Outline

Part 1: Basic Concepts of data clustering
- Non-Supervised Learning and Clustering
 - Problem formulation – cluster analysis
 - Taxonomies of Clustering Techniques
 - Data types and Proximity Measures
 - Difficulties and open problems

Part 2: Clustering Algorithms
- Hierarchical methods
 - Single-link
 - Complete-link
 - Clustering Based on Dissimilarity Increments Criteria

Hierarchical Clustering

Use proximity matrix: nxn
- \(D(i,j) \): proximity (similarity or distance) between patterns \(i \) and \(j \)

Diagram:
- Step 0
- Step 1
- Step 2
- Step 3
- Step 4

Agglomerative

Step 4 → Step 3 → Step 2 → Step 1 → Step 0

Divisive
Hierarchical Clustering: Agglomerative Methods

1. Start with \(n \) clusters containing one object
2. Find the most similar pair of clusters \(C_i \) and \(C_j \) from the proximity matrix and merge them into a single cluster
3. Update the proximity matrix (reduce its order by one, by replacing the individual clusters with the merged cluster)
4. Repeat steps (2) e (3) until a single cluster is obtained (i.e. \(N - 1 \) times)

Similarity measures between clusters:

Well known similarity measures can be written using the Lance-Williams formula, expressing the distance between cluster \(k \) and cluster \(i+j \), obtained by the merging of clusters \(i \) and \(j \):

\[
d(i+j,k) = a_d(i,k) + a_d(j,k) + b_d(i,j) + c_d(i,k) - d(j,k)
\]

<table>
<thead>
<tr>
<th>Method</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single-link</td>
<td>(a = a_0 = 0.5); (b = 0); (c = -0.5) (d(i+j,k) = \min {d(i,k),d(j,k)})</td>
</tr>
<tr>
<td>Complete-link</td>
<td>(a = a_0 = 0.5); (b = 0); (c = 0.5) (d(i+j,k) = \max {d(i,k),d(j,k)})</td>
</tr>
<tr>
<td>Centroid</td>
<td>(a = \frac{n_i}{n_i+n_j}); (a = \frac{n_j}{n_i+n_j}); (b = \frac{n_i n_j}{n_i+n_j}); (c = 0) (d(i+j,k) = d(\mu_i, \mu_j))</td>
</tr>
<tr>
<td>Median</td>
<td>(a = a_0 = 0.5); (b = -0.25); (c = 0)</td>
</tr>
<tr>
<td>(Average link)</td>
<td>(a = \frac{n_i}{n_i+n_j}); (a = \frac{n_j}{n_i+n_j}); (b = c = 0) (d(C_i,C_j) = \frac{1}{n_{C_i} n_{C_j}} \sum d(a,b))</td>
</tr>
<tr>
<td>Ward’s Method</td>
<td>(minimum variance) (a = \frac{n_i}{n_i+n_j}); (a = \frac{n_j}{n_i+n_j}); (b = -\frac{n_i}{n_i+n_j}); (c = 0)</td>
</tr>
</tbody>
</table>
Hierarchical Clustering: Agglomerative Methods

Single Link: Distance between two clusters is the distance between the closest points. Also called “neighbor joining.”

\[
\begin{align*}
\text{Single-link} & : a_i = a_j = 0.5 \land b = 0 \land c = -0.5 \land d(i, j, k) = \min\{d(i, k), d(j, k)\} \\
\text{Complete-link} & : a_i = a_j = 0.5 \land b = 0 \land c = 0 \land d(i, j, k) = \max\{d(i, k), d(j, k)\} \\
\text{Centroid} & : a_i = \frac{n_i}{n_i + n_j} \land a_j = \frac{n_j}{n_i + n_j} \land b = -\frac{n_{ij}}{n_i + n_j} \land c = 0 \land d(i, j, k) = d(i, k) + d(j, k) \\
\text{Median} & : a_i = a_j = 0.5 \land b = -0.25 \land c = 0 \\
\text{(Average link)} & : a_i = \frac{n_i}{n_i + n_j} \land a_j = \frac{n_j}{n_i + n_j} \land b = c = 0 \land d(C_i, C_j) = \frac{1}{n_{ij}} \sum_{a,b} d(a, b) \\
\text{Ward’s Method (minimum variance)} & : a_i = \frac{n_i + n_j}{n_i + n_j + n_k} \land a_j = \frac{n_j + n_k}{n_i + n_j + n_k} \land a_k = \frac{n_k + n_i}{n_i + n_j + n_k} \land b = -\frac{n_i}{n_i + n_j + n_k} \land c = 0
\end{align*}
\]

Complete Link: Distance between clusters is distance between farthest pair of points.

