Computation of Substring Probabilities in
Stochastic Grammars

Ana L. N. Fred

Instituto de Telecomunicagbes
Instituto Superior Técnico
IST-Torre Norte, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
afred@lx.it.pt

Abstract. The computation of the probability of string generation ac-
cording to stochastic grammars given only some of the symbols that com-
pose it underlies pattern recognition problems concerning the prediction
and/or recognition based on partial observations. This paper presents
algorithms for the computation of substring probabilities in stochastic
regular languages. Situations covered include prefix, suffix and island
probabilities. The computational time complexity of the algorithms is
analyzed.

1 Introduction

The computation of the probability of string generation according to stochastic
grammars given only some of the symbols that compose it, underlies some pat-
tern recognition problems such as prediction and recognition of patterns based
on partial observations. Examples of this type of problems are illustrated in [2-
4], in the context of automatic speech understanding, and in [5, 6], concerning
the prediction of a particular physiological state based on the syntactic analysis
of electro-encephalographic signals. Another potential application, in the area of
image understanding, is the recognition of partially occluded objects based on
their string contour descriptions.

Expressions for the computation of substring probabilities according to sto-
chastic context-free grammars written in Chomsky Normal Form have been pro-
posed [1-3]. In this paper algorithms for the computation of substring proba-
bilities for regular-type languages expressed by stochastic grammars of the form

co—~F , F,—-a , Fi—>aFj , aeXt | U,Fi,FjEVN

(o representing the grammar start symbol and V, X' corresponding to the non-
terminal and terminal symbols sets, respectively) are described. This type of
grammars arises, for instance, in the process of grammatical inference based on
Crespi-Reghizzi’s method [7] when structural samples assume the form

[- [de[f gble[cd]ab]]]]

(meaning some sort of temporal alignment of sub-patterns).

The algorithms presented next explore the particular structure of these gram-
mars, being essentially dynamic programming methods. Situations described in-
clude the recognition of fixed length strings (probability of exact recognition —
section 3.1, highest probability interpretation —section 3.2) and arbitrary length
strings (prefix — section 3.3, suffix — section 3.5 and island probabilities — sec-
tion 3.4). The computational complexity of the methods is analyzed in terms
of worst case time complexity. Minor and obvious modifications of the above
algorithms enable the computation of probabilities according to the standard
form of regular grammars.

2 Notation and Definitions

Let G = (Vn, X, Rs,0) be a stochastic context-free grammar, where Vi is the fi-
nite set of non-terminal symbols or syntactical categories; X' is the set of terminal
symbols (vocabulary); Rs is a finite set of productions of the form p; : A — «,
A€ Vy, a € (¥UVy)", the star representing any combination of symbols in
the set and p; is the rule probability; and o € Vv is the start symbol. When
rules take the particular form A — aB or A — a, with A,B € Vy and a € X,
then the grammar is designated as finite-state or regular.

Along the text the symbols A, G and H will be used to represent non-terminal
symbols. The following definitions are also useful:

def . .
wi ...w, = finite sequence of terminal symbols;

H 3 o derivations of a from H through the application of an arbitrary

number of rules;

Cr(y) 4 humber of terminal symbols in v (with repetitions);
Cn(7) 4 umber of non-terminal symbols in v (with repetitions);

Nomin(H,0) < min {n | ™" {Cr(y) : H » G}

The following graphical notation is used to represent derivation trees:

— Arcs are associated with the direct application of rules. For instance, the

rule H — wyw»G is represented by /H\ or
wiws G w1w2 G
— The triangle represents derivation trees having the top non-terminal symbol
as root, and leading to the string on the base of the triangle:
H

*
H=w ... w,X*= Wi ... W, X*

3 Algorithms Description

3.1 Probability of Derivation of Exact String — Pr(H = ow;... Wign)

Let Pr (H = w; ... w;,,) be the probability of all derivation trees having H as
root and generating exactly w; ... w;4n-

According to the type of grammars considered the computation of this prob-
ability can be obtained as follows (see figure 1):

Pr(oc = w;... wit,) = ZPr(a — G)Pr(G S w; ... witn) (1)
a

Pr(H 3 w;...wipn) , H#o
:Pr(H—)wi...wi+n)+

Nmin (H,G)

+ Z Z PI‘(H — W;j .. .’wi+k,1G)PI‘(G :*> Witf v wiJrn) (2)
G k=1

w; Ay W; Wi1 A Wi... Witn-1 A

Wi+1 -+ Witn Wi+2 --- Witn Wi+n

Fig. 1. Terms of the expression 2.

