ordering based approaches.
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Appendix

Proof of Theorem 3.2: We show that Algorithm 3.2 is sound. Since all potential parents for
each node are checked, the algorithm returns the k-graph G consistent with he optimal branching
R with the highest score. Moreover, this graph is acyclic since the parents of a node Xi must be
in αi, that is, must belong to the path in R from its root to Xi (excluding Xi). Moreover, it is
easy to see that for any path Xi1 , Xi2 , . . . Xik

in G we have that Xij ∈ αik
for 1 ≤ j < k. If there

existed a cycle Xi1 , Xi2 , . . . Xi1 it would imply that Xi1 ∈ αi1 which is absurd.
Next, we show that the φ-score of a CkG w.r.t. the optimal branching R, obtained by Algo-

rithm 1, is always greater than, or equal to, the φ-score of R. Start by noticing that the soundness
of Algorithm 1 assures that the resulting CkG w.r.t R is the maximal among all CkG’s in Ck

R.
Moreover, observe that the optimal branching R is consistent with itself, that is, R ∈ Ck

R for all
k ≥ 1. Hence, the soundness of Algorithm 1 guarantees that φ(G,T ) ≥ φ(R, T ).

Finally, we analyze the complexity of Algorithm 1. Step 2a) takes O(n) time, while step 2b)
takes O(nkγ(S, T )) because it ranges over all subsets S with at most k elements (which takes
O(nk) time) and for each of this sets it computes φi(S, T ) (which takes O(γ(S, T )). Thus, the
overall complexity of the algorithm is O(nk+1γ(S, T )).



Proof of Proposition 3.3: We analyze the lower bound for the number of non-tree graphs in
Ck

R. Since a consistent k-graph is obtained from a tree R, every non-root node Xi has at least
a node Xj such that Xj ∈ αi and i 6= j. This means that both ∅ and {Xj} are potential sets
of parents of Xi. Hence, there are at least 2(n−1) consistent k-graphs (in this case, just forests).
Moreover, only one of these consistent k-graphs is a tree. So there are at least 2(n−1)−1 consistent
k-graphs that are not trees.