\[
\begin{align*}
\text{Single-link} & : a_i = a_j = 0.5 \land b = 0 \land c = -0.5 \land d(i, j, k) = \min\{d(i, k), d(j, k)\} \\
\text{Complete-link} & : a_i = a_j = 0.5 \land b = 0 \land c = 0 \land d(i, j, k) = \max\{d(i, k), d(j, k)\} \\
\text{Centroid} & : a_i = \frac{n_i}{n_i + n_j} \land a_j = \frac{n_j}{n_i + n_j} \land b = -\frac{n_{ij}}{n_i + n_j} \land c = 0 \land d(i, j, k) = d(i, k) + d(j, k) \\
\text{Median} & : a_i = a_j = 0.5 \land b = -0.25 \land c = 0 \\
\text{(Average link)} & : a_i = \frac{n_i}{n_i + n_j} \land a_j = \frac{n_j}{n_i + n_j} \land b = c = 0 \land d(C_i, C_j) = \frac{1}{n_{ij}} \sum_{a,b} d(a, b) \\
\text{Ward’s Method (minimum variance)} & : a_i = \frac{n_i + n_j}{n_i + n_j + n_k} \land a_j = \frac{n_j + n_k}{n_i + n_j + n_k} \land a_k = \frac{n_k + n_i}{n_i + n_j + n_k} \land b = -\frac{n_i}{n_i + n_j + n_k} \land c = 0
\end{align*}
\]
Hierarchical Clustering: Agglomerative Methods

Centroid: Distance between clusters is distance between centroids.

<table>
<thead>
<tr>
<th>Method</th>
<th>Formula</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single-link</td>
<td>$a_i = a_j = 0.5$; $b = 0$; $c = 0$</td>
<td>$d(i, j, k) = \min[d(i, k), d(j, k)]$</td>
</tr>
<tr>
<td>Complete-link</td>
<td>$a_i = a_j = 0.5$; $b = 0$; $c = 0.5$</td>
<td>$d(i, j, k) = \max[d(i, k), d(j, k)]$</td>
</tr>
<tr>
<td>Centeroid</td>
<td>$a_i = n_i / n_i + n_j$; $a_j = n_j / n_i + n_j$; $b = \frac{n_i n_j}{n_i + n_j}$</td>
<td>$c = 0$ $d(i, j, k) = d(\mu_i, \mu_j)$</td>
</tr>
<tr>
<td>Median</td>
<td>$a_i = a_j = 0.5$; $b = -0.25$; $c = 0$</td>
<td></td>
</tr>
<tr>
<td>(Average link)</td>
<td>$a_i = n_i / n_i + n_j$; $a_j = n_j / n_i + n_j$; $b = \frac{n_i n_j}{n_i + n_j}$</td>
<td>$c = 0$ $d(C_i, C_j) = \frac{1}{n_i n_j} \sum d(a, b)$</td>
</tr>
<tr>
<td>Ward’s Method (minimum variance)</td>
<td>$a_i = a_j = 0.5$; $b = 0$; $c = 0$</td>
<td></td>
</tr>
</tbody>
</table>

Average Link: Distance between clusters is average distance between the cluster points.

<table>
<thead>
<tr>
<th>Method</th>
<th>Formula</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single-link</td>
<td>$a_i = a_j = 0.5$; $b = 0$; $c = 0$</td>
<td>$d(i, j, k) = \min[d(i, k), d(j, k)]$</td>
</tr>
<tr>
<td>Complete-link</td>
<td>$a_i = a_j = 0.5$; $b = 0$; $c = 0.5$</td>
<td>$d(i, j, k) = \max[d(i, k), d(j, k)]$</td>
</tr>
<tr>
<td>Centeroid</td>
<td>$a_i = n_i / n_i + n_j$; $a_j = n_j / n_i + n_j$; $b = \frac{n_i n_j}{n_i + n_j}$</td>
<td>$c = 0$ $d(i, j, k) = d(\mu_i, \mu_j)$</td>
</tr>
<tr>
<td>Median</td>
<td>$a_i = a_j = 0.5$; $b = -0.25$; $c = 0$</td>
<td></td>
</tr>
<tr>
<td>(Average link)</td>
<td>$a_i = n_i / n_i + n_j$; $a_j = n_j / n_i + n_j$; $b = \frac{n_i n_j}{n_i + n_j}$</td>
<td>$c = 0$ $d(C_i, C_j) = \frac{1}{n_i n_j} \sum d(a, b)$</td>
</tr>
<tr>
<td>Ward’s Method (minimum variance)</td>
<td>$a_i = a_j = 0.5$; $b = 0$; $c = 0$</td>
<td></td>
</tr>
</tbody>
</table>
Unsupervised Learning