This can be summarized by the iterative algorithm:
1. For all non-terminal symbols H € Vx — {0}, determine
Pr(H — witn)
2. For k =1,...n and for all non-terminal symbols H € Viy — {0}, compute:

PI‘(H =*> Witn—+k - - an)
= PI‘(H — Wigtn—+k - wiJrn) +

Nmin (H,G)

+ Z Z PI‘(H — Witn—k - - .an,kﬂ-,lG) X
G j=1

PI‘(G =*> Witn—k+j -+ - an) (3)

*

Pr(c = w;.. . witn) = »_ Pr(c = G)Pr(G = w;...wisn) (4)
G

This corresponds to filling in the matrix of figure 2, column by column, from the
right to the left. In this figure, each element corresponds to the probability of
all derivation trees for the substring on the top of the column, with root on the
non-terminal symbols indicated on the left of the row, i.e. Pr (H; = W .. Witn).

Wi ...Wi4n|.-- Wi+n—1...Wi4n Wi4n

H, Pr (H1 — wi+n)
*

H> Pr (H2 = Witn—1Witn)

Hyvy |

Fig. 2. Array representing the syntactic recognition of strings according to the algo-
rithm.

Notice that the calculations on step 2 are based only on direct rules and access
to previously computed probabilities on columns to the right of the position
under calculation.

Computational complexity analysis For strings of length n, the compu-
tational cycle is repeated n times, all non-terminal symbols being considered.
Associating to the terms in equation 3

A: P[‘(H — Witn—k -+ an)

Nmin (H,G)

B: Z Z P[‘(H — Witn—k - wiJrn,kJrj,lG)P['(G :*> Witn—k+j - -- wl'Jrn)
G j=1

the worst case time complexity is of the order

_— computation of A~ computation of B
O (IVnl=13+> (V- 1) o + 3 + 6
step 1 N) step 3
ste;f) 2

=0 (|VnIn)

3.2 Maximum Probability of Derivation — P, (H = wi... Wign)

Let P, (H 2w ... wy,) denote the highest probability over all derivation trees
having H as root and producing exactly w; ...w, and define the matrix M, as
follows:

*

MyJi,j]=Pm(H; 2 w;...w,) i=1,...,[V§| j=1,....n (5)

Observing that

and

Po(HSw ... w,) , H#o
=max{Pr(H — wy ... wy) ,

m%X {Pr(H = w; ... w;G)P, (G S Wiy .. wn)}} (7)

the following algorithm computes the desired probability:

1. Fori:l,...,|VN| ,Hiyéa

Myli,n] = {0 otherwise

2. Forj=n-1,...,1andfori=1,...,|Vy| ,H;#o0o

Myi,j]l = max{ Pr(H; - w;...wy) ,

max {PI‘(HZ — wj .. .’LUkHl)Mu[l, k+ 1]} }
k>j .l

3. Fori:H; =0
Mu[iy]-] —max {PI‘(O’ - H])Mu[]; 1]}
J

This algorithm corresponds to the computation of an array similar to the one
in figure 2, but where probabilities refer to maximum values of single deriva-
tions instead of total probability of derivation when ambiguous grammars are
considered.

Based on the similarity between this algorithm and the one developed in
section 3.1 it is straightforward to conclude that it runs in O (|Vn|n) time.

