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Abstract. We present in this paper an exact algorithm for motif extrac-
tion. Efficiency is achieved by means of an improvement in the algorithm
and data structures that applies to the whole class of motif inference al-
gorithms based on suffix trees. An average case complexity analysis shows
a gain over the best known exact algorithm for motif extraction. A full
implementation was developed and made available online. Experimental
results show that the proposed algorithm is more than two times faster
than the best known exact algorithm for motif extraction.

1 Introduction

Patterns appearing repeated either inside a same string or over a set of strings
are important objects to identify. Such repeated patterns are called motifs and
their identification is called motif inference or motif extraction. The area has
many potential applications, namely to data compression, natural languages,
databases, basically, any activity or research requiring text mining [4]. The field
of application that concerns us is molecular biology. The motifs in this case may
correspond to functional elements in DNA, RNA or protein molecules, or to
whole genes whose sequences are strongly similar. In biological applications, it
is mandatory to allow for some mismatches between different occurrences of the
same motif. In fact point mutations might have taken place, as well as errors
in the sequencing procedure, so that molecules that have the same or related
function(s), have no longer identical sequences. This is what makes the problem
difficult from the computational point of view. In this paper we propose an exact
algorithm for the extraction of motifs with mismatches. In particular, we con-
sider single and structured motifs, which are motifs composed of several disjoint
single motifs placed at given distances from each other. The extraction of struc-
tured motifs appears particularly interesting because of its application to the
detection of binding sites ([3]). Given a text s, the problem is to find repeated

� Partially supported by PRIN project ALGONEXT.
�� Partially supported by FCT grant SFRH/BD/18660/2004 and FCT Project FEDER

POSI/SRI/47778/2002 BioGrid, and by the FCT grant SFRH/BD/18660/2004.

J.R. Correa, A. Hevia, and M. Kiwi (Eds.): LATIN 2006, LNCS 3887, pp. 757–768, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



758 N. Pisanti et al.

patterns in s according to some parameters that specify the frequency and the
structure required for the motifs. In molecular biology, the text is in general a set
of DNA sequence. Several exact, heuristic, and probabilistic algorithms for ex-
tracting structured motifs exist. Up to date, the best known exact algorithms for
the extraction of single [7] and structured [2] motifs perform well when searching
for short motifs. In this paper, we propose an improvement to such algorithms
in order to deal with long motifs. The problem of extracting long motifs was first
adressed by Pevzner and Sze [6]. They considered a precise version of the motif
discovery problem: find all single motifs of length 15 with at most 4 mismatches
in 20 sequences of size 600. A general set for this problem deserves attention
from the algorithmic point of view because its computational complexity is in
the worst case exponential with respect to the number e of mismatches allowed
among different occurrences of the same motif. The reason is that, to identify
motifs of the required length, there can be an explosion of the number of candi-
dates of intermediate length whose extension has to be attempted. This imposes
in practice a limit to the length of the motifs themselves, as in many applications
the value of e depends on this length. The improvement introduced in this paper
acts exactly in these cases, and hence applies to relatively long motifs, being a
way to increase the length of motifs that are detectable in practice.

2 Single Motif Extraction

A single motif is a word over an alphabet Σ. Given an error rate e, a motif is
said to e-occur in a sequence if it occurs with at most e letters substitution. The
single motif extraction problem takes as input N sequences, a quorum q ≤ N , a
maximal number e of mismatches allowed, and a minimal and maximal length
for the motifs, kmin and kmax, respectively. The problem consists in determining
all motifs that e-occur in at least q input sequences. Such motifs are called valid.
An efficient exact algorithm for the extraction of single motifs with mismatches
has been introduced in [7] and is based on a suffix tree: motifs are considered in
lexicographical order starting from the empty word, and they are extended to
the right as long as the quorum is satisfied until either a valid motif of maximal
length is found (if the kmax length is reached), or the quorum is no longer
satisfied. In both cases, a new motif is attempted. Formally, the algorithm ([7])
we refer to is sketched in Algorithm 1.. At the beginning ExtractSingleMotif
is called on the empty word. The algorithm recursively calls itself for longer
motifs built by adding letters (step 4), and considers new ones (step 1) when
the extension fails (step 2). A valid motif is spelled out whenever a motif whose

