
A parallel algorithm for the extraction of structured motifs

Alexandra M. Carvalho Ana T. Freitas
INESC-ID IST/INESC-ID

Rua Alves Redol, 9 Rua Alves Redol, 9
1000-029 Lisboa, Portugal 1000-029 Lisboa, Portugal

asmc@algos.inesc-id.pt atf@inesc-id.pt

Arlindo L. Oliveira Marie-France Sagot ∗†

IST/INESC-ID Inria Rhône-Alpes
Rua Alves Redol, 9 Université Claude Bernarde, Lyon I

1000-029 Lisboa, Portugal 43 Bd du 11 Novembre 1918
aml@inesc-id.pt 69622 Villeurbanne Cedex, France

Marie-France.Sagot@inria.fr

Abstract

In this work we propose a parallel algorithm for the efficient extraction of binding-
site consensus from genomic sequences. This algorithm, based on an existing approach,
extracts structured motifs, that consist of an ordered collection of p ≥ 1 boxes with
sizes and spacings between them specified by given parameters. The contents of the
boxes, which represent the extracted motifs, are unknown at the start of the process and
are found by the algorithm using a suffix tree as the fundamental data structure. By
partitioning the structured motif searching space we divide the most demanding part of
the algorithm by a number of processors that can be loosely coupled. In this way we
obtain, under conditions that are easily met, a speedup that is linear on the number of
available processing units. This speedup is verified by both theoretical and experimental
analysis, also presented in this paper.

Keywords: bioinformatics, suffix tree, structured motifs, grid computing, parallel algo-
rithm, complexity

1 Introduction

The large-scale genome sequencing era brought important computational challenges for the
analysis of nucleotide sequences. Gene prediction is a crucial task in this context and is based
in the recognition of coding regions as well as in the prediction of the corresponding promoter.
The promoter is an integral part of the gene that mediates and controls the initiation of
transcription and encompasses three regions, each one containing several sequences called
the promoter binding sites. The first one, the core promoter, is the region that suffices to

∗Visiting Research Fellow at King’s College London, UK.
†Partially supported by CNRS-INRIA-INRA-INSERM action BioInformatique and Wellcome Trust Foun-

dation.

1

determine the precise transcription start site. The second one, the proximal promoter, is the
region that is capable of initiating basal transcription. Finally, the distal promoter, also called
enhancer, is the transcription regulatory sequence that can be located farther upstream from
the core promoter and its main function is to stimulate transcription.

The DNA sequences involved in promoter function were first identified by comparisons of
the nucleotide sequences of a series of different genes isolated from E. coli. These comparisons
revealed that the region upstream of the transcription initiation site contains sets of sequences
that are similar in a variety of genes. Since then, consensus extraction has been addressed in
a variety of ways. Recent approaches have confronted the problem of extracting site consensi
[2, 15, 17] or considered the fact that binding sites often come together in a well ordered and
regularly spaced manner [11, 5, 3, 10, 18].

This paper presents a parallelized algorithm, based on an existing sequential approach
[11], to extract binding-site consensus. To reflect the fact that a promoter is fragmented in
several binding sites this algorithm introduces the concept of structured motifs. A structured
motif is described as an ordered collection of p ≥ 1 boxes, a maximum allowed error for each
box, and an interval of distance for each pair of consecutive boxes. The contents of the boxes,
the motifs themselves, are unknown at the start of the algorithm. A suffix tree is used to find
such motifs. Optimal work complexity of the parallel version is only achieved if structured
motifs extraction is balanced over the available processing units. Hence, the main issue of
the parallelization is to define a balanced partition of the structured motifs searching space.
This space can be represented by a lexicographic trie, and in some special cases, by the suffix
tree of the input sequences.

Finding a balanced partition of a tree, and in particular of a suffix tree, is an issue of
the utmost importance. This follows from the fact that many search algorithms are based on
suffix trees and a parallel balanced solution can help solving the increasing amount of data
incoming from the bioinformatics community. There has already been a considerable effort
on the development of algorithms for building suffix trees using distributed approaches [8, 1].
However, the main goal of these algorithms is to reduce the time complexity of the suffix tree
construction, and this step is by far the fastest of the sequential algorithm we are going to
parallelize. Other approaches have been taken to solve the problem of suffix tree construction
for the whole genome [14, 9]. Herein, the purpose is to build suffix trees on disk in order to
amortize the construction cost over many thousand searches. This question is addressed with
an algorithm to build consecutive partitions of the suffix tree, where the partition size depends
on the available memory, and compose them together on disk to proceed with searches. Again,
this is not the goal of our parallelization. Since the extraction step of the structured motifs
algorithm is the most time consuming, we want the search tree space partitioned among the
available processors, to proceed in each one with a separate extraction. Moreover, we want
a balanced partition of the search tree space over all the available processors that is not
necessarily imposed by memory constraints.

