
Pattern Recognition and String Matching
D. Chen and X. Cheng (Eds.) pp. – - –

c©2002 Kluwer Academic Publishers

Similarity Measures and Clustering of String
Patterns

Ana Fred
Telecommunications Institute
Instituto Superior Técnico, Technical University of Lisbon,
E-mail: afred@lx.it.pt

Contents

1 Introduction 2

2 Basic Definitions 4
2.1 Similarity, Dissimilarity and Proximity 4
2.2 Metrics and Dissimilarity Properties 5

3 String Patterns and Proximity Measures 6
3.1 Measuring Similarity between Sequences 6
3.2 String Alignment and Structural Similarity: Examples 8

3.2.1 Names Data Set . 8
3.2.2 Fractal Images . 9
3.2.3 Recursive Structure Line Patterns 11
3.2.4 Email Messages . 11
3.2.5 Contour Images . 12

3.3 Dissimilarity based on String Editing Operations 13
3.4 Dissimilarity based on Error-Correcting Parsing 15
3.5 Grammar Complexity-based Dissimilarity 17
3.6 Minimum Code Length-based Similarity 19

4 Clustering of String Patterns 21
4.1 Clustering Algorithms Tested . 21

4.1.1 Hierarchical Agglomerative Clustering 21
4.1.2 Sentence-to-Sentence Clustering 23

4.2 Experimental Results . 24

1

4.2.1 Names Data Set . 24
4.2.2 Fractal Images . 25
4.2.3 Recursive Structure Line Patterns 26
4.2.4 Email Messages . 27
4.2.5 Contour Images . 27

4.3 Conclusions . 29
4.4 Current Trends in Clustering . 30

References

Abstract

Clustering is a powerful tool in revealing the intrinsic organization
of data. A clustering of structural patterns consists of an unsupervised
association of data based on the similarity of their structures and prim-
itives. This chapter addresses the problem of structural clustering,
and presents an overview of similarity measures used in this context.
The distinction between string matching and structural resemblance
is stressed. The hierarchical agglomerative clustering concept and a
partitional approach are explored in a comparative study of several
dissimilarity measures: minimum code length based measures; dissim-
ilarity based on the concept of reduction in grammatical complexity;
and error-correcting parsing.

1 Introduction

Consider a data set D consisting of N sequences of symbols (or strings),
D = {s1, . . . , sN}, defined over the alphabet Σ, where si = (xi

1x
i
2 . . . xi

Li
) is

a sequence of length Li. The problem of sequence clustering is defined as
follows: given the sample patterns in D, discover from the data a “natu-
ral”grouping of the sequences into K clusters, K being in general unknown.

The problem of clustering in multivariate feature spaces has been exten-
sively studied [32, 33, 11, 66]. Many clustering algorithms have been pro-
posed, each with its own approach for handling cluster validity [1, 27, 53, 21],
number of clusters [40, 65], and structure imposed in the data [63, 44]. Di-
rectly using dissimilarity values or exploring point densities for the patterns,
either emphasizing compactness or connectedness in feature space, leads
to two main strategies for clustering: hierarchical methods and partitional
methods. Partitional structure organizes patterns into a small number of
clusters; a data partition is obtained as the result of an optimization pro-
cess or by exploring local structure. Examples of techniques in this class

2

include mixture decomposition [47, 57, 14], non-parametric density estima-
tion based methods [54], central clustering [2], square-error clustering [49],
shape fitting approaches [63, 44], and geometrical approaches [26]. The
K-means is a very popular algorithm in this category. Assuming a priori
knowledge about the number of classes and based on the square-error cri-
terion, it is a computationally efficient clustering technique that identifies
hyper-spherical clusters [32, 11].

Hierarchical methods produce a nesting of data clusterings, that can be
represented graphically as a dendrogram. Mostly inspired by graph the-
ory [67], both agglomerative [32, 12, 21] and divisive approaches [5] have
been attempted, the first starting with many clusters that are successively
merged in accordance with inter cluster similarity, and the later working
in the opposite direction. Variations of the algorithms can be obtained by
the definition of a similarity measure between patterns and clusters [20].
The single link algorithm is one of the most popular methods in this class
[32]. Data partitioning is usually obtained by setting a threshold on the
dendrogram; cluster validity studies have also been proposed [10, 1] for the
a posteriori analysis of structures, in order to evaluate the clustering results
and define meaningful clusters.

When patterns are described in symbolic form as strings of characters,
clustering algorithms found in the literature are typically extensions of con-
ventional clustering methods [32, 23] by introducing dissimilarity measures
between strings [20]. This is non trivial since the sequences can be of
different lengths; also it is not always clear what is a meaningful similar-
ity/dissimilarity measure for sequence comparison. Viewing similarity com-
putation as a matching process [23, 3, 4, 51, 46, 8, 56], references [23, 43]
present sentence-to-sentence clustering procedures based on the comparison
of a candidate string with sentences in previously formed clusters (cluster-
ing based on a nearest-neighbor rule) or with cluster center strings (cluster
center technique). String editing operations are there used in the trans-
formation of strings to perform the matching. Following the string match-
ing paradigm while modelling clusters’ structure using grammars, error-
correcting parsing and grammatical inference are combined in a clustering
algorithm described in [23, 24]. Basically, it implements a nearest-neighbor
rule, where sentences are compared, not directly with the patterns included
in previously formed clusters, but with the best matching elements in the
languages generated by the grammars inferred from the clusters’ data. Also,
using grammars for modelling clusters’ structure, a distinct approach, based
on the concept of minimum description, is proposed in [16]. Structural re-
semblance between patterns is assumed to reflect common rules of composi-

3

tion; a normalized reduction in grammar complexity obtained by associating
patterns gives the measure of similarity underlying the hierarchical cluster-
ing algorithm proposed there. In [18] the search of common sub-patterns
by means of Solomonoff’s coding [62, 19] forms the basis of a clustering
algorithm that defines similarity between patterns as a ratio of decrease in
code length. Other model-based clustering techniques have been proposed in
the context of continuous valued discrete time series, making use of Markov
chain models [60] or hidden Markov models (HMM) [50, 50, 61].