Clustering Algorithms

Hierarchical Clustering: Agglomerative Methods

Ward's Link: Minimizes the sum-of-squares criterion (measure of heterogeneity)

$$ESS = \sum_{k=1}^{K} \sum_{j=1} d \left(x_{i,j} - \bar{x}_{kj} \right)^2$$

<table>
<thead>
<tr>
<th>Method</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single-link</td>
<td>$$a_i = a_j = 0.5; \quad b = 0; \quad c = -0.5 \quad d(i+j,k) = \min {d(i,k),d(j,k)}$$</td>
</tr>
<tr>
<td>Complete-link</td>
<td>$$a_i = a_j = 0.5; \quad b = 0; \quad c = 0.5 \quad d(i+j,k) = \max {d(i,k),d(j,k)}$$</td>
</tr>
<tr>
<td>Centroid</td>
<td>$$a_i = \frac{n_i}{n_i + n_j}; \quad a_j = \frac{n_j}{n_i + n_j}; \quad b = -\frac{n_{ij}}{n_i + n_j}; \quad c = 0 \quad d(i+j,k) = d(c_i,c_j)$$</td>
</tr>
<tr>
<td>Median</td>
<td>$$a_i = a_j = 0.5; \quad b = -0.25 \quad c = 0$$</td>
</tr>
<tr>
<td>(Average link)</td>
<td>$$a_i = \frac{n_i}{n_i + n_j}; \quad a_j = \frac{n_j}{n_i + n_j}; \quad b = c = 0 \quad d(i,j,k) = d(c_i,c_j) = \frac{1}{n_{ij}} \sum_{b=1}^{n_{ij}} d(a,b)$$</td>
</tr>
<tr>
<td>Ward's Method (minimum variance)</td>
<td>$$a_i = \frac{n_i}{n_i + n_j}; \quad a_j = \frac{n_j}{n_i + n_j}; \quad b = -\frac{n_{ij}}{n_i + n_j}; \quad c = 0 \quad d(i,j,k) = d(c_i,c_j)$$</td>
</tr>
</tbody>
</table>

From Single Clustering to Ensemble Methods

April 2009

Unsupervised Learning – Ana Fred
Unsupervised Learning

Clustering Algorithms

Single Linkage:

\[d(C_i, C_j) = \min_{a \in C_i, b \in C_j} \{d(a, b)\} \]

Complete-Link:

\[d(C_i, C_j) = \max_{a \in C_i, b \in C_j} \{d(a, b)\} \]
Complete-Link: \[d(C_i, C_j) = \max_{a \in C_i, b \in C_j} \{d(a, b)\} \]

Dendrogram

Single-link and Complete-Link

A clustering of the data objects is obtained by cutting the dendrogram at the desired level, then each connected component forms a cluster.

Favours connectedness

Favours compactness
Single-link and Complete-Link

- **SL algorithm:**
 - Favors connectedness
 - Equivalent to building a MST and cutting at weak links

Single-link method, th=0.49
Single-link and Complete-Link

SL algorithm:
- Favors connectedness
- Detects arbitrary-shaped clusters with even densities
- Cannot handle distinct density clusters
- Is sensitive to in-between patterns

CL algorithm:
- Favors compactness
Single-link and Cor

- **SL algorithm:**
 - Favors connectedness
 - Detects arbitrary-shaped clusters with even densities
 - Cannot handle distinct density clusters
 - Is sensitive to in-between patterns
 - Needs criteria to set the final number of clusters

- **CL algorithm:**
 - Favors compactness
 - Imposes spherical-shaped clusters on data

Single-link and Complete-Link

- **SL algorithm:**
 - Favors connectedness
 - Detects arbitrary-shaped clusters with even densities
 - Cannot handle distinct density clusters
 - Is sensitive to in-between patterns
 - Needs criteria to set the final number of clusters

- **CL algorithm:**
 - Favors compactness
 - Imposes spherical-shaped clusters on data
 - Needs criteria to set the final number of clusters
Hierarchical Clustering

- Weakness
 - do not scale well: time complexity of $O(n^2)$, where n is the number of total objects
 - can never undo what was done previously

- Integration of hierarchical with distance-based clustering
 - BIRCH (Zhang, Ramakrishnan, Livny, 1996): uses a ClusteringFeature-tree and incrementally adjusts the quality of sub-clusters
 - CURE (Guha, Rastogi & Shim, 1998): selects well-scattered points from the cluster and then shrinks them towards the center of the cluster by a specified fraction
 - CHAMELEON (G. Karypis, E.H. Han and V. Kumar, 1999): hierarchical clustering using dynamic modeling
 1. Use a graph partitioning algorithm: cluster objects into a large number of relatively small sub-clusters
 2. Use an agglomerative hierarchical clustering algorithm: find the genuine clusters by repeatedly combining these sub-clusters

Clustering Based on Dissimilarity Increments Criteria

- Smoothness Hypothesis:
 - A cluster is a set of patterns sharing important characteristics in a given context
 - A dissimilarity measure encapsulates the notion of pattern resemblance
 - Higher resemblance patterns are more likely to belong to the same cluster and should be associated first
 - Dissimilarity between neighboring patterns within a cluster should not occur with abrupt changes
 - The merging of well separated clusters results in abrupt changes in dissimilarity values