3.3 Prefix Probability — Pr (H = wi... WignX*)

The probability of all derivation trees having H as root and generating arbitrary
length strings with the prefix w; ... wi n — Pr (H = w;...wit,X*)) — can be
expressed as follows:

Pr(c = w;... wipnS*) =Y Pr(c = G)Pr(G S wi...wiynX¥) (8)
G

Pr(H = w;...win,5%) , H#o
=Pr(H - w; ... witn) +

Nmin (H,G)

+ Z Z PI‘(H — Wi ... w”k,lG)Pr(G :*> Witk - - anE*) +
+ ZPr(H = Wi .. wirnG) +

+Z Z Pr(H — w; ... witnv1 - .. v Q)
G keNTt
= Pr(H — Wj .. .wi+n) +
Nmin (H,G)

+ Z Z PI‘(H — Wi ... wi+k_1G)Pr(G :*> Witk --- wi+n2*) +

+ E Pr(H — w; ... wirnv1 -..v5Q) 9)
G,keNG
wi - l+n2 wi Wi Witn—1 Al Wi Witn Al wi...wi+n2* Al
Wil Wifn x* Witn * Br *

Fig. 3. Terms of the expression 9.

The previous expression suggest the following iterative algorithm:

1. For all nonterminal symbols H € Viy — {o}, determine

Pr(H — witn) + Z Pr(H — witnvy ... 0g)
keNt

2. For k=1,...,n and for all nonterminal symbols H € Vy — {o}, compute

Pr(H 3 Witn_p .- wignX*)

= Pr(H — Witn—k - - - wi+n) +

kmin (H,G)

+ Z Z Pr(H — Witn—k - - - Witn—k+j—1 G) X
G j=1

XPI‘(G =*> Witn—k+j -+ .anE*) +

+ Z Z Pr(H = Witn—k .. Witn1 ... 0;G) (10)
G jeNg

Pr(o 3 wi...wign $%) =Y Pr(c = GPr(G S w;...win) (11)
G

This algorithm, like the one of section 3.1, corresponds to filling in a parsing
matrix similar to the one in figure 2.

The similarity with the algorithm in section 3.1 leads to the conclusion that
this algorithm has O (|[Vy|n) time complexity.

3.4 Island Probability — Pr (H = Yrw; ... Wign X™)

The island probability consists of Pr (H = X*w; ... w4+, X*), the probability
of all derivation trees with root in H that generate arbitrary length sequences
containing the subsequence wj ... w;4p.-

Let

Pr(H - G) = S Pr(H —»1G) , ves* (12)
Y
= probability of rewriting H by sequences with

the nonterminal symbol G as suffix

One can write

Pr(c = Z*w;... w1, X%) =Y Pr(c & G)Pr(G = Z*w; ... wi1n T%) (13)
G

Pr(H = Y*w;...winX*) , H#o
= Pr(H = G)Pr(G = Z*w; ... win) +
G

Nmin (H,G)

+Z Z PR(H—)wi...wi_,_j_lG)Pr(G:*>wi+j...wi+n2*)+
G j=1

+ZPR(H — w; ... wi,G)Pr(G > I*) +
G —r

—l—ZZPr(H VL URWG Wi 21 - - - 2;G) Pr(G S X)) +
G ok ~

+ZZPr(H—)vl...vkwi...wi+nz1...zj) (14)
G 4k

For strings sufficiently long (n > {Cr(y) : G = ~}) the last three terms
do not exist, therefore we will ignore them from now on.

H H H H H
»* G S*wiewiye, G S*wiewign G FTwiwip, TFGE ZFwi Wiy B
S*wi e Wigy ¥ Witk4lWign p* z* z*

Fig. 4. Terms of the expression 14.

Pr(H = Y*w; ... wipn%5*) , H#o
= Pgr(H = G)Pr(G = S*w; ... win X*) +
G

Nmin (H,G)

+Z Z PR(H —>wi...wi+j_1G)Pr(G :*>wi+j ...wH_nE*) (15)
G j=1

Recursively applying the above expression and after some manipulation (de-
tails can be found in [6]) one obtains:

Pr(H = Y*w;... wiy,X%) , H#o
= Z QR(H = A) Z Z PR(A — W ... wiJrj,lG)PI'(G =*> Witj - .anE*)