In this chapter the problem of clustering of string patterns is addressed,
the distinction between string matching and structural resemblance being
stressed. The first part of this paper presents an overview and discussion of
dissimilarity measures for string patterns. These are further analyzed and
compared in the context of clustering, based on a set of test examples, in
the second part of the chapter, followed by conclusions and current trends
in clustering.

2 Basic Definitions

2.1 Similarity, Dissimilarity and Proximity

Let s1 = (x1
1x

1
2 . . . x1

L1
), s2 = (x2

1x
2
2 . . . x2

L2
) and s3 = (x3

1x
3
2 . . . x3

L3
) be strings

defined over the alphabet Σ, and let |si| = Li denote the string’s length. A
similarity index, S(s1, s2), measures the degree to which a pair of objects
are alike; the larger its value, the closer or more alike we think the patterns
are. Conversely, dissimilarity coefficients, d(s1, s2), assess the degree to
which patterns differ, smaller values meaning closer or higher resemblance.
Distances, differences, reciprocal of similarities, all constitute examples of
dissimilarity measures. Globally, similarity and dissimilarity are referred to
as proximity measures – Prox(s1, s2).

Proximity values are positive numbers, its range being either bounded,
such as the interval [0; 1], or right unbounded: Prox(s1, s2) ∈ [0; +∞]. We
shall refer to proximity coefficients that have a [0; 1] range as normalized.
Given the inverse relationship between similarity and dissimilarity, a simple
way to transform a similarity into a dissimilarity, in the situation of bounded
ranges, is:

d(s1, s2) = maximum similarity − S(s1, s2) (1)

4

2.2 Metrics and Dissimilarity Properties

The concept of proximity presented previously is very broad, imposing no
restrictions to its definition other than positivity and monotonicity associ-
ated with its semantic interpretation. However, in order to either comply
with perceptual intuition or to observe more elaborated mathematical for-
malisms, restrictions have been imposed on its definition, in the form of a
set of desirable properties.

Most of the existing theories share a common important concept, namely
that of geometric distance. Objects are seen as points in a metric space,
d(s1, s2) being the distance function of this space.

A distance or metric, d, is a real-valued function of two points that
obeys the following properties:

• Positivity: d(s1, s2) > 0 and d(s1, s2) = 0 ⇔ s1 = s2.

• Symmetry property: d(s1, s2) = d(s2, s1).

• Triangle inequality: d(s1, s3) ≤ d(s1, s2) + d(s2, s3).

The positivity property subsumes the following two distance axioms:

• Consistency of self similarity: d(s1, s1) = d(s2, s2).

• Minimality of self-similarity: d(s1, s1) ≤ d(s1, s2).

Of the above properties, the first is generally accepted. Symmetry is also
usually considered a desirable property. Concerning the triangle inequality,
it is an understandable restriction under the geometrical interpretation of
dissimilarity, having been explored, for instance, in the design of search
techniques in the context of image retrieval [13, 6]. It basically states that,
given a set of three points, the distance between any two points is at the most
given by the sum of the distances between each of them and the remaining
one, which occurs in the situation of colinearity.

Psychologists tend to distinguish between perceived similarity, expressed
by d, and judged similarity, δ, the latter being expressed as a suitable mono-
tonically non-decreasing function of the former: δ(s1, s2) = g[d(s1, s2)]. Ex-
perimental investigation over the judged similarity, however, led to the refu-
tation of all three properties (and underlying axioms) (see [59] and the
references therein). In spite of this, metric models have been widely used in
psychology and engineering application areas.

5

3 String Patterns and Proximity Measures

String descriptions may arise as the natural form for pattern representation,
such as in the context of text documents, coding theory, and molecular biol-
ogy applications, or as a result of some pattern pre-processing. Examples of
the second include speech processing applications, processing of handwriting
material, and image processing.

A key feature when performing pattern analysis under this representation
paradigm, is the definition of a proximity measure between patterns. This is
useful for analysis (comparison of sequences), classification, and clustering
purposes. In the remainder of this section we present and discuss some of
the proximity measures found in the literature.

3.1 Measuring Similarity between Sequences

In a wide sense, a similarity index measures the degree to which a pair of
objects are alike. Concerning structural patterns represented as strings or
sequences of symbols, the concept of pattern resemblance has typically been
viewed from three main perspectives:

• similarity as matching, according to which patterns are seen as differ-
ent viewpoints, possible instantiations or noisy versions of the same
object;

• structural resemblance, based on the similarity of their composition
rules and primitives;

• content-based similarity.

The string matching approach [3, 4] falls into the first category and forms the
basis of most of the similarity and dissimilarity indices between sequences
of symbols reported in the literature [58]. Assuming the classical string
edit operations – insertion, substitution and deletion of symbols [56] – or,
additionally, transposition errors [51], to which costs are associated, dissim-
ilarity indices are typically variations of the Levensthein distance, of which
the probabilistic modelling is a particular instance. Examples of dissimilar-
ity measures related to the Levensthein distance are the Hamming distance,
counting the number of mismatches over strings of the same length, and
dissimilarity based on the search of longest common substrings [7]. These
measures have been applied, for instance, in the comparison of sequences
[41] in error correction of noisy sentences [36, 52, 51] and in recognition
tasks [46, 8, 9].