Clustering Based on Dissimilarity Increments Criteria

Dissimilarity Increments:

\((x_i, x_j, x_k) \) - nearest neighbors

\[x_j : j = \arg \min_i \{d(x_i, x_j), l \neq i \} \]

\[x_k : k = \arg \min_i \{d(x_i, x_j), l \neq i \} \]

Dissimilarity increment:

\[d_{inc}(x_i, x_j, x_k) = |d(x_i, x_j) - d(x_j, x_k)| \]

Distribution of Dissimilarity Increments:

- Uniformly distributed data
Clustering Based on Dissimilarity Increments Criteria

Distribution of Dissimilarity Increments:

- 2D Gaussian data

- Ring-shaped data
Clustering Based on Dissimilarity Increments Criteria

Distribution of Dissimilarity Increments:

- Directional expanding data

Distribution of Dissimilarity Increments: Exponential distribution:

\[p(x) = \beta \exp(-\beta x) \]
Clustering Based on Dissimilarity Increments Criteria

- **Exponential distribution:**
 - Higher density patterns \Rightarrow higher β
 - Well separated clusters $\Rightarrow d_{\text{inc}}$ on the tail of $p(x)$

\[
\text{Gap between clusters: } \text{gap}_i = d_i(C_i, C_j) - d_i(C_i)
\]

Diagram:
- Blue line: 700 samples, Gaussian
- Green line: 200 samples, Gaussian
- Red line: 700 samples, uniform
- Black line: 200 samples, uniform
Clustering Based on Dissimilarity Increments Criteria

$\text{Gap between clusters: } \text{gap}_i = d(C_i, C_j) - d_i(C_i)$

Cluster Isolation criterion:

Let C_i, C_k be two clusters which are candidates for merging, and let μ_i, μ_k be the respective mean values of the dissimilarity increments in each cluster. Compute the increments for each cluster, gap_i and gap_k. If $\text{gap}_i \geq \alpha \mu_i$ (or $\text{gap}_k \geq \alpha \mu_k$), isolate cluster C_i (C_k) and proceed the clustering strategy with the remaining patterns. If neither cluster exceeds the gap limit, merge them.
Clustering Based on Dissimilarity Increments Criteria

Setting the Isolation Criterion Parameter α:

- Result: the crossings of the tangential line, at points which are multiple of the distribution mean value, α/β, with the x axis, is given by $(\alpha + 1)/\beta$.

\[\alpha \in [3, 5] \text{ cover the significant part of the distribution} \]

Hierarchical Clustering Algorithm:

- A statistic of the dissimilarity increments within a cluster is maintained and updated during cluster merging.

- Clusters are obtained by comparing dissimilarity increments with a dynamic threshold, $\alpha \mu_i$, based on cluster statistics.
Clustering Based on Dissimilarity Increments Criteria

Results:

- Ring-Shaped Clusters

Single-link method, \(th=0.49 \)
Clustering Based on Dissimilarity Increments Criteria

Results:
- Ring-Shaped Clusters

Dissimilarity Increments-base method:

- \(d_1 \)
- \(d_2 \)
- \(g_1 \)
- \(g_2 \)

From Single Clustering to Ensemble Methods - April 2009
Clustering Based on Dissimilarity Increments Criteria

Results:

2-D Patterns with Complex Structure

<table>
<thead>
<tr>
<th>Dissimilarity Increments-base method</th>
<th>Single-link</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Clustering of Contour Images

- The data set is composed by 634 contour images of 15 types of hardware tools: 11 to 115.
- When counting each pose as a distinct sub-class in the object type, we obtain a total of 24 classes.
Clustering of Contour Images

Contour extraction

- the object boundary is sampled at 50 equally spaced points
- the angle between consecutive segments is quantized in 8 levels.

<table>
<thead>
<tr>
<th>Class</th>
<th>Tool</th>
<th>Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>61076210626767676706626307610760676706320262 sequentially</td>
</tr>
<tr>
<td></td>
<td></td>
<td>71176266262616270616706260761073617651635767262 sequentially</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7117626626262610026267376706756622026262620182 sequentially</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>000800008600000017108800060681000000075088000003 sequentially</td>
</tr>
<tr>
<td></td>
<td></td>
<td>00000000850000000086000081000000008000000000 sequentially</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0000000089000017108800060681000000075088000003 sequentially</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>1080000096880000070780000808500008012 sequentially</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10800000968800000610700070780000008500000012 sequentially</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10800000968800000710700070780000008500000012 sequentially</td>
</tr>
</tbody>
</table>
Clustering of Contour Images

Single-link vs. Dissimilarity Increments-based method

(string-edit distance)