In our approach, we abstract the problem of finding a balanced partition of a tree to
a generalization of the 3-PARTITION problem [6], which we call PARTITION UP TO ε
problem. We show that this new problem is NP-complete in the strong sense and can not be
straightforwardly reduced to 3-PARTITION. This indicates that the PARTITION UP TO ε
problem is interesting per se. Furthermore, unlike 3-PARTITION, the PARTITION UP TO ε
problem has an optimization version for which we propose an approximation algorithm. This
approximation algorithm is applied to obtain a partition of the search tree space among the
available processing units and it is the core of the proposed parallelization.

2

The parallel version of the algorithm is implemented using grid technology. Nevertheless,
it is worthwhile to notice that the algorithm is designed in the CREW-PRAM computational
model [4] and therefore any realization of this model will support the algorithm. Moreover,
our solution does not require the grid nodes to communicate, which boosts the overall perfor-
mance. We obtain as a simple corollary that our algorithm can be made work-efficient, with
respect to the sequential algorithm, under easily achievable conditions.

In Section 2 we give a brief presentation of suffix trees. In Section 3 we present the
sequential algorithm to extract structured motifs. In Section 4 we establish the PARTITION
UP TO ε problem and present an algorithm to approximate the optimization version of this
problem. In Section 5 we apply this algorithm to the practical case of parallel structured
motifs extraction and we present some experimental results in Section 6.

2 Suffix trees

A suffix tree is a data structure built over all the suffixes of a string. Such a data structure
exposes the internal structure of a string and is often used to solve many string problems in
linear-time. The construction of a suffix tree in linear-time is a problem already addressed by
Weiner in 1973 [19], by McCreight in 1976 [12], and more recently by Ukkonen [16] in 1995.

We define a suffix tree for an arbitrary string S of length n over an alphabet Σ as presented
in [7]. After that we generalize the suffix tree to handle sets of strings.

Definition 2.1 A suffix tree of a n-character string S is a rooted directed tree with exactly
n leaves, numbered 1 to n. Each internal node, other than the root, has at least two children
and each edge is labeled with a nonempty substring of S. No two edges out of a node can
have edge-labels beginning with the same character. The key feature of the suffix tree is that
for any leaf i, the label of the path from the root to the leaf i exactly spells out the suffix of
S that starts at position i.

The previous definition of a suffix tree does not guarantee the existence of a suffix tree
for any string S. The problem is that if a prefix of a suffix of S matches a suffix of S, the
path for the later suffix would not end at a leaf. To avoid this problem we place at the end
of S a special symbol that is not in the alphabet. In this paper we use the symbol $ for the
termination character.

The suffix tree construction for a set of strings, called a generalized suffix tree, can be
easily achieved by consecutively building the suffix tree for each string of the set. The resulting
suffix tree is built in time proportional to the sum of all the string lengths. The leaf number of
the single string suffix tree can easily be converted to two numbers, one identifying the string
and the other identifying the starting position in that string. For example, the generalized
suffix tree for the strings S1=TACTA and S2=CACTCA is presented in Figure 1.

3 Structured motifs extraction

The problem of structured motifs extraction [11] addresses the extraction of consensus motifs
that appear together in a well-ordered and regularly spaced manner. A structured motif can
be described as an ordered collection of p ≥ 1 boxes, a maximum allowed error for each box,
and an interval of distance for each pair of consecutive boxes. A suffix tree is used to find such

3

A C $T

CT $ A T A CA$

CTA$ A CA$ CTCA$
1,5
2,6 $ A$ CA$

1,1 1,4

2,4

1,6
2,7

1,2 2,2 2,1 2,5 1,3 2,3

Figure 1: Generalized suffix tree for S1=TACTA and S2=CACTCA.

motifs in a set of N input sequences. We need to modify the suffix tree in order to store at
each tree node v a Boolean array of size N , denoted by colorsv [13], indicating the sequences
in the input set that contains the string labeling the path from the root to the tree node v.

To set up the algorithm to extract structured motifs we have to introduce some notation:

• A model is an element in Σ+. A model m is said to have an e-occurrence, or simply an
occurrence, in the input sequences, if there is one word u in the input sequences such
that the Hamming distance1 between u and m is less than or equal to e.

• A model is said to be a valid model if it has an occurrence in at least q input sequences,
where q is called the quorum.

• A node-occurrence of a model m is represented by a pair (v, ev) where v is a tree node
and ev ≤ e is the Hamming distance between the label of the path from the root to v
and m.

• A structured model is a pair (m, d) where:

– m is a p-tuple of single models (mi)1≤i≤p, denoting the p boxes;

– d is a (p− 1)-tuple of triplets (dmini
, dmaxi

, δi)1≤i≤p−1, denoting the p− 1 intervals
of distance.

The terms dmini
≤ dmaxi

represent a minimum and maximum allowed distance between
the parts and δi an allowed interval around that distance. When δi = (dmaxi

− dmini
+

1)/2, δi is omitted.

• A structured model (m, d) is said to be a valid structured model if for all 1 ≤ i ≤ p − 1
and for all occurrences ui of mi, there exist occurrences u1, . . . , ui−1, ui+1, . . . , up of the
single models m1, . . . , mi−1, mi+1, . . . , mp such that:

– u1, . . . , up belong to the same input sequence;

– there exists di, with dmini
+δi ≤ di ≤ dmaxi

−δi, such that the distance between the
end position of ui and the start position of ui+1 in the sequence is in [di−δi, di+δi];

– di is the same for p-tuples of occurrences present in at least q distinct sequences.