Algorithm 1. Single motif extraction

ExtractSingleMotif(motif m)
1. for all α ∈ Σ do
2. if mα is valid then
3. if |mα| ≥ kmin then spell out the valid motif mα
4. if |mα| < kmax then ExtractSingleMotif(mα)
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length lies within the required minimal and maximal length is detected (step 3).
The order in which motifs are generated corresponds to a depth-first visit of a
complete trie M (the motif tree) of all words of length kmax on the alphabet
Σ. The algorithm does not need to allocate the motif tree. The only memory
requirement is for the suffix tree T . Assuming that the required length of the
motif is k (that is kmin = kmax = k), and that at most e mismatches are allowed,
the algorithm has worst case time complexity in O(Nnkν(e, k)), where nk is the
number of tree nodes at depth k, and ν(e, k) is the number of words that differ
in at most e letters from a word m of length k. This value does not depend on
m, and it holds that ν(e, k) ≤ ke|Σ|e. This upper bound is in practice not tight.
Nevertheless, no better bound can be given and therefore the time complexity is
linear in the input size, but possibly exponential in the number e of mismatches.
Since reasonable values for e are proportional to the value of k, this actually
places a practical bound on the length required for the motifs. The goal of this
paper is to move this bound.

2.1 Using Maximal Extensibility of Factors

The modification we suggest consists in storing information concerning maximal
extensibility in order to avoid trying to extend hopeless motifs. For instance (see
Fig. 1), assume that in our virtual depth-first visit of the motif tree, we have
found out that motif m can be further extended without losing the quorum up
to a length of MaxExt(m) only, the latter representing its maximal extensibil-
ity. If later on, we are processing a motif m′ that has m as a suffix, then the
MaxExt(m) information could be useful, as it applies to m′ as well because m′

can also be extended with at most MaxExt(m) symbols (and possibly less). In
particular, we have that if |m′| + MaxExt(m) < kmin, then we can avoid any
further attempt to extend m′ as there is no hope to reach length kmin for motifs
that have m′ as prefix. In Algorithm 1., motifs are considered in lexicographical
order by a depth-first (virtual) visit of the motif tree M. Every time we stop ex-
tending a motif, that is, when we (virtually) backtrack in M, it is either because
we found a valid motif of the maximal length, or because the quorum is no longer
satisfied (mα does not satisfy the condition at step 2, and we start to consider
the next one in lexicographical order). In the first case, m is valid, as are all its
prefixes, and |m| = kmax. No information on the maximal extension of m nor of

mink

MaxExt(m)

Valid model

m m’

MaxExt(m)

Fig. 1. Example where the extension of m′ can be avoided, using MaxExt(m), where
m is a suffix of m′, because |m′| + MaxExt(m) < kmin
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its prefixes can be of any use because all motifs having a prefix of m as suffix
can in general still be extended as much as necessary to reach at least the length
kmin. For this reason, we set MaxExt(m) = +∞. In the second case, m does not
satisfy the quorum while all its prefixes do. For reasons that will be clearer later,
we chose to only use the maximal extensibility information of motifs of length
up to kmin − 1, hence this case can be subdivided into two subcases. When a
motif m cannot be extended anymore and it has not reached the length kmin −1,
we set MaxExt(m) = 0. If the motif has reached a length h between kmin − 1
and kmax, we set MaxExt(〈mα|kmin−1) = h − (kmin − 1), where 〈mα|kmin−1 is
the prefix of length kmin − 1 of mα. Since it can be that MaxExt(〈mα|kmin−1)
had already received some value because a previous extension of 〈mα|kmin−1 was
interrupted, then we change the value of MaxExt(〈mα|kmin−1) only if we are
increasing it, as maximal extensibility of a motif refers to its longest extension.
All maximal extensibility values are initially set to −1, hence the first attribution
to MaxExt(〈mα|kmin−1) will always increase its value.