Clustering Based on Dissimilarity Increments Criteria

Description:
- Hierarchical agglomerative algorithm adopting a cluster isolation criterion based on dissimilarity increments

Strength:
- Method is not conditioned by a particular dissimilarity measure (examples used Euclidean and string-edit distances)
- Ability to identify arbitrary shaped and sized clusters
- The number of clusters is intrinsically found

Weakness:
- Sensitive to in-between points connecting touching clusters
Unsupervised Learning
Clustering Algorithms

Outline

- **Partitional Methods**
 - K-Means
 - Spectral Clustering
 - EM-based Gaussian Mixture Decomposition

Part 3.: Validation of clustering solutions
- Cluster Validity Measures

Part 4.: Ensemble Methods
- Evidence Accumulation Clustering

Partitional Methods

- **K-Means**
 - Minimizes the cost function:
 \[H_{KM} = \sum_{i=1}^{n} ||x_i - y_{c_i}||^2 \]
 - Algorithm:
 1. Input: \(k \), the number of clusters; data set
 2. Randomly select \(k \) seed points from the data set, and take them as initial centroids.
 3. Partition the data into \(k \) clusters by assigning each object to the cluster with the nearest centroid.
 \[c_i = \arg\min_{\nu \in \{1,...,k\}} ||x_i - y_\nu||^2 \]
 4. Compute centroids of the clusters of the current partition. The centroid is the center (mean point) of the cluster.
 \[y_\nu = \frac{1}{n_\nu} \sum_{i \in \nu} x_i \text{ with } n_\nu = |\{i : c_i = \nu\}| \]
 5. Go back to step 2 or stop when no more new assignment.
Partitional Methods: K-Means

- Favors compactness

Strength:
- Fast algorithm \(O(tkn)\) – \(t\) is the number
- Scalability
- Often terminates at a local optimum

Weakness:
- Imposes spherical-shaped clusters

Strength:
- Fast algorithm \(O(tkn)\) – \(t\) is the number
- Scalability
- Often terminates at a local optimum

Weakness:
- Imposes spherical-shaped clusters
Partitional Methods: K-Means

- Favors compactness

- Strength
 - Fast algorithm ($O(ktn)$ – t is the number of iterations; normally, $k, t << n$)
 - Scalability
 - Often terminates at a local optimum.

- Weakness
 - Imposes spherical-shaped clusters
 - Is sensitive to the number of objects in clusters
 - Dependence on initialization
Unsupervised Learning

Clustering Algorithms

Unsupervised Learning

Ana Fred

Partitional Methods: K-Means

- Favors compactness

- Strength
 - Fast algorithm \(O(tkn) \) – \(t \) is the number of iterations; normally, \(k, t \ll n \).
 - Scalability
 - Often terminates at a local optimum.

- Weakness
 - Imposes spherical-shaped clusters
 - Is sensitive to the number of objects in clusters
 - Dependence on initialization
 - Needs criteria to set the final number of clusters
 - Applicable only when mean is defined (what about categorical data?)
Variations of K-Means Method

- K-Means (MacQueen’67): each cluster is represented by the center of the cluster
- A few variants of the k-means which differ in:
 - Selection of the initial k means
 - Dissimilarity calculations (Mahalanobis distance -> elliptic clusters)
 - Strategies to calculate cluster means
 - Medoid - each cluster is represented by one of the objects in the cluster
 - Fuzzy version: Fuzzy K-Means

- Handling categorical data: k-modes (Huang’98)
 - Replacing means of clusters with modes
 - Using new dissimilarity measures to deal with categorical objects
 - Using a frequency-based method to update modes of clusters

Spectral Clustering

- For a given data set, X, Spectral Clustering finds a set of data clusters on the basis of spectral analysis of a similarity graph.
- The clustering problem is defined in terms of a complete graph, G, with vertices $V=\{1, \ldots, N\}$, corresponding to the data points in the data set, and each edge between two vertices is weighted by the similarity between them.
- The weight matrix is also called the affinity matrix or the similarity matrix.

$$A_{ij} = \exp\left(-\frac{\|x_i - x_j\|^2}{2\sigma^2}\right)$$

Gaussian Kernel
Spectral Clustering

- Cutting edges of G we obtain disjoint subgraphs of G as the clusters of X.
- The goal of clustering is to organize the dataset into disjoint subsets with high intra-cluster similarity and low inter-cluster similarity.
 - The resulting clusters should be as compact and isolated as possible.

The graph partitioning for data clustering can be interpreted as a minimization problem of an objective function, in which the compactness and isolation are quantified by the subset sums of edge weights.