A G jeN+
+3° 3" Pr(H = wi. . .wipj1G)Pr(G S wigj .. wipn ¥7) (16)
G jeNt
with
Qr(H = G) =Pr(H = ¥*G)
=Pr(H = G) +
+> Pr(H - APRr(A— G)+ > Pr(H — A)Pr(4; — A;) x
A A1 Ao
XxPr(4ds = G) + ... (17)
Qr(H = G) obeys the equation
Qr(H = G) =Y Pr(H - A)Qr(A = G) + Pr(H — G) (18)

A

Defining the matrices

Pr[H,G] =Pgr(H - G (19)
Qr[H,G] =Qr(H = G (20)

Q is given by [6]:
Qr = Pr[I — Pr]"! (21)

The algorithm can thus be described as:

1. Off-line computation of Qg = Pr[I — Pg]~ L.
2. On-line computation of Pr(G = w, ¥*) , Pr(G = wp_ 1w, 5*), ... , Pr(G >

wy ... w, X*) for all nonterminal symbols G € Viy — {o} using the algorithm
in section 3.3.

3. For all nonterminal symbols H € Vy — {0} compute
Pr(H = Y*w; ... wi,5%)

:ZQR(HiA)Z Z PR(A—>wi...wi+j,1G) X
A

G jeENT
XPI‘(G :*> Witj - - .wH_nZ*) +

+ Z Z PR(H — Wj - . .wi+j_1G)Pr(G :*> Witj - - .wH_nE*)
G jeNT+

Pr(oc & S*w; ... win,X%) = ZPr(a - G)Pr(G = S*w; .. . wipnT*)
a

The required on-line computations have the following time complexity:

O Vvl = 1)e = Dot (Vi = DIVWIB+ & | =
Stop 2 step 3 step 4
=maz (O (|Vy|n),0 (VN |?)

3.5 Suffix Probability — Pr(H = S*wi... Witn)
Let Pr (H = Yrw; .. .Witn) be the probability of all derivation trees with root

in H generating arbitrary length strings having wj; ...w;, as a suffix. This
probability can be derived as follows:

Pr(c = X*w;... witn) = »_Pr(c = G)Pr(G S T w;...wip,) (22)
G

Pr(H = Y'w;...wipn) , H#o
=Y Pr(H = G)Pr(G = Z'w; ... wipn) +
G

Nmin (H,G)

+ Z Z PR(H — Wj .. .wi+j_1G)Pr(G :*> Witj - wH_n) +
€ j=1

+ZPR(H —>wi...wi+n)
G

H H H
»* G S*wiewiyr, G ZFws e Wigp
SF Wi Wi gy Withkt1l-Witn

Fig. 5. Terms of the expression 23.

(23)

For strings sufficiently long (n >"G" {Cr(y) : G — «}) the third term does
not exist, so it will be ignored henceforth. Recursively applying the resulting

expression to the second part of the first term one obtains:

Pr(H = Y*w;... wiyn) , H#o
= Z Z PR(H — Wi .. .’u}i+j,1A1)PI'(A1 =*> Wity -+ .wiJrn) +
Ay jeNT
+ Z Z PR(H — Al)PR(Al — W . ..U)iJr]',lAg).
A1,As jeN+
.PI‘(AQ = Witj--- wi+n) +
+...+
+ PR(H—)Al)PR(Al —)Ag)
A, Ag
. PR(Ak—l — Wj .. .wi+j_1Ak)Pr(Ak :*> Witj - - .wi+n) +...

(24)

= ZQR(H = A) Z Z PR(A — Wi .. .wi+j_1G)Pr(G :*> Witj - ..wi+n) +
A

G jeN+

+ Z Z PR(H — W ... U)iJr]',lG)PI'(G =*> Witj - .wiJrn)
G jeENT

The algorithm is then:

1. Off-line computation of Qp = Pr[l — PR]_l.

(25)

2. On-line computation of Pr(G' = w,) , Pr(G = w,_1w,) , ... , Pr(G >
wy ... wy) for all non-terminal symbols G € Viy — {0} using the algorithm
in section 3.1.