6

Structural dissimilarity (similarity) measures the extent to which two
sequences differ (are alike) in terms of rules of composition of the string
patterns. One such measure is presented in [18], where the underlying struc-
ture of strings is assessed as inter-symbol dependencies, identified by means
of Solomonoff’s coding [62, 19]; similarity, viewed as shared subsequences,
is computed as a ratio of decrease in code length. In the work reported
in [16] syntactic rules model patterns’ structure, and grammar complexity
measures the compactness of this representation. Similarity is then defined
as the ratio of decrease in grammar complexity. Fu [23] defined a distance
between strings based on the modelling of a string structure by means of
a grammar and on the concept of error-correcting parsing (ECP) [42, 64].
According to this model, the distance between a string and a reference string
is given by the error-correcting parser as the weighted Levensthein distance
between the string and the nearest (in terms of edit operations) string gen-
erated by the grammar inferred from the reference string (thus exhibiting
a similar structure). This method provides a link between the structural
resemblance and the string matching approaches.

In some applications, textual information comparison underly a semantic
interpretation, the concept of matching being replaced by content similarity
evaluation. In this case, features are extracted from the text data (such
as token words or sub-strings), and conventional set-theoretical or vector-
based similarity measures are applied to the resulting descriptions. The
n-gram method [15] and frequency-based similarity [30, 28], constitute ex-
amples of this approach, particularly explored in the fields of text documents
analysis and information retrieval. For a discussion of similarity measures
and weighting functions in the context of text documents ranking see, for
instance, [28] and the references therein. In this chapter we are focus-
ing on the distinction between string matching and structural resemblance.
Content-based similarity measures will not be further addressed.

In order to produce a data partition, clustering algorithms often re-
quire the definition of a similarity measure between sets of patterns (clus-
ters). Either pairwise comparisons are performed or cluster representatives
or models are adopted. According to the first approach, resemblance be-
tween pairs of patterns in distinct clusters are computed, the final simi-
larity/dissimilarity measure being a function of these. An example in this
category is the nearest-neighbor rule used in the single-link algorithm, dis-
similarity between two clusters being the distance between nearest neighbor
patterns. Sets of similar sequences can also be represented by a single pro-
totype, chosen within the set (taken as the cluster center [43, 24]) or may
represent the average string, such as the generalized median, defined as

7

No. String

s1 ABILIO DOS SANTOS
s2 ABILIO DA CONCAICAO ALVES DOS SANTOS
s3 ABEL SANTOS
s4 ABEL LOPES SANTOS
s5 ADRIANO EDSON A. FIUSA
s6 ADRIANO EDSON FIUZA
s7 ADELAIDE CONCEICAO RODRIGUES
s8 ADELAIDE DA CONCEICAO HENRIQUES
s9 ADELAIDE CONCEICAO NATARIO FERREIRA
s10 ADELAIDE FERREIRA
s11 MARIA ADELAIDE CONCEICAO NATARIO FERREIRA
s12 ANA MARIA FARINHO MOURAO
s13 ANA MARIA FARINO MOURAO
s14 ANA PATRICIA NUNES GOMES
s15 CLARA GOMES
s16 PAULO ANTONIO GOMES

Table 1: Dataset D1: sample names from a customer database.

the string that has the smallest sum of distances to all strings in the set
[39, 45, 34]. In this situation, the proximity between clusters is given by the
proximity between their prototypes. A set of strings can also be represented
by a model, such as a grammar [25, 48], a Markov chain [60] or a Hidden
Markov Model (HMM) [55, 61]. Similarity between clusters are hence com-
puted based on their model representations, being tightly related with the
underlying clustering strategy.

3.2 String Alignment and Structural Similarity: Examples

The concepts of string matching and of structural similarity are illustrated
in the following examples, which will be used throughout the chapter. While
the first example is clearly a string matching problem, examples in sections
3.2.2 to 3.2.4 require the use of structural information, expressed either
as rules of composition or as frequently occurring sub-sequences. In the
example in section 3.2.5 it is not clear which type of similarity is best
suited for discriminating between contour classes. Post evaluation of the
different measures in the context of clustering is needed in order to make a
decision, which will be addressed in section 4.

3.2.1 Names Data Set

Consider the set of strings given in table 1, representing names in a cus-
tomers database. Suppose we are given the task of identifying multiple en-

8

tries for the same individual in the database. Repeated entries might have
occurred for instance due to incorrect typing on a keyboard, misspelling of
words, suppression of middle names, or recognition failure from a scanning
device. Given the type of data involved, it is obvious that the order of words
in the sequences is important, and alignment of sequences is needed in order
to detect misspelling. Furthermore, suppression of names may be modelled
by deletion of characters. The string matching approach therefore seems to
be the right approach to deal with this type of patterns. Additional informa-
tion about the data entry process may provide useful hints to quantify the
type of errors more likely to occur, and characterize costs on string editing
operations.

3.2.2 Fractal Images

Fractals can be used as a mathematical model of many biological objects
which are self-similar within a certain interval of scales. Many fractal objects
result from iteration processes, which are a natural way to describe growth
processes in biology and physics [35]. In a growth process the last growth
stage serves as input for the next growth step. A well known model for
biological pattern formation, from botany, is the Lindenmayer grammar or
L-system. It is similar to grammars in conventional formal language theory,
as in Chomsky hierarchy [29], the main difference being that rewriting
rules are applied simultaneously in the Lindenmayer grammar, strings being
generated in an iteration process.

The L-system

Ldragon sweep =(V, R, start symbol)
V = {a, b, +,−}, start symbol = a

R : a → a + b, b → a − b, + → +, − → − (2)

condenses the morphological structure of the Dragon-Sweep fractal curve
[35] shown in figure 1(b). The strings in figure 1(c) correspond to the first
5 iterations using this L-system; fractal curves are obtained from strings
according to the drawing rules in fig. 1(a).