Common objective functions
- Ratio cut (R_{cut})
- Normalised cut (N_{cut})
- Min-max cut (M_{cut})

$$R_{cut}(C_1, \ldots, C_k) = \sum_{i=1}^{k-1} \frac{\text{cut}(C_i, X \setminus C_i)}{\text{card} C_i}$$
$$N_{cut}(C_1, \ldots, C_k) = \sum_{i=1}^{k-1} \frac{\text{cut}(C_i, X \setminus C_i)}{\text{cut}(C_i, X)}$$
$$M_{cut}(C_1, \ldots, C_k) = \sum_{i=1}^{k-1} \frac{\text{cut}(C_i, X \setminus C_i)}{\text{cut}(C_i, C_j)}$$

- $\text{cut}(A, B)$ is the sum of the edge weights between $v \in A$ and $v \in B$.
- $X \setminus C_i$ is the complement of C_i in X.
- $\text{card} C_i$ denotes the number of points in C_i.
Spectral Clustering

The solution of the minimization problem of any of the previous objective functions is obtained from the matrix of the first k eigenvectors of a matrix derived from the affinity matrix (Laplacian matrix):

- The eigenvectors for $Ncut$ and $Mcut$ are identical, and obtained from the symmetrical Laplacian

$L = I_{sym} - D^{-1/2}AD^{-1/2}$

- D is a diagonal matrix whose i-th entry is the sum of the i-th row of A

Another common choice is $L = I_{sym} - D^2(D-A)$

Distinct algorithms differ on the way of producing and using the eigenvectors and how to derive clusters from them:

- Some use each eigenvector one at a time
- Other, use top k eigenvectors simultaneously

Closely related with spectral graph partitioning, in which the second eigenvector of a graph’s Laplacian is used to define a semi-optimal cut; the second eigenvector solves a relaxation of an NP-hard discrete graph partitioning problem, giving an approximation to the optimal cut.

Spectral Clustering (Ng et al, 2001)

Maps the feature space into a new space, Y, based on the eigenvectors of a matrix derived from an affinity matrix associated with the data set.

The data partition is obtained by applying the K-means algorithm on the new space.

$(NG. \text{ and Al.} 2001)$

$A_{ij} = e^{-\frac{(Y_i - Y_j)^2}{2\sigma^2}}$

Original feature space \rightarrow Eigen vector space

A. Y. Ng and M. I. Jordan and Y. Weiss, On Spectral Clustering: Analysis and an algorithm, NIPS 2001
Spectral Clustering (Ng et al, 2001)

Algorithm:

Given a set of points $S = \{s_1, \ldots, s_n\}$ in \mathbb{R}^d that we want to cluster into k subsets:

1. Form the affinity matrix $A \in \mathbb{R}^{n \times n}$ defined by $A_{ij} = \exp(-\|s_i - s_j\|^2/2\sigma^2)$ if $i \neq j$, and $A_{ii} = 0$.
2. Define D to be the diagonal matrix whose (i, i)-element is the sum of A's i-th row, and construct the matrix $L = D^{-1/2}AD^{-1/2}$.
3. Find x_1, x_2, \ldots, x_k, the k largest eigenvectors of L (chosen to be orthogonal to each other in the case of repeated eigenvalues), and form the matrix $X = [x_1, x_2, \ldots, x_k] \in \mathbb{R}^{n \times k}$ by stacking the eigenvectors in columns.
4. Form the matrix Y from X by renormalizing each of X’s rows to have unit length (i.e., $Y_{ij} = X_{ij}/(\sum_j X_{ij}^2)^{1/2}$).
5. Treating each row of Y as a point in \mathbb{R}^k, cluster them into k clusters via K-means or any other algorithm (that attempts to minimize distortion).
6. Finally, assign the original point s_i to cluster j if and only if row i of the matrix Y was assigned to cluster j.

(a) NIPS 2001
(b) Original clusters
(c) Spectral clusters
(d) Original projection
(e) Spectral projection
(f) Spectral clusters projection
Spectral Clustering (Ng et al, 2001)

Results strongly depend on parameter values: k e σ

$K=2$, $\sigma=0.1$

$K=2$, $\sigma=0.4$
Spectral Clustering (Ng et al, 2001)

Results strongly depend on parameter values: k e σ

- $K=3$, $\sigma=0.1$
- $K=3$, $\sigma=0.45$
Spectral Clustering

Selection of parameter values:

- **MSE:**

\[
MSE_{y} = \frac{1}{N} \sum_{i=1}^{N} \sum_{j=1}^{n} \sqrt{(y_i' - m_j)^2}
\]

- **Eigengap**

\[
\delta(A) = 1 - \frac{\lambda_2}{\lambda_1}
\]

- **Rcut**

\[
R_{cut}^{K} = \frac{\sum_{k=1}^{K} \sum_{d=1, d \neq k}^{K} \sum_{j \in S_d} \sum_{j \in S_k} A_{jk}}{\sum_{d=1}^{K} \sum_{j \in S_d} A_{jj}}
\]

Selection of Parameters: Global Results on selecting \(\sigma \) and \(K \)

None of the studied methods is suitable for the automatic selection of the spectral clustering parameters.