In all the cases above, the algorithm does not consider any further extension
of m, and backtracks. This backtracking consists in either replacing the last
letter σ|m| of m (line 1), or considering a shorter motif which in general shares
a prefix with m, if σ|m| was the last letter of the alphabet Σ. In this latter case,
the whole subtree rooted at the node spelling σ1 . . . σ|m|−1 has been (virtually)
completely visited. Thus, we have all the information necessary to set the value of
MaxExt(σ1 . . . σ|m|−1) according to MaxExt(x) = 1 + maxα∈Σ MaxExt(xα),
for all valid motifs x such that |x| < kmin −1. If the letter σ|m|−1 was the last of
the alphabet, then the backtracking goes further. In that case, also the MaxExt
information concerning the word σ1 . . . σ|m|−2 can be filled in in the same way,
and so on. As mentioned before, maximal extensibility information can be used
for motifs whose extension is being considered and for which this information
could actually prevent some useless attempts. Namely, assume we are trying to
extend the motif m = σ1, σ2 . . . , σ|m|. Obviously, we do not know the value of
MaxExt(m) yet, and we know MaxExt(σ2, . . . , σ|m|) only if it lexicographically
precedes m, that is, it has already been virtually visited in the motif tree. If this
is not the case, we check whether MaxExt(σ3, . . . , σ|m|) is already known, and
so on, possibly until the singleton σ|m|. If they are all lexicographically greater
than m, then no maximal extension information can be used for m, but if for
any of them MaxExt is known and it holds that the maximal possible extension
is not enough to reach kmin, then the information is useful as it guarantees that
attempting to further extend m is useless.

Lemma 1. Let w ∈ Σ∗. We have MaxExt(w) ≤ MaxExt(v) for each v which
is a suffix of w.

A consequence of Lemma 1 is that longer suffixes of m can give us more tight
bounds on the maximal extensibility information with respect to shorter ones.
Therefore, since we start by checking the longest one, as soon as we find a suffix
of m that enables us to state that m is not worth further attempts, then we
can stop checking the other (shorter) suffixes. That is, if we find a suffix |m〉j =
σj , . . . , σ|m| of m, with 1 < j ≤ |m|, such that MaxExt(|m〉j) is not enough for m
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to reach kmin because MaxExt(|m〉j)+|m| < kmin, then we can quit attempting
m and all its extensions, and we can consequently update MaxExt(m). On the
other hand, if no suffix |m〉j of m is such that MaxExt(|m〉j)+ |m| < kmin, then
the maximal extension does not disallow to reach kmin. In this case, we have to
go on trying to extend m even if it might be the case that it will never reach
the minimal length. The algorithm for single motif extraction using the maximal
extensibility information is presented in Algorithm 2.. For simplicity, we denote
in the same way a node x and the word spelled by the path from the root to x.
Recall that we use 〈mα|kmin−1 to denote the prefix of mα of length kmin − 1,
and |x〉|x|−1 to denote the suffix of x of length |x| − 1. Finally, for step 3, recall
that we assumed that all maximal extensibility values are initially set to −1.

Algorithm 2. Single motif extraction with maximal extensibility information

ExtractSingleMotif(motif m)
1. for all α ∈ Σ do
2. x := mα
3. repeat x := |x〉|x|−1 until (x = root or MaxExt(x) �= −1)
4. if x �= root and MaxExt(x) + |mα| < kmin then
5. MaxExt(mα) := MaxExt(x)
6. stop spelling mα and continue
7. if mα is valid then
8. if |mα| ≥ kmin then spell out the valid motif
9. if |mα| < kmax then ExtractSingleMotif(mα)

10. else MaxExt(〈mα|kmin−1) := +∞
11. else
12. if |mα| < kmin then MaxExt(mα) := 0
13. else if MaxExt(〈mα|kmin−1) < |mα|−(kmin−1) then MaxExt(〈mα|kmin−1) := |mα|−

(kmin − 1)
14. if |m| < (kmin − 1) then MaxExt(m) := 1 + maxα∈Σ MaxExt(mα)

2.2 Complexity Analysis

The time complexity of Algorithm 2. remains the same as for Algorithm 1. in the
worst case. Nevertheless, the proposed improvement has (very positive) effects
on the average case. Next we compute the average ratio between the number of
attempted extensions by RISO and RISOTTO for single motif extraction and
compute the limit from which RISOTTO performs better than RISO.

Assume that the dataset has r planted random motifs of size t, where each
motif can be extracted with at most e mismatches, and that the remaining
text is uniformly random. This assumption captures the fact that we want to
analyze the ratio between the number of attempted extensions by RISO and
RISOTTO in the context of a dataset with highly correlated sequences (meeting
the application requirements to biological datasets).