1The Hamming distance between two sequences is the minimum number of substitutions to transform one

sequence into another.

4

We are now able to describe the sequential algorithm to extract structured motifs [11].
This algorithm is based on a previously published algorithm to extract single motifs [13]. For
the sake of exposition, we assume that all boxes of the structured motifs have the same size k
and maximum allowed error e, the number of boxes p equals 2 and δ equals (dmax−dmin+1)/2.

The extraction of single motifs is done by a simple depth-first traversal of the suffix tree T
of the input sequences. When errors are allowed this traversal is more complex since models
that are not represented in the suffix tree may be valid models. In this case, the models that
need to be checked for validity are all sequences with Hamming distance at most e from the
suffixes of the tree T . We denote by M the lexicographic trie of all these models pruned at
the nodes where the quorum is no longer verified. In practice, M is never built but can be
virtually traversed by a more complex traversal over T . Observe that if no errors are allowed
and the quorum equals 1 then M and T present the same models.

The extraction of structured motifs starts by extracting single valid models of length k.
Once a single valid model m1 is obtained the extraction of all single models m2 with which
m1 could form a structured model ((m1, m2), (dmin, dmax)) starts. Note than in this case and
when the quorum equals 1, M corresponds to the lexicographic trie of all sequences of size
2k + dmin to 2k + dmax where the two k-length boxes are at most at distance e from suffixes
of the tree T . The pseudo-code of the algorithm can be found in Figure 2.

ExtractModels(suffix tree T)

1. find all single valid models m1 on T

2. for each model m1 found

3. for each node-occurrence (v, ev) of model m1 on T

4. put in PotentialStarts the children w of v at levels k + dmin to k + dmax

5. for each node w in PotentialStarts

6. find all single valid models m2 starting at node w of T

7. report the structured model ((m1,m2), (dmin, dmax)) as a valid model

Figure 2: ExtractModels algorithm extracts structured motifs from T .

It is shown that for two boxes [11], the ExtractModels algorithm takes O(Nn2k+dmaxν
2(e, k))

time, where n2k+dmax is the number of tree nodes at depth 2k+dmax and ν(e, k) is the number
of distinct words that are at a Hamming distance at most e from a k-long word. It is easy to
see that the following upper bound for ν(e, k) holds:

ν(e, k) =
e

∑

i=0

(

k
i

)

(|Σ| − 1)i ≤ ke|Σ|e.

In general, the ExtractModels algorithm for p boxes requires

O(Nnpk+(p−1)dmax
νp(e, k)) (1)

time.

5

4 Balanced partition

The problem of determining a balanced partition of a lexicographic trie can be abstracted to
the following general problem.

PARTITION UP TO ε problem: Suppose we are given a set of ` gold bars, where the
weight of the jth gold bar is a non negative integer wj . Additionally, assume that we can
cut any gold bar with weight w in c equal parts, obtaining in this way c new gold bars with
weight w

c
. Note that each of the resulting gold bars can then be cut again in c equal parts

and that this process can proceed successively.

• Optimization version: The problem is how to share the gold between r persons, with
the minimum number of gold bars z, in such a way that each person gets the same share
of gold up to some weight ε > 0.

• Decision version: The problem is to decide whether it is possible to share the gold
between r persons, with z gold bars, in such a way that each person gets the same share
of gold up to some weight ε ≥ 0.

Before presenting an approximation algorithm to solve the optimization version of this
problem we show that the decision version is NP-complete in the strong sense.

Theorem 4.1 The PARTITION UP TO ε problem is NP-complete in the strong sense.

Proof: Clearly this problem is in NP. Take as witness space the set of all r-partitions made
with z gold bars. Consider as the polynomial time verifier the program that checks whether
a witness is a partition up to ε. Then, if there is one partition up to ε, with z gold bars, take
it as witness. Moreover, if there is no partition up to ε, with z gold bars, then there is no
witness for which the polynomial time verifier will answer yes. Finally, to prove the strong
NP-completeness we transform the 3-PARTITION problem [6], which is NP-complete in the
strong sense, to the PARTITION UP TO ε problem. Consider the set A = {a1, . . . , a3m}
as an arbitrary instance of the 3-PARTITION and make an instance of the PARTITION
UP TO ε where r = m, ` = 3m, wj = aj with 1 ≤ i ≤ 3m, ε = 0, z = 3m and c = 1.
This transformation can clearly be performed in time polynomial in the input length alone.
Furthermore, the length and the largest number of the constructed instance remain the same
as in the given 3-PARTITION instance. Finally, there is a solution for the 3-PARTITION
problem iff there is a solution for the PARTITION UP TO ε problem. We can conclude that
we have a pseudo-polynomial transformation and so the PARTITION UP TO ε problem is
strongly NP-complete. �

Note that the previous result about strong NP-completeness guarantees that PARTITION
UP TO ε problem cannot be solved by a pseudo-polynomial time algorithm, unless P=NP.
Next we propose an approximation algorithm to solve this problem. The main goal is to
find an optimal balanced r-partition of the gold bars up to some positive weight ε. Since
there is no hope to find an efficient optimal solution we consider a trade-off between optimal
solution presentation and optimal number of cuts. In our algorithm the balanced partition
is defined as a family of intervals (Ii)1≤i≤r. This feature has the main advantage that it is
straightforward to check whether a gold bar belongs to a certain person. On the other hand,

6

our solution cuts successively all gold bars, which is not necessarily optimal. The algorithm
to determine the ith partition set Ii is presented in Figure 3.

