

Well known si formula, expres obtained by the	sures between clusters: milarity measures can be written using the Lance-Williams ssing the distance between cluster <i>k</i> and cluster <i>i+j</i> , e merging of clusters <i>i</i> and <i>j</i> : $a_i d(i,k) + a_j d(j,k) + bd(i,j) + c d(i,k) - d(j,k) $
Single-link	$a_i = a_j = 0.5$; $b = 0$; $c = -0.5$ $d(i + j, k) = \min\{d(i, k), d(j, k)\}$
Complete-link	$a_i = a_j = 0.5$; $b = 0$; $c = 0.5$ $d(i + j, k) = \max\{d(i, k), d(j, k)\}$
Centroid	$a_{i} = \frac{n_{i}}{n_{i} + n_{j}} a_{j} = \frac{n_{j}}{n_{i} + n_{j}} b = -\frac{n_{i}n_{j}}{(n_{i} + n_{j})^{2}} c = 0 \qquad d(i + j, k) = d(\mu_{i+j}, \mu_{k})$
Median	$a_i = a_j = 0.5$; $b = -0.25$; $c = 0$
(Average link)	$a_{i} = \frac{n_{i}}{n_{i} + n_{j}} a_{j} = \frac{n_{j}}{n_{i} + n_{j}} b = c = 0 \qquad d(C_{i}, C_{j}) = \frac{1}{n_{i}n_{j}} \sum_{a \in C_{i}, b \in C_{j}} d(a, b)$
Ward's Method (minimum variance)	$a_i = \frac{n_k + n_i}{n_k + n_i + n_j}$ $a_j = \frac{n_k + n_j}{n_k + n_i + n_j}$ $b = -\frac{n_k}{n_k + n_i + n_j}$ $c = 0$

	Single Link: Distance between two clusters is the distance between the closest points. Also called "neighbor joining."
Single-link	$a_i = a_j = 0.5$; $b = 0$; $c = -0.5$ $d(i + j, k) = \min\{d(i, k), d(j, k)\}$
Complete-link	$a_i = a_j = 0.5$; $b = 0$; $c = 0.5$ $d(i + j, k) = \max\{d(i, k), d(j, k)\}$
Centroid	$a_{i} = \frac{n_{i}}{n_{i} + n_{j}} a_{j} = \frac{n_{j}}{n_{i} + n_{j}} b = -\frac{n_{i}n_{j}}{(n_{i} + n_{j})^{2}} c = 0 d(i + j, k) = d(\mu_{i+j}, \mu_{k})$
Median	$a_i = a_j = 0.5$; $b = -0.25$; $c = 0$
(Average link)	$a_{i} = \frac{n_{i}}{n_{i} + n_{j}} a_{j} = \frac{n_{j}}{n_{i} + n_{j}} b = c = 0 \qquad d(C_{i}, C_{j}) = \frac{1}{n_{i} n_{j}} \sum_{a \in C_{i}, b \in C_{j}} d(a, b)$
Ward's Method (minimum variance)	$a_{i} = \frac{n_{k} + n_{i}}{n_{k} + n_{i} + n_{j}} a_{j} = \frac{n_{k} + n_{j}}{n_{k} + n_{i} + n_{j}} b = -\frac{n_{k}}{n_{k} + n_{i} + n_{j}} c = 0$

	<u>Centroid</u> : Distance between clusters is distance between centroids.
Single-link	$a_i = a_j = 0.5$; $b = 0$; $c = -0.5$ $d(i + j, k) = \min\{d(i, k), d(j, k)\}$
Complete-link	$a_i = a_j = 0.5$; $b = 0$; $c = 0.5$ $d(i + j, k) = \max\{d(i, k), d(j, k)\}$
Centroide	$a_{i} = \frac{n_{i}}{n_{i} + n_{i}} a_{j} = \frac{n_{j}}{n_{i} + n_{i}} b = -\frac{n_{i}n_{j}}{(n_{i} + n_{i})^{\frac{N}{2}}} c = 0 d(i + j, k) = d(\mu_{i+j}, \mu_{k})$
Median	$a_i = a_j = 0.5$; $b = -0.25$; $c = 0$
(Average link)	$a_{i} = \frac{n_{i}}{n_{i} + n_{j}} a_{j} = \frac{n_{j}}{n_{i} + n_{j}} b = c = 0 \qquad d(C_{i}, C_{j}) = \frac{1}{n_{i}n_{j}} \sum_{a \in C_{i}, b \in C_{i}} d(a, b)$
Ward's Method (minimum variance)	$a_{i} = \frac{n_{k} + n_{i}}{n_{k} + n_{i} + n_{j}} a_{j} = \frac{n_{k} + n_{j}}{n_{k} + n_{i} + n_{j}} b = -\frac{n_{k}}{n_{k} + n_{i} + n_{j}} c = 0$