Let Mi be the random variable that gives the number of extracted motifs of
size i with at most e mismatches for the assumed dataset, where 0 ≤ i ≤ t.
Clearly, we have that P (M0 = 1) = 1 and P (Mt ≥ r) = 1. The number of
attempted extensions by RISO at level i > 0 (when the recursion step is at
level i) is given by the random variable Ei = Mi−1|Σ|, and the total number
of attempted extensions for the extraction of a single motif of size k is given by
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Rk =
∑k

i=1 Ei. On the other hand, RISOTTO will only extend words at level i
if they fulfill the maximum extensibility requirement. Therefore the number of
attempted extensions by RISOTTO at level i is given by E′

i = Mi−1|Σ|(1−p(i)),
where p(i) is the probability of a i-word having maximal extensibility information
to avoid its extension. Furthermore, the total number of attempted extensions
by RISOTTO for the extraction of a single motif of size k is R′

k =
∑k

i=1 E′
i.

We conclude that to compute the average value of R′
k

Rk
we need to determine

the average of the random variables Mi and the values p(i), for i = 1, . . . , k. We
proceed by computing the average values of Mi. Clearly, a planted motif of size
t has t − i + 1 segments of size i (considering overlapping). Observe that the
average number of mismatches of the e-occurrences of a motif of size t is

e =
e∑

j=0

j

(
t
j

)
(|Σ| − 1)j

ν(e, t)
.

Hence, if we assume the mismatches to distribute uniformly over the segments,
the average number of mismatches of the segments of size i of the e-occurrences
is ei = i

te. Thus, the motifs extracted at level i due to the planted motifs are
all the neighbors differing at most (e − ei) letters from the segments of size i of
the planted motifs. Since there are r(t − i + 1) segments of size i, the average
number of extracted motifs of size i with at most e mismatches, due to the
planted motifs, is

T i = |Σ|i
⎛

⎝
r(t−i+1)−1∑

j=0

(

1 − ν(e − ei, i)
|Σ|i

)j
ν(e − ei, i)

|Σ|i

⎞

⎠ .

Finally, to determine the average value of Mi, we need to take into account
the motifs extracted from the random part of the text, and so, we have M i =
T i + (|Σ|i − T i)(1 − πi), where πi is the probability of a random word of size i
not being extracted with quorum q from a set of N sequences. Given that the
probability of an e-neighbor of a word of size i not appearing in a random text
of size n is

δ(i, e, n) = (1 − 1/|Σ|i)(n−i+1)ν(e,i) ≈ (1 − 1/|Σ|i)nie|Σ|e,

the value of πi can be computed by the following binomial

πi =
q−1∑

j=0

(
N
j

)
δ(i, e, n)N−j(1 − δ(i, e, n))j .

We finalize by computing the probability p(i). Since the probability of a suffix
of a random word being lexicographically smaller than the random word is 1

2 ,
we have that



RISOTTO: Fast Extraction of Motifs with Mismatches 763

p(i) =
i∑

j=1

1
2j

γk−i

where γk−i is the probability of the suffix of size k − i to have information to
avoid the extension. Notice that γk−i is the probability of the suffix of size k − i
not being extended to a size greater than k − 1, and is given by

γk−i = πk−i + (1 − πk−i)π
|Σ|
k−i+1 + (1 − πk−i)(1 − π

|Σ|
k−i+1)π

|Σ|2
k−i+2 + ...

=
i−1∑

j=0

π
|Σ|j
k−i+j

j∏

�=1

(1 − π
|Σ|j−�

k−i+j−�) .

To understand when RISOTTO starts to provides a gain over RISO, it is impor-
tant to look to E′

i and Ei. Note that E′
i will be much smaller than Ei if p(i) is

close to 1. Moreover, as soon as random motifs start to disappear, Mi−1 will be
larger than Mi, which happens when πi is close to 1. Both πi and p(i) depend
tightly of δ(i, e, n), that is, if δ(i, e, n) is close to 0, so are πi and p(i), and if
δ(i, e, n) is close to 1, so are πi and p(i). Since δ(i, e, n) behaves like a Dirac
cumulative function for large values of n, that is, it jumps very fast from 0 to 1,
we just need to solve the equation δ(i, e, n) = 1/2 for the variable i to grasp
when RISOTTO starts to be faster than RISO, which is just slightly before the
solution. The solution of that equation is the fixed point of the following function

f(x) = − log(1 − 1
2nxe|Σ|e )/ log(|Σ|).