SimpleCut(partition set i, gold bars `, persons r, weights (wj)1≤j≤`, cut factor c, work overload ε)

1. find the smallest t such that
max wj

ct ≤ ε

2. for each j ∈ {1, ..., `}

3. let Vj =
[

∑j−1
k=1 wk × ct,

∑j

k=1 wk × ct
)

4. let w =
∑`

j=1 wj

5. let γ = w × ct mod r

6. let δ = bw×ct

r
c

7. let I ′i =

{

[(i − 1)(δ + 1), i(δ + 1)) for all i ≤ γ
[γ(δ + 1) + (i − (γ + 1))δ, γ(δ + 1) + (i − γ)δ) otherwise

8. transform I ′
i = [a, b) into Ii = [f(a), f(b)) with f : w × ct → ` × ct defined as

f(x) =

{

(j − 1) × ct +
x−inf(Vj)

wj
for all x ∈ Vj

` × ct if x = w × ct

Figure 3: SimpleCut algorithm approximates the PARTITION UP TO ε problem.

The first step of the algorithm finds the number t of times each gold bar is successively
cut such that each one weights at most ε. Note that the total number of cuts attained is
∑t

i=1 ` × ci−1. At this point we have
z = ` × ct (2)

gold bars and we represent the set of these final gold bars by the interval of natural numbers
[0, ` × ct). Hence, the original jth gold bar lies on the interval [(j − 1) × ct, j × ct) and each
final gold bar in this interval weights wj/c

t ≤ ε. These final gold bars are enough to define
a balanced r-partition up to the weight ε. However, it is not straightforward to define the
partition since the final gold bars weight differently. A way out of this problem is to create a
set of virtual gold bars where all virtual gold bars weight the same. To achieve this we divide
the original jth gold bar interval [(j − 1)× ct, j × ct) by wj and obtain a new jth virtual gold
bar interval Vj where each virtual gold bar weights 1/ct. Note that we have w × ct virtual
gold bars and that the set of these virtual gold bars can be represented by the interval of
natural numbers [0, w× ct). The computation of the intervals Vj ⊆ [0, w× ct) is exactly what
we do on the second step of the algorithm.

From step 3 to 6 we define a balanced r-partition set I ′
i up to weight ε over the virtual

gold bars set [0, w × ct). This is straightforward to do since all virtual gold bars weight the
same. Finally, in step 7 we map the partition set I ′i over the virtual gold bars set [0, w × ct)
into a partition set Ii over the original gold bars set [0, ` × ct).

Next we establish the time complexity and a ratio bound result [4] for the algorithm at
hand, but first notice that the value t can be computed as

t = d
log(max wj)+log(1

ε
)

log(c) e. (3)

7

Proposition 4.2 The SimpleCut algorithm requires O(`) time.

Proof: In the first step of the SimpleCut algorithm the value t can be computed as given
by (3) in constant time. In the second and third steps we determine ` intervals, but notice
that the upper limit of one interval is the lower limit of the next, so in the end we only have
to compute ` values, each one taking O(1) time. Hence, the time complexity of these steps
are O(`). In the fourth step the ` summations are done in O(`) time. In the seventh step we
only have to compute the interval I ′i for the correspondent partition set i, in constant time.
In the last step we have to determine in which interval Vj the variable x belongs, which takes
O(log `) time. All the other operations of this step are O(1). Hence, we can conclude that
the overall time complexity of the algorithm SimpleCut is O(` + log(`)) = O(`). �

Proposition 4.3 The SimpleCut algorithm has a ratio bound ρ(`, r, (wj)1≤j≤`, c, ε) = O(
max wj

ε
).

Proof: By (2) and (3) the SimpleCut algorithm returns a total number of gold bars given by

z = O(`×ct) = O(`×c
log(max wj)+log(1

ε)

log(c)) = O(`×c
log(

maxwj
ε)

log(c)) = O(`×2log(
max wj

ε
)) = O(

` max wj

ε
).

In the worst case scenario, there is no need to cut any gold bar. In this case the optimal
solution returns ` gold bars and the SimpleCut algorithm returns O(

` max wj

ε
) gold bars, which

leads to the ratio bound O(
` max wj

`ε
) = O(

max wj

ε
). �

5 Parallel structured motifs extraction

We apply the previous algorithm to establish a balanced partition of the lexicographic trie
M of models. As mentioned in Section 3, the trie M is never built, but is virtually used to
define a partition for the extraction of structured motifs from the suffix tree T of the input
sequences.