A majority voting decision did not significantly improve the results.

Percentage of correct classification:

- \(\sigma \)
Spectral Clustering

Strength
- Detects arbitrary-shaped clusters.
- By using an adequate similarity measure between patterns, can be applied to all types of data.

Weakness
- Computationally heavy
- Needs criteria to set the final number of clusters and scaling factor

Model-Based Clustering: Finite Mixtures

- *k* random sources, with probability density functions $f_i(x)$, $i=1,...,k$

Choose at random

$X \rightarrow$ random variable

Conditional: $f(x|source\ i) = f_i(x)$

Joint: $f(x$ and source $i) = f_i(x) \alpha_i$

Unconditional: $f(x) = \sum_{all\ sources} f(x$ and source $i) = \sum_{i=1}^{k} \alpha_i f_i(x)$
Model-Based Clustering: Finite Mixtures

- Each component models one cluster
- Clustering = mixture fitting

\[f(x|\Theta) = \sum_{i=1}^{k} \alpha_i f(x|\theta_i) \]

Gaussian Mixture Decomposition

- Mixture Model:

\[f(x|\Theta) = \sum_{i=1}^{k} \alpha_i f(x|\theta_i) \]

Component densities

- Mixing probabilities: \(\alpha_i \geq 0 \) and \(\sum_{i=1}^{k} \alpha_i = 1 \)

- Gaussian

 - Arbitrary covariances: \(f(x|\theta_i) = N(x|\mu_i, C_i) \)

 \[\Theta = \{ \mu_1, \mu_2, \ldots, \mu_k, C_1, C_2, \ldots, C_k, \alpha_1, \alpha_2, \ldots, \alpha_{k-1} \} \]

 - Common covariance: \(f(x|\theta_i) = N(x|\mu_i, C) \)

 \[\Theta = \{ \mu_1, \mu_2, \ldots, \mu_k, C, \alpha_1, \alpha_2, \ldots, \alpha_{k-1} \} \]
Mixture Model Fitting

- n independent observations \(x = \{ x^{(1)}, x^{(2)}, \ldots, x^{(n)} \} \)
- Mixture density model: \(f(x|\Theta) = \sum_{i=1}^{k} \alpha_i f(x|\theta_i) \)
- Estimate \(\Theta \) that maximizes (log)likelihood (ML estimate of \(\Theta \)):
 \[\hat{\Theta} = \arg \max_{\Theta} L(x, \Theta) \]

\[
L(x, \Theta) = \log \prod_{j=1}^{n} f(x^{(j)} | \Theta) = \sum_{j=1}^{n} \log \sum_{i=1}^{k} \alpha_i f(x^{(j)} | \theta_i)
\]

Gaussian Mixture Model Fitting

- Problem: the likelihood function is unbounded as \(\det(C_i) \to 0 \)
 - There is no global maximum
 - Unusual goal: a “good” local maximum
- Example: a 2-component Gaussian mixture
 \[
f(x | \mu_1, \mu_2, \sigma^2, \alpha) = \frac{\alpha}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu_1)^2}{2\sigma^2}} + \frac{1-\alpha}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu_2)^2}{2\sigma^2}}
\]

some data points \(\{ x_1, x_2, \ldots, x_n \} \)

\[
\mu_1 = x_1
\]

\[
L(x, \Theta) = \log \left(\frac{\alpha}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x_1-\mu_1)^2}{2\sigma^2}} + \frac{1-\alpha}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x_1-\mu_2)^2}{2\sigma^2}} \right) + \sum_{j=2}^{n} \log(...)
\]

\(\to \infty \), as \(\sigma^2 \to 0 \)
Mixture Model Fitting

- ML estimate has no closed-form solution
- Standard alternative: expectation-maximization (EM) algorithm:
 - Missing data problem:
 - Observed data: \(x = \{ x^{(1)}, x^{(2)}, ..., x^{(n)} \} \)

Missing labels ("colors")

\[z^{(1)} = \begin{bmatrix} z_i^{(1)} & z_i^{(2)} & ... & z_i^{(K)} \end{bmatrix}^T = [0 \ ... \ 1 \ 0 \ ... \ 0]^T \]

"1" at position \(i \) \(\iff \) \(x_i \) generated by component \(i \)

- Complete log-likelihood function:

\[L_c(x, z, \Theta) = \sum_{j=1}^{K} \sum_{i=1}^{n} z_i^{(j)} \log (\alpha_j f_j(x^i | \Theta)) \]
The EM Algorithm