Given that f(x) is contractive, that is, its derivate function takes values in the
interval (−1 + ε, 1 − ε), the fixed point can be computed by iterating f over
an initial value. Finally, notice that the fixed point increases with the values of
e, n and Σ. With the previous analysis, we have all the machinery necessary
for computing the ratio between the expected number of attempted extensions
between RISO and RISOTTO, as well as, from which point RISOTTO performs
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Fig. 2. Left: Ratio between the expected number of extensions attempted by
RISOTTO and RISO (cf Fig. 3 to compare theoretical with experimental results ob-
tained in the same set). Right: Ratio between performance of RISOTTO and RISO.
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better than RISO. As an example, the ratio between the expected number of
extensions attempted by RISOTTO and RISO for a dataset consisting of N =
100 sequences of size n = 1000 where we planted r = 1 motif of size t = k = 5..20,
with up to e = 2 mismatches, and quorum q = 100, is given in Fig. 2(left). For
the dataset considered, the fixed point for f(x) is x = 10.6616.

3 Structured Motif Extraction

A structured motif is a pair (m, d) where m = (mi)1≤i≤p is a p-tuple of single mo-
tifs and d = (dmini

, dmaxi
)1≤i<p is a (p−1)-tuple of pairs, denoting p−1 intervals

of distance between the p single motifs. Each element mi of a structured motif is
called a box and its minimal and maximal length denoted by kmini

and kmaxi
, re-

spectively. The structured motif extraction problem takes as parameters N input
sequences, a quorum q ≤ N , p maximal error rates (ei)i≤1≤p (one for each of the
p boxes), p minimal and maximal lengths (kmini

)i≤1≤p and (kmaxi
)i≤1≤p (one

for each of the p boxes), and p − 1 intervals of distance (dmini , dmaxi)i≤1≤p−1
(one for each pair of consecutive boxes). Given these parameters, the problem
consists in searching for the contents of the boxes, that is the motifs, that have
the structure defined by the parameters above and that satisfy the quorum. The
algorithm for single motif extraction introduced in [7] is the ancestor of others
[2, 5] that infer structured motifs. The optimisation introduced in this paper can
be applied to any of them. In a few words, the algorithm first builds the factor
tree T of the input sequences, then it searches for all valid motifs of length at
least kmin and up to kmax (as in [7]) and, after updating the data structure (see
[2] for details), checks whether there is a second valid motif (again as in [7]) with
the required interval between them. The algorithm is described by Algorithm 3.
for p = 2, where i indicates whether we are dealing with the first or the second
box, and λ is the empty word.

Algorithm 3. Structured motif extraction

ExtractStructuredMotif(motif m, box i)
1. for all α ∈ Σ do
2. if mα is valid then
3. if |mα| ≥ kmini

then
4. if i = 2 then spell out the valid motif
5. else update T to ExtractStructuredMotif(λ, 2)
6. if |mα| < kmaxi

then ExtractStructuredMotif(mα, i)

3.1 Using Maximal Extensibility of Factors

In the case of structured motifs, the maximal extensibility information for the
first box of a motif should be updated as described in Sect. 2.1. However, any
failure in attempting to extend a motif during the search of a second box cannot
update any value of MaxExt because it refers only to parts of the text that
follow a specific first box at a specific distance. In fact, when a first box m1 of a
structured motif is fixed at any given step, the maximal extensibility information
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Algorithm 4. Structured motif extraction with maximal extensibility information

ExtractStructuredMotif(motif m, box i)
1. for all α ∈ Σ do
2. if i = 1 or e2 ≤ e1 then
3. x := mα
4. while (x �= root or MaxExt(x) = −1) x := |x〉|x|−1
5. if x �= root and MaxExt(x) + |mα| < kmini

then
6. if i = 1 then MaxExt(mα) := MaxExt(x)
7. stop spelling mα and continue
8. if mα is valid then
9. if |mα| ≥ kmini

then
10. if i = 2 then spell out the valid motif
11. else follow box-links and update T to ExtractStructuredMotif(λ, 2)
12. if |mα| < kmaxi

then ExtractStructuredMotif(mα, i)
13. else if i = 1 then MaxExt(〈mα|kmin1

−1) := +∞
14. else if i = 1 then
15. if |mα| < kmin1 then MaxExt(mα) := 0
16. else if MaxExt(〈mα|kmin1