In Section 5.1 we describe and illustrate how to use the SimpleCut algorithm to establish
a balanced partition of the trie M. In Section 5.2 we present the parallel algorithm that
partitions the extraction of structured motifs over T capitalizing on a balanced partition over
M.

5.1 Tree partition

Herein we establish a balanced partition of the lexicographic trie M of models by taking
advantage of the SimpleCut algorithm defined in the previous section. Observe that sequences
with the same prefix belong to the same partition set, since the SimpleCut algorithm returns
a family of intervals. To determine the prefixes of each partition set we compute the weight of
each symbol of the alphabet Σ. To obtain these weights we first scan the input sequences to
get the frequency of each symbol, and afterwards assign to each symbol a weight that reflects
these frequencies. Our approach computes only weights of prefixes of size one. Clearly, if space
and time allow, we can compute weights of prefixes with greater sizes deriving in this way a
more precise load balanced partition. However, experiments have shown that computing the
weights for prefixes of size one is enough for deriving good results.

8

After this set up it is important to reduce the tree partition problem to the PARTITION
UP TO ε problem. Note that the original gold bars are the prefixes for which we computed
the weights. In our case the original gold bars correspond to the symbols of Σ since we only
compute weights for prefixes of size one. Hence, we have ` = |Σ|. Moreover, the number of
cuts we can do to each gold bar is precisely |Σ|, corresponding to the spanning of the tree.
Therefore, we have c = |Σ|. The weight wj of each symbol of the alphabet is obtained by
scanning the input sequences. Finally, the number of persons r matches the number of grid
nodes and the allowed imbalance ε is a user parameter. At this point we have defined the
inputs required to call the SimpleCut algorithm for the ith grid node. The algorithm returns
two outputs. First, the number t of cuts gives the depth t + 1 of the tree where the partition
is defined. Observe that the total number of cuts is `t. Second, an interval Ii corresponding
to tree nodes at depth t + 1 that are assigned to the ith grid node.

Before adapting the SimpleCut algorithm to set up a partition of the lexicographic trie M
note that the depth of M is finite and upper bounded by the sum of the length of all boxes.
Hence, the depth t + 1 to which we have to descend to define the partition might be larger
than the depth of M. Therefore, we have to ensure that t + 1 does not exceed the depth of
M. In order to fulfill this condition we replace the first step by the one presented in Figure 4.

SimpleCut(partition set i, alphabet size `, grid nodes r, weights (wj)1≤j≤`, alphabet size c, work
overload ε)

1. let t = min(depth(M) − 1, t′) where t′ is the smallest integer such that
max wj

ct′
≤ ε

Figure 4: First step of the SimpleCut algorithm applied to tree partition.

The following example illustrates the use of this algorithm. Suppose we have r = 5 grid
nodes and Σ = {A, C, G, T}. Moreover, assume σ1 = A, σ2 = C, σ3 = G and σ4 = T with
the following weights w1 = 2, w2 = 1, w3 = 1 and w4 = 2, resulting in a total weight w = 6.
Finally, consider ε = 1, which means that the user allows an imbalance of 1

6 of the total
weight.

In the first step of the algorithm we obtain t = 1. The value of t + 1 give us the depth
where the tree partition is going to be made. In Figure 5 we can see a tree with nodes at
depth t + 1 as targets to determine a balanced distribution among the r grid nodes.

A G T

C G T A C G T A C G T A C G T

C

A

Figure 5: Tree cut at depth t + 1=2.

The second step of the algorithm computes the virtual tree node space. The computation
of the intervals Vj gives us the set of virtual tree nodes with the same weight. As seen before
we transform |Σ| × |Σ|t = 4 × 41 = 16 tree nodes into w × |Σ|t = 6 × 41 = 24 virtual tree

9

nodes. Note that in this example, tree nodes are represented as filled circles and virtual tree
nodes are represented as simple circles. The intervals Vj are represented in Figure 6.

V1=[0,8) V2=[8,12) V3=[12,16) V4=[16,24)

Figure 6: Intervals Vj in the virtual tree space.

In the next four steps, from 3 to 6, we compute the auxiliary set I ′
i that corresponds

to the partition set on the virtual tree node space for the ith grid node. Observe that to
determine the width of each interval I ′ in this virtual space we compute δ = (6 × 41)/5 = 4
and to determine the number of grid nodes that are going to be overloaded with at most
ε = 1 weight we compute γ = (6 × 41) mod 5 = 4. Since γ = 4 > 0 there is an imbalance
among the grid nodes, and in this particular case, there are γ = 4 grid nodes with at most
an overload ε = 1 over the remaining grid node. In Figure 7 we see that each grid node has
the following interval I ′1 = [0, 5), I ′2 = [5, 10), I ′3 = [10, 15), I ′4 = [15, 20) and I ′5 = [20, 24) of
virtual nodes.

I’2=[5,10) I’4=[15,20)I’3=[10,15)I’1=[0,5) I’5=[20,24)

Figure 7: Intervals I ′i in the virtual tree space.