3. For all non-terminal symbols H € Vi — {o} compute

PI‘(H :*> E*wi .. wi+n)
= Z QR(H = A) Z Z PR(A — Wj .. .’u}i+j,1G)PI‘(G :*> Witj oo wiJrn)

G jeNT

A
+ Z Z PR(H — W ... wiJrj,lG)PI‘(G =*> Wit oo wiJrn)
G jeNt

Pr(oc & S*w; ... wit,) = ZPr(a - G)Pr(G = S*w; ... witn)
a

On-line computations have the time complexity:

O | (V| = D(n— Da+ Vvl =)i+ 5 | =0 (Vwn)

step 2 step 3 step 4

4 Conclusions

This paper described several algorithms for the computation of substring prob-
abilities according to grammars written in the form

c—-F , Fi-a , Fi->aF; , a€X' |, o,F,F;eVy

Table 1 summarizes the probabilities considered here, and the order of com-
plexity of the associated algorithms.

Algorithm
Expression time Complexity
Fixed length|Pr(H = w; ... wn) O(|Vn|n)
strings Pn(H 3w ... Wr) O(|Vn|n)
Arbitrary |Pr(H = wi ... w, X%) O(|Vn|n)
length Pr(H & 2w, ... w, X*)|maz(0 (|Vn|n),, 0 (|VN|2)
strings Pr(H = X wi ... w) O(|Vn|n)

Table 1. Summary of proposed algorithms for the computation of sub-string proba-
bilities.

More general algorithms for the computation of sub-string probabilities ac-
cording to stochastic context-free grammars, written in Chomsky Normal Form,
can be found in [1-3]. However, the later have O(n?) time complexity [2]. The
herein proposed algorithms, exhibiting linear time complexity in string’s length,
represent a computationally appealing alternative to be used whenever the ap-
plication at hand can adequately be modeled by the types of grammars described
above. Examples of application of the algorithms described in this paper can be
found in [5,6,8,9].

References

1. F. Jelinek, J. D. Lafferty and R. L. Mercer. Basic Methods of Probabilistic Context
Free Grammars. In Speech Recognition and Understanding. Recent Advances, pages
345-360. Springer-Verlag, 1992.

2. A. Corazza, R. De Mori, R. Gretter, and G. Satta. Computation of Probabilities
for an Island-Driven Parser. IEEE Trans. Pattern Anal. Machine Intell., vol. 13,
No. 9, pages 936-949, 1991.

3. A. Corazza, R. De Mori, and G. Satta. Computation of Upper-Bounds for Stochastic
Context-Free Languages. In proceedings AAAI-92, pages 344-349, 1992.

4. A. Corazza, R. De Mori, R. Gretter, and G. Satta. Some Recent results on Stochastic
Language Modelling. In Advances in Structural and Syntactic Pattern Recognition,
World-Scientific, pages 163183, 1992.

5. A. L. N. Fred, A. C. Rosa, and J. M. N. Leitao. Predicting REM in sleep EEG
using a structural approach. In E. S. Gelsema and L. N. Kanal, editors, Pattern
Recognition in Practice IV, pages 107 — 117. Elsevier Science Publishers, 1994.

6. A.L.N. Fred, Structural Pattern Recognition: Applications in Automatic Sleep Anal-
ysts, PhD Thesis, Technical University of Lisbon, 1994.

7. K. S. Fu and T. L. Booth. Grammatical inference: Introduction and survey — part
I and II. IEEE Trans. Pattern Anal. Machine Intell., PAMI-8:343-359, May 1986.

8. Ana L. N. Fred and T. Paiva. Sleep Dynamics and Sleep Disorders: a Syntactic Ap-
proach to Hypnogram Classification. Em 10th Nordic-Baltic Conference on Biomed-
ical Engineering and 1st International Conference on Bioelectromagnetism, pp 395—
396, Tampere, Finldndia Junho, 1996.

9. A.L.N. Fred, J. S. Marques, P. M. Jorge, Hidden Markov Models vs Syntactic Mod-
eling in Object Recognition, Proc. Intl. Conference on Image Processing ICIP’97,
1997.