The data set D2 consists of the first 10 iterations with this L-system, the
corresponding string lengths being given in table 2. Although the string
descriptions have very dissimilar lengths, all these patterns share the same
rules of composition, i.e. that are structurally similar. It would be desirable
to have a similarity measure that recognizes this structural resemblance,
which is not addressable by string alignment techniques. Ideally, one would
like to identify all these structures as being the same.

9

a

b

(a) (b) Dragon sweep curve corresponding to a string length
of 4095 characters.

a+b
a+b+a-b
a+b+a-b+a+b-a-b
a+b+a-b+a+b-a-b+a+b+a-b-a+b-a-b
a+b+a-b+a+b-a-b+a+b+a-b-a+b-a-b+a+b+a-b+a+b-a-b-a+b+a-b-a+b-a-b

(c) First 5 strings in the iteration process.

Figure 1: Dragon sweep fractal curves. The construction of the curves,
as in (b), from the string descriptions is as follows. The symbols a and b
correspond to the graphical elements in figure (a); at the end point of each
element (indicated as “o”), turns are made as indicated in the string. The
symbol + indicates a turn of 90◦ to the right, and − is a turn of 90◦ to the
left.

s1 s2 s3 s4 s5 s6 s7 s8 s9 s10

3 7 15 31 63 127 255 511 1023 2047

Table 2: Data set D2: lengths of strings corresponding to the first 10 itera-
tions of the L-system (2), that describes the Dragon sweep fractal.

10

3.2.3 Recursive Structure Line Patterns

1 2 5 6

3 4 7 8

Figure 2: Data set D3. Graphical representation of strings of the form
(2∗6∗)∗ (patterns 1 to 4) and (0∗6)∗ (patterns 5 to 8). The graphical inter-
pretations of the symbols are as follows: 0 – maintain the line direction; 2
– turn right; 6 – turn left. The string’s lengths for the several patterns are:
(1)-9; (2)-9; (3)-389; (4)-409 (5)-18; (6)-9; (7)-487; (8)-411.

Another example of string patterns with underlying grammatical rules of
composition is shown in figure 2, which represents a graphical description of
instances, with various lengths, of strings of the form (2∗6∗)∗ or (0∗6)∗, with
the symbol ∗ indicating an arbitrary repetition of the element on the left
(parenthesis are used for delimiting elements with more than one character).

3.2.4 Email Messages

The next example consists of the first lines of text extracted from email
messages, as shown in table 3, by removing space characters. Variable
length samples using the English and the Portuguese languages were in-
cluded. The purpose is the classification of content, in the presence of vari-
able sized sequences. While associations of words may have a fundamental
role in defining topics, the order of appearance of these sequences in the
text is not relevant to characterize content. The string alignment concept is
meaningless in this situation. On the other hand, no general rule of string
composition can be identified that could be related to content. Key-word

11

ID Mail Type Cl. Lang. Size Sample Text
1 call for papers 1 Eng. 142 ISSS’98 FINAL CALL FOR PAPERS (SUBMISSION . . .

2 call for papers 1 Eng. 106 CALL FOR PAPERS WORLD MULTICONFERENCE . . .

3 call for papers 1 Eng. 160 CALL FOR PAPERS RENSSELAER’S INTERNAT . . .

4 call for papers 1 Eng. 87 CALL FOR PAPERS THE PRAGUE STRINGOLOGY . . .

5 personal letter 2 Eng. 161 DEAR ANA, THANKS FOR THE EMAIL. PLEASE . . .

6 personal letter 2 Eng. 129 DEAR ANA, IN THE BACKUP DIRECTORY THERE . . .

7 journal advert. 4 Eng. 137 CONTENTS DIRECT FROM ELSEVIER SCIENCE . . .

8 MSc advert. 3 Port. 153 PROVAS DE MESTRADO EM ENGENHARIA . . .

9 MSc advert. 3 Port. 280 PROVAS DE MESTRADO EM ENGENHARIA . . .

10 MSc advert. 3 Port. 168 PROVAS DE MESTRADO EM ENGENHARIA . . .

Table 3: Data set D4. Text from email messages.

based or sub-sequence based string comparisons seem more valuable tools
for this problem.

3.2.5 Contour Images

The last data set, D5, used consists of string descriptions of contour images
from three types of hardware tools, as follows (see table 4): 10 samples from
tool type 1; tool type 2 has two poses (closed and half opened), 10 samples
per pose being used; tool type 3 also has two poses (wide opened and half
opened), 10 samples per pose. Each image was segmented to separate the
object from the background, and the object boundary was sampled at 50
equally spaced points [22]. The strings correspond to encoding objects
contours using an 8-directional differential chain code [31].

Class Tool Samples
1 61072620026270163702620026207261072601627026200262

71172620026200162701637026207261073610726116370262

71172620026270262002620737016370262002620026200162

2 00000000660000001710000060000010000000075000000003

00000000500000000000000760000016100000066000000003

00000000500000001710000050000016100000076000000003

3 10000000050000000007207000701700000000050000000012

10000000050000000000107000702700000000050000000012

10000000057000000007107007702700000000050000000012

Table 4: Data set D5. Sample string contour descriptions of hardware tools.