Finally, in step 7 of the algorithm, we map the interval I ′i in the virtual tree node space
into the interval Ii in the tree node space. Observe that to compute the function f we need
to use the intervals Vj defined above. For this case f is defined as follows:

f(x) =

0 × 4 + x−0
2 for all 0 ≤ x < 8

1 × 4 + x−8
1 for all 8 ≤ x < 12

2 × 4 + x−12
1 for all 12 ≤ x < 16

3 × 4 + x−16
2 for all 16 ≤ x < 24

4 × 4 if x = 24

The intervals Ii computed directly from the function f defined above and the intervals I ′
i are

represented in Figure 8.

I1=[0,2) I4=[11,14) I5=[14,16)I2=[2,6) I3=[6,11)

Figure 8: Intervals Ii in the tree node space.

From interval Ii it is straightforward to determine the tree partition assigned to the ith

10

grid node. For instance, grid node number 3 is going to extract models with prefixes CG, CT,
GA, GC and GG. The tree that is going to be considered by each grid node is represented in
Figure 9.

CA

A

A CG

CA

TG A C G

GC

AT C

TG

TG

T

T

Figure 9: Tree partition up to ε.

Note that the first, second, third, fourth and fifth grid node are going to extract structured
motifs from trees with weight 0.5 × 2 = 1, 0.5 × 2 + 0.25 × 2 = 1.5, 0.25 × 5 = 1.25,
0.25 + 0.5× 2 = 1.25 and 0.5× 2 = 1, respectively. Hence, the maximum overload among the
grid nodes is 1.5 − 1 = 0.5 which is less than the imposed maximum overload ε = 1.

5.2 Parallel extraction

Herein we describe how a partition of the lexicographic trie M of models, obtained as de-
scribed in Section 5.1, can be used to define a partition for the extraction of structured motifs
over the suffix tree T of the input sequences.

The structured motifs that are going to be extracted in each grid node are dictated by the
correspondent partition set of the trie M. The extraction itself is going to be made over the
full suffix tree T . It is important to notice that the full suffix tree T is going to be built in all
grid nodes. This follows from the fact that the algorithm to extract single motifs [13] might
need to traverse all the tree T to check whether a model is valid. A better solution would
be to build only the part of T necessary to check the validity of the models assigned to each
grid node. However, in this first approach to parallelize the structured motifs extraction, we
do not address the optimal space parallel complexity problem. In what concerns time, the
complexity of the extraction is by far larger than the complexity of building T . Therefore,
we do not waste too much time by forcing each grid node to compute the full suffix tree.

The modified algorithm to extract structured models of the suffix tree T in the ith grid
node is presented in Figure 10.

Note that in both the first step and the sixth step of the PExtractModels algorithm it is
necessary to check whether a model belongs to Ii. If the partition set Ii is not an interval it
might be quite hard to check the conditions on those steps. This is why we decided that the
SimpleCut algorithm should return intervals as partition sets. Once again we stress that this
algorithm was drawn having in mind a tradeoff between finding optimal number of cuts and
finding optimal representations of the partition sets.

We are now able to present the parallel algorithm that runs in each grid node i to extract
the structured motifs. The pseudo-code of the algorithm is presented in Figure 11.

Before showing that PSmile is work-efficient we have to make some modifications to the
algorithm. Observe that in the worst case scenario all tree leaves extract structured motifs.

11

PExtractModels(suffix tree T , partition set Ii of M)

1. find all single valid models m1 ∈ Ii on T

2. for each model m1 found

3. for each node-occurrence (v, ev) of model m1 on T

4. put in PotentialStarts the children w of v at levels k + dmin to k + dmax

5. for each node w in PotentialStarts

6. find all single valid models m2 with m1m2 ∈ Ii starting at node w of T

7. report the structured model ((m1,m2), (dmin, dmax)) as a valid model

Figure 10: ExtractModels algorithm extracts structured motifs in Ii from T .

PSmile(grid node i, work overload ε)

1. compute weights (wj)1≤j≤|Σ|;

2. build suffix tree T ;

3. create colors on T ;

4. let Ii= SimpleCut(i, |Σ|, r, (wj)1≤j≤|Σ|, |Σ|, ε);

5. call PExtractModels(T , Ii);

Figure 11: PSmile algorithm extracts structured motifs.

For this reason, the estimation of the frequencies and the computation of the weights done at
the first step of PSmile may lead to a partition that produces worse time complexity results
than a uniform partition. Hence, in order to achieve work-efficiency, we replace the first step
of PSmile by the step presented in Figure 12. Moreover, we assume that the alphabet Σ is

PSmile(grid node i, work overload ε)

1. let wj = 1 for 1 ≤ j ≤ |Σ|;

Figure 12: First step of the uniform partition version of PSmile.

fixed, a common assumption when measuring time complexity of algorithms involving suffix
trees. Then, by Proposition 4.2, the time complexity of the SimpleCut algorithm can be
expressed as O(1). Furthermore, since both Σ and wj for 1 ≤ j ≤ |Σ| are constants, w is also
constant and we obtain the following result.

Proposition 5.1 The parallel algorithm PSmile is work-efficient with respect to the sequen-
tial version when r = O(ν

p

2 (e, k)) and ε
w
≤ 1

r
.