−1) < |mα| − (kmin1 − 1) then MaxExt(〈mα|kmin1
−1) :=

|mα| − (kmin1 − 1)
17. if i = 1 and |m| < (kmin1 − 1) then MaxExt(m) := 1 + maxα∈Σ MaxExt(mα)

that concerns the whole sequence is in general an upper bound on the maximal
extensibility of fragments of the sequence that are at a given distance from the
occurrences of m1. Given this observation, a possibility is to use the maximal
extensibility information of the first box when searching and trying to extend a
second box. Another possibility, while attempting to find a motif for the second
box, is to compute and store tighter maximal extensibility information which
we can use for the second box being attempted as long as the first box is fixed.
In the following, we only address the first alternative, that is, only the first box
stores extensibility information. The conditions needed for our optimisation to
be applicable in the case of structured motifs may hold even more frequently
than in the case of single motifs. In fact, since the search for a valid motif as
second box is made after a valid motif for the first box is found, maximal ex-
tensibility information may be known also for the whole motif whose extension
is attempted and not just for its prefixes. In other words, it may happen that
when Algorithm 3. is called with parameters m and 2, the value of MaxExt(m)
is already known. Proper suffixes are thus not the only candidates to give useful
information when we are trying to find a motif for the second box. The ex-
tensibility information can be used as for the case of single motifs except that
one has to deal with different error rates among boxes. Indeed, e2 must be less
than or equal to e1 in order for the extensibility information to be useful for
the second box. Otherwise, the maximal extensibility information stored for the
first box may be too restrictive, and if it is used, it may cancel the extension of
valid motifs. The algorithm for structured motif extraction using the maximal
extensibility information is presented in Algorithm 4. Similarly to the case of
single motif extraction, the time complexity of Algorithm 4. remains the same
as for Algorithm 3. in the worst case, and the improvement proposed accounts
only for the average case, as we shall verify in the next section.
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4 Implementation and Experimental Results

In order to verify the improvement proposed in this paper, a C implementation
of the maximal extensibility algorithm, called RISOTTO

1, was made. The new
implementation was tested against a C implementation of the algorithm pre-
sented in [2] and called RISO. The results of the experiments we made show
a sensible improvement for both single and structured motif extraction when
using maximal extensibility information. As we shall see in this section, maxi-
mal extensibility may cost some extra space, which is a delicate issue for large
datasets, but it can definitely save some hopeless visits, and in general it results
very efficient.

We start with some considerations concerning the storage of extensibility in-
formation. As we have seen in Sect. 2.1, due to the order in which motifs are
considered, we have that only certain subwords of motifs can give useful informa-
tion concerning maximal extensibility, namely, those that are lexicographically
smaller. Since no motif is smaller than itself, we actually only use the MaxExt
information of motifs that are shorter than the current one, that is, they are
proper suffixes. Therefore, since the condition to check is whether or not we can
hope to reach the kmin length, then we make use of the MaxExt data only
for strings of length at most kmin − 1. Hence, it is not necessary to store this
information for motifs that have length kmin or more for the purpose mentioned
above. Let us now discuss how much space is required to store the extensibility
information until level kmin − 1. We say that a tree is uncompact complete if it
is a trie where all possible nodes are present. There is thus no arc whose label
contains more than one letter. A previous result [1] makes use of some statis-
tical analysis for stating that a suffix tree of a text of length n is expected to
be uncompact complete at the log|Σ|(n) top levels, where Σ is the alphabet of
the text. This fact suggests a model to store extensibility information: a static
data structure to keep the MaxExt values until level log|Σ|(n), and a dynamic
structure for deeper levels. Since we are interested in the DNA alphabet (com-
posed of the four nucleotides A, C, G, and T ), then we have that our suffix tree
is uncompact complete at the top log4(n) levels where n is the size of the input
sequence s. The function log4(n) reaches 10 for n ≈ 106, it is greater than 11
for n = 107, it is more than 13 for n = 108, and nearly 15 for n = 109. These
values correspond to reasonable values for the minimal length kmin of the motif,
and they are reached for values n of the text size corresponding to quite big
datasets. In the RISOTTO implementation, we took all the observations above
into consideration. Since kmin has to be relatively small for our approach to be
tractable spacewise, we considered only 1 byte (a char in C) to store MaxExt
values. In this case, extensibility values must be less than 256, which is quite
reasonable. To build a static data structure to store such values until level z,
we need z + 1 1-byte arrays, where the j-th array has size |Σ|j with 0 ≤ j ≤ z.
Therefore, for the case of DNA, the total amount of memory required is 4z+1−1