12

3.3 Dissimilarity based on String Editing Operations

A very well known measure of dissimilarity between strings is the Levens-
thein distance. It is based on the definition of string editing operations or
error transformations, namely substitution, deletion and insertion of sym-
bols:

• TS(b|a) → substitution of a by b, a �= b

• TS(a|a) → maintaining symbol a

• TI(b) → insertion of b

• TD(a) → deletion of a

The Levensthein distance between two strings s1, s2 ∈ Σ∗, DL(s1, s2), is
defined as the minimum number of editing operations needed in order to
transform s1 into s2. An extension of the Levensthein distance by associating
differentiated costs to the several editing operations is known as the weighted
Levensthein distance, defined as

dW (s1, s2) = min {γ(T)|T is an edit transformation of s1 into s2} (3)

where γ(T) =
∑m

i=1 γ(Ti), Ti is the ith editing operation performed in the
transformation T , and γ(Ti) is the cost associated with that operation. Fig-
ure 3 illustrates the matching of two strings according to editing opera-
tions. A particular instance of this weighting function is the probabilistic
modelling, according to which the following normalization condition must
hold: ∑

b∈Σ

γ(TS(b|a)) +
∑
b∈Σ

γ(TI(b)) + γ(TD(a)) = 1. (4)

In order to preserve the symmetry property, weights can not be assigned
arbitrarily. The costs of inserting or deleting a given symbol must be equal,
as for the substitution of symbols: γ(TS(b|a)) = γ(TS(a|b)). It can be shown
that the triangle inequality is verified and thus it constitutes a metric (see
for instance [8] and the references therein).

Normalization of the previous distances with respect to string lengths are
obtained by post-normalization (normalized weighted Levensthein distance)

dNW (s1, s2) = dW (s1, s2)/ max{|s1|, |s2|}, (5)

13

T (a|c) T (b|b) T (c|a) T (a|a) T (b|c) T (c|c) T (a|b) T (b|b) T (c|a)
S IS S I S SSI

a b c a b c a b c

a b a c b a

(a) String matching using editing operations: insertion
(TI(.|.)), deletion (TD(.))and substitution (TS(.|.)).

 S c b a c b aS
a
b
c
a
b
c
a
b
c

1
2

(b) Editing path.

Figure 3: String matching. In (b) diagonal path segments represent substi-
tutions, vertical segments correspond to insertions, and horizontal segments
correspond to deletions.

or by optimal minimization of the distance normalized by the length of the
editing path – normalized edit distance [46]

dNED(s1, s2) = min
{

γ(T)
|T | | T is an editing path between s1 and s2

}
,

(6)
where |T | is the length of the editing path (see figure 3(b)). Vidal [46]
has shown that the latter performs better in many situations. It should be
emphasized that normalization leads to dissimilarity measures that are not
metrics due to failure of the triangle inequality [8].

s2 s3 s4 s5 s6 s7 s8 s9 s10
dW 1.6 1.5 4 8.5 9.4 8.2 8.3 7.8 10.6
dNED (×1e − 1) .52 1 2.3 3.4 3.9 2.7 2.6 2.2 4.3

Table 5: Distances between string s1 and strings s2 to s10 in data set D1.

Table 5 presents weighted Levensthein distances and normalized edit
distances between string s1 and strings s2 to s10 in data set D1. In or-
der to model omission of middle names, the deletion operation was given
a low cost (0.1) in comparison to the other error transformations (cost=1).
As shown, without normalization, string s1 (ABILIO DOS SANTOS) is consid-

14

ered more similar to the third string (ABEL SANTOS) – dW = 1.5, than to
the second string (ABILIO DA CONCAICAO ALVES DOS SANTOS) – dW = 1.6.
By using normalization, however, the reverse situation occurs, with a more
clear distinction between the two dissimilarities (dNED(s1, s2) = 0.052 and
dNED(s1, s3) = 0.1), which is in better agreement with perceptual expecta-
tions.

For simplicity, and under the assumption of no a priori knowledge about
the penalizing mechanisms of the error transformations, in the remaining of
the chapter all edit operations will be assigned unitary costs, except for the
operation of maintenance of a symbol, which will be assigned a null weight.

s2 s3 s4 s5 s6 s7 s8 s9 s10
dW 4 12 28 60 124 252 508 1020 2044
dNED (×1e − 1) 5.71 8.00 9.03 9.52 9.76 9.88 9.94 9.97 9.98

Table 6: Distances between string s1 and strings s2 to s10 in data set D2.

The dependency of these dissimilarity measures on the string lengths
(even the normalized distances) is illustrated in table 6, with the fractal
curve data set (D2).

3.4 Dissimilarity based on Error-Correcting Parsing

Fu [24, 23] defined a distance between strings based on the modelling of
string structure by means of grammars and on the concept of error-correcting
parsing [42, 64]. According to this model, the distance between a string
and a reference string is given by the error-correcting parser as the weighted
Levensthein distance between the string and the nearest (in terms of edit
operations) string generated by the grammar inferred from the reference
string (thus exhibiting a similar structure):

dECPf
(s1, s2) = min

y
{dW (s1, y)|y ∈ L(Gs2)

Gs2 := Grammar inferred from s2} (7)

The computation of the dissimilarity between strings requires two steps:
(1)- modelling of strings with grammars; (2)- computation of the dissimi-
larity by error-correcting parsing. The process is schematically described in
figure 4. The grammatical inference procedure is responsible for the iden-
tification of regular patterns of composition that lead to the definition of
rules. Different inference algorithms will produce distinct results both quan-
titatively and qualitatively, depending on how far apart are the underlying

15

Grammatical
Inference

Reference String:
S = abbabbbabad1

Error-Correcting
Parsing

G = (V , V , R, σ)1 N T

Grammar:

String:
S = abbabbabaa2

Distance:
S1 S2d (,)

String Edit Operations Weights:

γ (Τ (a | b)), γ (Τ (a)), γ (Τ (a)), ...S I D

Figure 4: Computation of dissimilarity between strings using error-
correcting parsing.

heuristics or criteria supporting the methods. It is not possible to define the
“optimal”grammatical inference algorithm. Several methods can be tested
or the election of a specific algorithm has to be based on some assumption or
prior knowledge about the underlying structure. Crespi-Reghizzi’s method
[25, 48] will be used for grammatical inference in this chapter.