12

Proof: We start by computing the time complexity of PSmile for each grid node. The first
step is O(1) since wj = 1, for all j, and the alphabet is fixed. The second step requires
O(Nn) time, where n is the average length of the input sequences, using any linear time
suffix tree construction algorithm [19, 12, 16]. The time complexity of the third step is
O(Nnpk+(p−1)dmax

), as shown in the original paper [13]. The fourth step requires O(1) time.
Finally, to determine the time complexity of the fifth step, notice that in the worst case
scenario |Σ|pk is the total number of models. Moreover, the partition of the models assigns
to any grid node

O(|Σ|pk

r
+ |Σ|pk ε

w
)

= O(2 × |Σ|pk

r
) (by hypothesis ε

w
≤ 1

r
)

= O(|Σ|pk

r
)

models. Furthermore, in the worst case where all possible models are valid, the time complex-
ity associated with the extraction of structured motifs is directly proportional to the number
of models extracted, and so by (1) presented in Section 3, each model takes

O(
Nnpk+(p−1)dmaxνp(e,k)

|Σ|pk)

and each grid node takes

O(
Nnpk+(p−1)dmaxνp(e,k)

|Σ|pk) × O(|Σ|pk

r
)

= O(
Nnpk+(p−1)dmaxνp(e,k)

r
)

= O(Nnpk+(p−1)dmax
ν

p

2 (e, k)) (by hypothesis r = O(ν
p

2 (e, k)))

time to extract structured motifs. The complexity of the last step upper bounds the com-
plexity of the rest of the algorithm. Thus, a grid node requires O(Nnpk+(p−1)dmax

ν
p

2 (e, k))
time.

We conclude, by comparing with (1), that the overall work complexity is

O(Nnpk+(p−1)dmax
ν

p

2 (e, k)) × r = O(Nnpk+(p−1)dmax
νp(e, k))

and so PSmile achieves work-efficiency when r = O(ν
p

2 (e, k)) and ε
w
≤ 1

r
. �

6 Experimental results

The aim of the present section is not to illustrate the extraction of structured motifs [11]
but to describe the set up of the parallelized algorithm as well as a comparison between
time results of the sequential and the parallel version of the algorithm, Smile and PSmile,
respectively.

For the computational grid infrastructure we used the open source Globus Toolkit 2.4.
Globus is a research project and its primary goal is to provide basic technology that enables
entirely new classes of applications, one of which is distributed supercomputing. The Globus
version 2.4 was installed in four machines, three inside the same LAN (Pentium IV 2.4GHz
1GB, Pentium IV Xeon 2.4GHz 4GB and Pentium III 1.2GHz 1GB) and one in the WAN
(Pentium IV 2.5GHz 512Mb).

13

As test sets we used two groups of sequences. The first group contains only one test set
with gene sequences of S. cerevisiae. This set is composed by 23 gene sequences, for a total
of 23,000 nucleotides, encoding proteins that are up-regulated in yeast cells exposed to the
herbicide 2,4-D, as assessed by quantitative proteomic analysis. Since this dataset belongs to
an eukaryote the definition of the promoter or regulatory site models was more complex. In
this work two different models, with two and three boxes, were tested with the objective of
recognizing specific promoters, relying on combinations of individual elements. The second
group is composed of three sets of non-coding sequences located between two divergent genes
and extracted from the whole genomes of B. subtilis, H. pylori and E. coli. The first of these
sets contains 1,062 sequences for a total of 196,736 nucleotides. The second set contains
1,1148 sequences and 226,928 nucleotides. The last set contains 308 sequences and 52,100
nucleotides. These three datasets were originally used as test cases for extracting promoter
consensi and to test the sequential algorithm [11].

The Smile and PSmile algorithms were tested with two and three boxes, with the first and
second group of sequences, respectively, and the results obtained are presented in Table 1.
We can conclude by the results that the speed up is almost linear for both tests.

2 boxes 3 boxes
models time (sec) models time (sec)

grid node 1 2 155.83 9987 444.50
grid node 2 1 168.11 6178 385.28
grid node 3 2 245.35 3108 473.70
grid node 4 16 262.51 15884 581.64

total 21 831.80 35157 1885.18

parallel time 262.51 581.64
sequential time 757.97 1790.70

speed up 2.9 3.1

Table 1: Extraction of structured motifs by PSmile and Smile algorithms.

We also used the second group of sequences to obtain an estimation of the linear work-
efficiency coefficient. We set up several extractions where

r =
ν

p

2 (e, k)

2
and ε =

1

r
≤

w

r

and computed the quotient

q =
parallel work

sequential time
=

r × parallel time

sequential time

between the parallel work and the sequential time results. The results are summarized in
Figure 13. We may conclude that the linear coefficient for work-efficiency is between 1 and
1.6.

Other tests were performed to study the exponencial behaviour of the sequential algorithm.
We present a result, in Figure 14, where an incremental increase on the factor e of box errors
produces an exponencial time result. Note that in this case, a speed up in the order of the
available processing units is only achieved when we have e = 5.

Error 2 3 4 5

speed up 2.0 2.2 2.1 2.8

14

5 10 15 20 25 30 35

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

r

q

Figure 13: Estimation of the linear coefficient for work-efficiency.