- The E-step: compute the expected value of $L_c(x, z, \Theta)$

$$E[L_c(x, z, \Theta) | x, \hat{\Theta}^{(t)}] = Q(\Theta, \hat{\Theta}^{(t)})$$

- The M-step: update parameter estimates

$$\hat{\Theta}^{(t+1)} = \arg \max_{\Theta} Q(\Theta, \hat{\Theta}^{(t)})$$

EM-Algorithm for Mixture of Gaussian

- Iterative procedure: $\hat{\Theta}^{(0)}, \hat{\Theta}^{(1)}, ..., \hat{\Theta}^{(t)}, \hat{\Theta}^{(t+1)}, ...$

- The E-step: $w_{ij}^{(t)} = \frac{\hat{\alpha}_i f(x^{(j)} | \hat{\mu}_i^{(t)})}{ \sum_{i=1}^{n} \hat{\alpha}_i f(x^{(j)} | \hat{\mu}_i^{(t)})}$

$w_{ij}^{(t)}$ Estimate, at iteration t, of the probability that $x^{(j)}$ was produced by component i

- The M-step:

$$\hat{\alpha}_i^{(t+1)} = \frac{1}{n} \sum_{j=1}^{n} w_{ij}^{(t+1)}$$

$$\hat{\mu}_i^{(t+1)} = \frac{\sum_{j=1}^{n} w_{ij}^{(t+1)} x^{(j)}}{\sum_{j=1}^{n} w_{ij}^{(t+1)}}$$

$$C_i^{(t+1)} = \frac{\sum_{j=1}^{n} w_{ij}^{(t+1)} (x^{(j)} - \hat{\mu}_i^{(t+1)}) (x^{(j)} - \hat{\mu}_i^{(t+1)})^T}{\sum_{j=1}^{n} w_{ij}^{(t+1)}}$$
Mixture Gaussian Decomposition: Model Selection

How many components?

- The maximized likelihood never decreases when k increases
- $\hat{k} = \arg \min \{ C(\hat{\Theta}(k)) \}$
- Usually:
 $C(\hat{\Theta}(k)) = -L(x, \hat{\Theta}(k)) + P(\hat{\Theta}(k))$

Criteria in this category:
- Akaike’s information criterion (AIC), Whindham and Cutler, 1992.
- Schwarz’s Bayesian inference criterion (BIC), Fraley and Raftery, 1998.

Resampling-based techniques

Parameter code-length

Given $\Theta(k)$, shortest code-length for x (Shannon’s):

$$L(x | \Theta(k)) = -\log f(x | \Theta(k))$$

MDL criterion: parameter code length

Total code-length (two part code):

$$L(x, \Theta(k)) = -\log f(x | \Theta(k)) + L(\Theta(k))$$

MDL criterion:

$$\hat{\Theta}(k) = \arg \min_{\Theta(k)} \{ -\log f(x | \Theta(k)) + L(\Theta(k)) \}$$

$$L(\text{each component of } \Theta(k)) = \frac{1}{2} \log(n^*)$$

$n^* \rightarrow$ Amount of data from which the parameter is estimated
Mixture Gaussian Decomposition: Model Selection

Classical MDL: \(n' = n \)

\[
\hat{\Theta}_{(k)} = \arg \min_{\Theta_{(k)}} \left\{ -\log f(x|\Theta_{(k)}) + \frac{k}{2} \log(n) \right\}
\]

Mixtures MDL (MMDL) (Figueiredo, 2002)

\[
\hat{\Theta}_{(k)} = \arg \min_{\Theta_{(k)}} \left\{ -\log f(x|\Theta_{(k)}) + \frac{k(N_p + 1)}{2} \log(n) + \frac{N_p}{2} \sum_{m=1}^{k} \log(\alpha_m) \right\}
\]

Using EM and redefining the M-Step

\[
\beta_i = \left(\sum_{j=1}^{n} w_{ij}(j+1) - \frac{N_p}{2} \right)
\]

\[
G_{i}^{(t+1)} = \frac{\beta_i}{\sum \beta_m}
\]

This M-step may annihilate components

Np is the number of parameters of each component:

- Gaussian, arbitrary covariances: \(\text{Np} = d + d(d+1)/2 \)
- Gaussian, common covariance: \(\text{Np} = d \)

Gaussian Mixture Decomposition – EM MMDL

Examples

From Single Clustering to Ensemble Methods – April 2009
Gaussian Mixture Decomposition – EM MMDL

Examples

Strength:
- Model-based approach
- Good for Gaussian data
- Handles touching clusters

Weakness:
- Unable to detect arbitrary shaped clusters
- Dependence on initialization

Unsupervised Learning – Ana Fred

Gaussian Mixture Decomposition

Strength:
- Model-based approach
- Good for Gaussian data
- Handles touching clusters

Weakness:
- Unable to detect arbitrary shaped clusters
- Dependence on initialization
Gaussian Mixture Decomposition

It is a local (greedy) algorithm (likelihood never decreases)

=> Initialization dependent

References