It is important to notice that, even with adequate definition of the edit-
ing weights, the symmetry property cannot be ensured a priori. In fact,
dECPf

(s1, s2) = min{dL(s1, L(Gs2)}, which, in general, will be different
from dECPf

(s2, s1) = min{dL(s2, L(Gs1)}. For instance, given the strings
s1 = a + b and s2 = a + b + a − b, from the data set D2, dECPf

(s1, s2) = 1
(a recursive structure is identified by the inference algorithm on the second
string) while dECPf

(s2, s1) = 4. In order to preserve the symmetry property,
we will use a new definition:

dECP (s1, s2) = min{dECPf
(s1, s2), dECPf

(s2, s1)} (8)

We shall designate by dNECP the previous dissimilarity measure normal-
ized by the edit path. Neither dECP or dNECP constitute a metric because
they do not obey the triangle inequality (for instance in the data set D1,
dECP (s2, s1) = 5, dECP (s1, s6) = 11 and dECP (s2, s6) = 23).

The capacity of these dissimilarity measures to capture structural re-
semblance, by means of inferred grammars, is shown in table 7, concerning

16

(s1, sj), j > 1 (s2, sj), j > 2 (si, sj), i, j > 2, i �= j
dECP 1 1 0
dNECP .33 .14 0

Table 7: Distances between pairs of strings in data set D2 using error-
correcting parsing.

the comparison of strings in the data set D2. Zero distance is obtained
between pairs of strings produced after 3 or more steps of the L-system iter-
ation process. The non-zero values for strings s1 and s2 result from the fact
that these strings do not have the −a or −b structures, which are present
in all remaining sequences, and therefore are included in the corresponding
inferred grammatical models.

3.5 Grammar Complexity-based Dissimilarity

Grammars are compact representations of structural rules of composition in
string patterns. Reference [16] assumes this formalism for modelling string
patterns, exploring the concept of grammar complexity in the definition
of a new measure of similarity between strings. The basic idea is that,
if two sentences are structurally similar, then their joint description will
be more compact than their isolated description due to sharing of rules of
symbol composition; the compactness of the representation is quantified by
the grammar complexity, and the similarity is measured by the ratio of
decrease in grammar complexity, as follows:

RDGC(s1, s2) =
C(Gs1) + C(Gs2) − C(Gs1,s2)

min {C(Gs1), C(Gs2)}
, (9)

where C(Gsi) denotes grammar complexity.
Let G = (VN , Σ, R, σ) be a context-free grammar, where VN , Σ are the

sets of nonterminal and terminal symbols, respectively, σ is the grammar
start symbol and R is the set of productions written in the form:

A1 → α11 | . . . |α1l1
...
Ar → αr1 | . . . |αrlr

Let α ∈ (VN
⋃

σ)∗, be a grammatical sentence of length n, in which the sym-
bols a1, a2, . . . , am appear k1, k2, . . . , km times, respectively. The complexity

17

of the sentence, C(α), is given by [25, 48]

C(α) = (n + 1)log(n + 1) −
m∑

i=1

kilogki. (10)

The complexity of the grammar G, C(G), is defined as [16]

C(G) =
r∑

i=1

l∑
j=1

C(αij) (11)

Grammatical
Inference

Grammatical
Inference

Grammatical
Inference

String:
S1

String:
S2

S1
G S1G (,)S2

S2
G

Similarity
Computation

S1RDGC (,)S2

Figure 5: Computation of similarity between strings based on grammar
complexity.

The computation of this similarity, as schematized in figure 5, is basically
supported on grammatical inference and simple evaluation of the resulting
rewriting rules. Computational complexity is therefore conditioned by the
inference algorithm. When using Crespi-Reghizzi’s method, strings are pro-
cessed individually; the inference of a grammar for a pair of strings takes
advantage of the previous computations, consisting of a simple merging of
individually inferred grammars.

Similarity values obtained with this method, as well as for the preceding
method, depend on the grammatical inference strategies adopted. However,
the following characteristics hold, independently of the grammatical infer-

18

ence algorithm:

RDGC(s1, s2) ≥ 0
≤ 1
= 1 if s1 ≡ s2

= 0 if s1 and s2 have non overlaping alphabets
RDGC(s1, s2) = RDGC(s2, s1)

As indicated above, the symmetry property is verified; the triangle inequal-
ity, however, is not always preserved.

(s1, sj), j > 1 (s2, sj), j > 2 (si, sj), i, j > 2, i �= j
SRDGC 0.15 0.85 1

Table 8: Minimum grammar complexity-based similarity between pairs of
strings in data set D2.

The similarity values between pairs of strings in the data set D2 is sum-
marized in table 8. As seen before, strings s1 and s2 do not contain enough
variants of the L-system rules of composition, the inferred grammars not
being able to generalize to the recognition of the remaining structures; on
the other hand, grammars inferred from the longer strings also do not rec-
ognize s1 and s2. As a result, the similarity between strings involving s1
or s2 is low, identification of a unique structure being achieved for longer
strings (similarity=1).

3.6 Minimum Code Length-based Similarity

A measure of structural similarity exploring the notion of compressibility
of sequences and algorithmic complexity, is proposed in [18]. A string is
said to be compressible if there exists a description shorter than the original
sequence. Low compressibility is related with high complexity and ran-
domness; on the other hand, sequences with inter-symbol dependencies,
showing subpattern regularities, are likely to have compact descriptions.
Solomonoff’s code [62] is then used for the search of pattern regularities
and sequence compression. According to this coding scheme, a sequence si

is represented by the triplet:

alphabet description, special symbols definition, coded string,

where a coded string is obtained in an iterative procedure where, in each
step, intermediate codes are produced by defining sequences of two symbols,

19

which are represented by special symbols, and rewriting the sequences using
them. Compact codes are produced when sequences exhibit local or distant
inter-symbol interactions.