0

20

40

60

80

100

120

140

2 3 4 5

T
im

e
(h

ou
rs

)

Error

PSMILE Work
SMILE Time

PSMILE Time

Figure 14: PSmile results with 3 processing units.

Currently we are increasing the size of the grid in order to perform more exhaustive tests.

7 Conclusions

The contributions of this work are threefold. First, we presented a new interesting strongly
NP-complete problem, the PARTITION UP TO ε problem. This problem is relevant in
the design of efficient parallel searching algorithms where the search space is represented
by a tree. For this reason we established an approximation algorithm for the optimization
version of the problem. Second, by capitalizing on the previous result, we proposed a parallel
algorithm for the efficient extraction of binding-site consensus from genomic sequences. This
algorithm is shown to be work efficient, with respect to the sequential algorithm, under
easily achievable conditions. Finally, we applied the previous established algorithm for the
recognition of specific promoters of the S. cerevisiae. The results obtained were cross checked
in the laboratory and were assertive for finding the specific promoters.

Future work can progress in several directions. From an algorithmic point of view, and in
particular in what concerns parallel algorithms, it would be interesting to partition a suffix
tree among the available processing units in a way that optimal space complexity is obtained.
With such an algorithm we could obtain work efficiency for the proposed parallelization in

15

an even more general setting. Another obvious relevant problem in this area is to design
and develop faster algorithms to extract structured motifs. From a biological point of view, it
would be interesting to set up a database of transcription factors and the respective promoters
consensus motifs for several organisms. This database would allow users to analyze complex
interactions between gene networks and proteins, using semi-automatic methods for processing
experimental results.

References

[1] A. Apostolico, C. Iliopoulis, G. Landau, B. Schieber, and U. Vishkin. Parallel construc-
tion of a suffix tree with applications. Algorithmica, 3:347–365, 1988.

[2] A. Brazma, I. Jonassen, J. Vilo, and E. Ukkonen. Prediction gene regulatory elements
in silico on a genomic scale. Genome Research, 8:1202–1215, 1998.

[3] L. Cardon and G. Stormo. Expectation Maximization algorithm for identifying protein-
binding sites with variable length from unaligned dna fragments. Journal of Molecular
Biology, 223:139–170, 1992.

[4] T. Cormen, C. Leiserson, and R. Rivest. Introduction to algorithms. MIT Press, 1990.

[5] Y. Fraenkel, Y. Mandel, D. Friedberg, and H. Margalit. Identification of common mo-
tifs in unaligned dna sequences: application to escherichia coli lpr regulon. Computer
Applications in Biosciences, 11:379–387, 1995.

[6] M. Garey and D. Johnson. Computers and intractability: a guide to the theory of NP-
completeness. W. H. Freeman, 1979.

[7] D. Gusfield. Algorithms on strings, trees, and sequences. Cambridge University Press,
1997.

[8] R. Hariharan. Optimal parallel suffix tree construction. Journal of Computer and Sys-
tems Sciences, 55(1):44–69, 1997.

[9] E. Hunt, M. Atkinson, and R. Irving. A database index to large biological sequences.
In Proceedings of the 27th International Conference on Very Large Databases (VLDB
2001), pages 139–148, 2001.

[10] A. Klingenhoff, K. Frech, K. Quandt, and T. Werner. Functional promoter model can
be detected by formal models independent of overall nucleotide sequences similarity.
Bioinformatics, 1(15):180–186, 1999.

[11] L. Marsan and M.-F. Sagot. Algorithms for extracting structured motifs using a suffix
tree with an application to promoter and regulatory site consensus identification. Journal
of Computational Biology, 7:345–360, 2000.

[12] E. McCreight. A space economical suffix tree construction algorithm. Journal of the
ACM, 23:262–272, 1976.

16

[13] M.-F. Sagot. Spelling approximate repeated or common motifs using a suffix tree. In
Latin’98, volume 1380 of Lecture Notes in Computer Science, pages 111–127. Spriger-
Verlag, 1998.

[14] K.-B. Schürmann and J. Stoye. Suffix tree construction for large strings. Technical
report, Freie Universität Berlin, 2002.

[15] M. Tompa. An exact method for finding short motifs in sequences, with application
to the ribosome binding site problem. In AAAI Press, editor, Proceedings of the 7th
International Symposium on Intelligent Systems for Molecular Biology, pages 262–271,
1999.

[16] E. Ukkonen. On-line construction of suffix trees. Algorithmica, 14:249–260, 1995.

[17] J. van Helden, B. André, and J. Collado-Vides. Extracting regulatory sites from the
upstream region of yeast genes by computational analysis of oligonucleotide frequencies.
Journal of Molecular Biology, 281:827–842, 1998.

[18] J. van Helden, A. Rios, and J. Collado-Vides. Discovering regulatory elements in non-
coding sequences by analysis of spaced dyads. Nucleic Acids Research, 28:1808–1818,
2000.

[19] P. Weiner. Linear pattern matching algorithms. In Proceedings of the 14th IEEE Sym-
posium on Switching and Automata Theory, pages 1–11, 1973.

17