3
bytes. This function gives us values of 1.3MB for z = 10, 5.3MB for z = 11,

1
RISOTTO is available at http://algos.inesc-id.pt/∼asmc/software/riso.html.

http://algos.inesc-id.pt/$mathrel {mathop {}limits ^{sim }}$asmc/software/riso.html.


RISOTTO: Fast Extraction of Motifs with Mismatches 767

85.3MB for z = 13, and 1.3GB for z = 15. In our experiments, we achieved
an optimum trade-off between memory allocation/management and maximal
extensibility gain when z = 10. Taking this observation into account, we only
allocate values for MaxExt until level z = min{10, kmin − 1}, even for large
values of kmin, and disregard deeper levels as well as the dynamic data structure
mentioned above. Nevertheless, we allowed this z level to be an implementation
parameter. In the end, considering z = min{10, kmin − 1}, RISOTTO requires
at most 1.3MB more that RISO for DNA databases, being more than twice
faster as we shall see next.

To test maximal extensibility performance we used several randomly gen-
erated (with a uniform distribution over the four letters size DNA alphabet)
synthetic datasets with planted structured motifs. Each dataset consists of 100
sequences of size 1000 where we planted one motif, possibly structured into sev-
eral boxes, with 2 mismatches per box. We ran both RISO and RISOTTO

requiring a quorum q = 100 and at most 2 mismatches per box so that the out-
put contains at least the planted motif. For each dataset, we made several runs
for increasing lengths of the motifs. In particular, given the number of boxes
of the structured motifs (in our tests there are p boxes for p = 1, . . . , 4), we
have increased the size of the boxes ranging from 5 to 20. As a result, the total
motifs size (without counting the gaps) ranges from 5 to 80. For each p (number
of boxes), we have plotted in Fig. 3, against the size of the motif (x axis), the
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Fig. 3. Ratio between the number of extensions attempted by RISOTTO and RISO

(cf Fig. 2(left) to compare theoretical with experimental results obtained in the same
set)
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ratio between the number of extensions attempted by RISOTTO and those by
RISO (y axis). Given than RISOTTO only saves useless attempts, this equals
the percentage of saved calls of the recursive procedure. For one box (Fig. 3
top left) we have depicted the results for several runs, while for two, three and
four boxes (Fig. 3 top right and bottom) there are one curve for the inference
of each box of the structured model. As one would expect, the attempts saved
are more when the length of the motif increases and, in particular, the improve-
ment starts when the length of the box is about 10 (this value depends in general
from the input sequence and the alphabet size). For one box (see Fig. 3 top left),
the number of attempted extension of RISOTTO decreases fast to 40% with
respect to RISO (for growing values of the length of the motifs). Even better
results, getting as good as attempting only 20% of the extensions of RISO, were
achieved when extracting an i-th box with 2 ≤ i ≤ p (see Fig. 3 (top right and
bottom)). Moreover, we present the ratio of speed performance of the compu-
tation of RISOTTO with respect to that of RISO. This is shown for all tests
together in Fig. 2(right) for all possible sizes of the boxes. One can see that the
best relative performance is achieved for the first boxes (that is where it is more
needed because the search space is very large and noisy), where RISOTTO is
up to 2.4 faster than RISO. Finally, in [6] a challenging problem was launched
that concerned finding all single motifs of length 15 with at most 4 mismatches
in 20 texts of size 600. We ran both RISO and RISOTTO on such instances.
We observe a speedup of 1.6 of RISOTTO over RISO. We actually believe
that a true challenge should involve texts of larger size. Therefore, we ran tests
with the same parameters (length 15 and at most 4 mismatches) on larger input
sequences. The results confirm the 1.6 speedup for sequences of length 700 and
800, 1.3 speedup for length 900, and then the speedup decreases, but the time
required by RISOTTO is always lower than for RISO.
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