This coding scheme has been extended to sets of strings

alphabet, symbol definition , s1 coded , s2 coded , . . . , sm coded

and global compact codes are produced by considering the inter-symbol de-
pendencies on the ensemble of the strings. Strings sharing subpattern reg-
ularities will therefore produce more compact codes than the gathering of
the codes for the individual sequences. The quantification of this reduction
in code length forms the basis of the similarity measure which will be des-
ignated by NRDCL. The length of the codes produced using Solomonoff’s
method (given by the sum of the lengths of the descriptions of the three
part code above) is evaluated for the isolated strings and for the ensem-
ble; NRDCL is defined as the normalized ratio of decrease in code length
obtained by the association:

NRDCL(s1, s2) =
code len(s1) + code len(s2) − code len(s1, s2)

(as)/2 + abs(|s1 coded| − |s2 coded|) (12)

with

as = |alphabet s1| + |symbol def s1| + |alphabet s2| + |symbol def s2|

The order of appearance of sub-sequences is irrelevant for the computa-
tion of code lengths. This similarity measure therefore totally departs from
string matching paradigms, structure being related to inter-symbol depen-
dencies and not rules of string composition. Accounting for highly frequent
sub-sequences, Solomonoff coding assumes long strings. Results with short
strings may therefore be meaningless. This is illustrated in table 9, where
similarities involving strings shorter than or equal to 31 characters (string
s4) are very low.

s1 s2 s3 s4 s5 s6 s7 s8 s9 s10
s1 1 0.4 0.19 0.10 0.05 0.19 0.14 0.12 0.09 0.08
s10 0.08 0.19 0.39 0.61 0.74 0.85 0.92 0.97 1 1

Table 9: Minimum code length based similarity between strings in data set
D2.

20

4 Clustering of String Patterns

The previous proximity measures are evaluated in this section in the context
of clustering. Clustering results are strongly conditioned by the underlying
similarity measures, but also by the intrinsic cluster validity criteria and
structure imposed on the data. Several clustering algorithms integrating
the previous proximity measures will therefore be investigated. Table 10
characterizes the clustering algorithms tested. They are further detailed in
the next section.

4.1 Clustering Algorithms Tested

a) Hierarchical Agglomerative Schemes
Philosophy of
the method

Proximity between clusters String
sim.

Acronym

String edit op-
erations

Nearest-neighbor rule:
d(Ci, Cj) = min {d(sk, sl)|sk ∈ Ci, sl ∈ Cj}

dNED SL-NED

Grammar com-
plexity

Ratio of decrease in grammar complexity:

RDGC(Ci, Cj) =
C(GCi

)+C(GCj
)−C(GCi,Cj

)

min
{

C(GCi
),C(GCj

)
}

RDGC MGC

Minimum code
length

Normalized decrease in code length:
NRDCL(Ci, Cj) =

=
code len(Ci)+code len(Cj)−code len(Ci,Cj)

(as)/2+abs(|Ci coded|−|Cj coded|)
as =

∑
k=i,j |alph Ck| + |symb def Ck|

NRDCL MCL

b) Sentence to Sentence Clustering
Error correct-
ing parsing

Nearest-neighbor rule:
dNECP (si, Cj) = min{d(si, y) | y ∈ L(GCj

, }
dNECP ECP-NED

Table 10: Characterization of clustering algorithms under study.

4.1.1 Hierarchical Agglomerative Clustering

The hierarchical agglomerative clustering method can be schematically de-
scribed as follows:

Input: A set of n strings D = {s1, s2, . . . , sn}; a threshold th or the desired
number of clusters Nc.

Output: A partition of D into m clusters (m = Nc if the latter is specified),
C1, C2, . . . , Cm.

21

Steps:

1. Set each pattern into a single cluster. Set m = n.

2. Compute the proximity matrix between all pairs of strings.

3. If m = Nc go to step 6.

4. Select the most similar pair of clusters, Ci, Cj , from the proximity
matrix and let simil be the value of this similarity. If simil < th
(simil > th, if it is a dissimilarity measure), go to step 6.

5. Merge the two clusters and update the proximity matrix accord-
ingly. Set m = m − 1 and continue in step 3.

6. End the computation by returning the data partition encoun-
tered.

Different clustering algorithms are obtained from the previous method
by defining the proximity measure between patterns and between clusters.
The first algorithm in table 5 is based on string editing operations, and
corresponds to using the normalized edit distance (see equation 6 in section
3.3) as dissimilarity measure between strings (step 2), and adopting the
nearest-neighbor rule (single-link method) for defining distances between
clusters (step 5):

d(Ci, Cj) = min {dNED(sk, sl) | sk ∈ Ci, sl ∈ Cj} . (13)

The second algorithm explores the minimum grammar complexity con-
cept (section 3.5). Similarity between strings is computed using equation
9; this is extended to sets of strings, as given by the equation

RDGC(Ci, Cj) =
C(GCi) + C(GCj) − C(GCi,Cj)

min
{
C(GCi), C(GCj)

} , (14)

where GCi is the grammar inferred from strings in cluster Ci. Additionally
to a data partition and the dendrogram expressing the relationships between
string patterns, this method provides a model for each cluster: the corre-
sponding grammar. Results reported in this chapter concern the application
of Crespi-Reghizzi’s method for grammatical inference. When dealing with
long strings, the grammatical inference process is computationally more effi-
cient (it is linear on strings length) than the computation of the normalized
edit distance, and therefore this clustering method becomes faster than the
first algorithm.

22

The last hierarchical clustering algorithm computes distances between
strings by the normalized ratio of decrease in code length (see equation 12
in section 3.6). A code for the set of strings in a cluster is computed
using the extension of Solomonoff’s code described in section 3.6; similarity
between clusters is obtained by replacing single strings by sets of strings
(representing clusters) in equation 12, leading to

NRDCL(Ci, Cj) =
code len(Ci) + code len(Cj) − code len(Ci, Cj)

(as)/2 + abs(|Ci coded| − |Cj coded|) (15)

4.1.2 Sentence-to-Sentence Clustering

The sentence-to-sentence clustering algorithm is a partitional type method
proposed by Fu [24, 23] based on the concept of error correcting parsing.
Grammars are used to model cluster structure. The algorithm starts with
a single cluster containing the first sample; the remaining data is classified
by computing the (weighted) Levensthein distance between the candidate
string and the most similar string (determined by error-correcting parsing)
modelled by the grammars describing the clusters formed so far; if the min-
imal distance found is less than a given threshold, th, the string is included
in the corresponding cluster and its grammar is updated; otherwise, a new
cluster is formed with this sample.

This clustering strategy implements a nearest-neighbor rule, with se-
quences being compared, not directly with patterns previously included in
clusters, but with the best matching elements in the languages generated by
the grammars inferred from the clustered data. The implementation used in
this chapter will apply Crespi-reghizzi’s algorithm for grammatical inference,
without assuming a priori information. The dissimilarity measure based on
error-correcting parsing defined in equation 7 (section 3.4) is extended for
the computation of dissimilarity between a string, si, and a cluster, Cj , as

dECP (si, Cj) = min{dW (si, y) | y ∈ L(GCj)}, (16)

where GCj is the grammar inferred from the strings in cluster Cj . Without
a priori information, 0-1 costs will be assumed for the the string editing
operations (corresponding to the Levensthein distance); in order to reduce
the dependency on string lengths, distances will be normalized by the length
of the editing path:

dNECP (si, Cj) = min{dNED(si, y) | y ∈ L(GCj)}. (17)

23

Due to the nature of this similarity measure (asymmetric) and the clus-
tering strategy, results obtained with the sentence-to-sentence clustering al-
gorithm may depend on initialization and on the order of pattern presenta-
tion.

Concerning computational complexity, this clustering scheme requires
fewer comparisons between strings than the hierarchical one. While hierar-
chical methods require the computation of n(n − 1)/2 entries in the initial
proximity matrix (the iterative process requires the update of this matrix,
one line per iteration, as the size of the proximity matrix decreases), accord-
ing to the sentence-to-sentence technique, each string is processed only once
and compared with a, usually, reduced number of clusters. The processing
of each string, however, involves grammatical inference (which can be made
iterative and linear on the strings length, L) and error-correcting parsing,
which in general has O(L2) time complexity. Thus, depending on the di-
mensions of the data sets and of the strings, one method or the other may
be more advantageous from the computational complexity perspective.

4.2 Experimental Results

4.2.1 Names Data Set

Figure 6 presents the results of clustering of the names data set using several
clustering algorithms. Methods based on string edit operations are strongly
dependent on the costs assigned. This is illustrated in figures 6(a) and
6(b), showing the dendrograms produced by the SL-NED method for two
different assignments for the deletion costs: (a)- TD(.) = 1; (b)- TD(.) = 0.1.
The costs for all remaining error operations are set to 1 (no-error cost=0).
Situation (b), reducing the penalty for deletion operations, gives the best
pattern association results. For instance, the relations between patterns 1
to 4 in (a) are not “natural”given the context, string s1 being found more
similar to string s4 (different first names) than to s2 (corresponding to the
inclusion of middle names). This is better modelled in the dendrogram in
(b). Since the lengths of the strings are not too different and normalized
edit distances are being used, the results with error correcting parsing (ECP-
NED) are similar to the ones produced by the string matching approach (SL-
NED), the first directly proposing a data partition by cutting the minimum
spanning tree at a given level, and the second producing a dendrogram.
For example, the partition obtained with the ECP-NED with th = 0.3 (see
figure 6(d)) corresponds to cutting the dendrogram in figure 6(a) at the
same level.

24

(a) SL-NED,
0 − 1 costs.

(b) SL-NED,
TD(.) = 0.1.

(c) RDGC. (d) MCL.

(1 4), (2), (3), (5 6), (7 8), (9 11), (10), (12 13), (14), (15), (16)

(e) ECP-NED, th = .3..

Figure 6: Clustering of the names data set. Figures (a) to (d) represent
dendrograms produced by the hierarchical clustering algorithms: the indices
of the patterns are indicated on the left; the merging of clusters is graphically
displayed by joining lines, and the corresponding proximity values are read
from the scale on the top.

The method based on minimum grammar complexity (RDGC, see figure
6(c)) gives inadequate pattern associations, significant similarity being found
only between strings s9-s10-s11. The MCL technique, accounting for similar
names, performs better (see figure 6(d)). The string matching paradigm,
however, proves to be more appropriate for this problem, results being more
in agreement with perceptual evaluation of the patterns.

4.2.2 Fractal Images

The structure of the Dragon-Sweep data set, based on grammatical rules of
composition, is easily handled by the grammar-based clustering techniques,
RDGC (see figure 7(b)) and ECP-NED. As seen before, both recognize max-
imum similarity between string patterns of length greater than 7 characters;
shorter strings are not recognized as having the same structure because they
do not make use of certain structures consistently identified in longer strings.
Without a priori information, inference algorithms are not able to identify
a common set of rules for all strings. As a result, both clustering algorithms

25

will partition the data into two clusters ((s1) , (s2 . . . s10)) or three clusters
((s1) , (s2) , (s3 . . . s10)), by an appropriate setting of the design parameter
th. Neither SL-NED nor MCL methods can adequately handle these pat-
terns, as shown in figures 7(a) and 7(c), depending on strings length in a
linear (SL-NED) or non-linear way.

(a) SL-NED (b) RDGC.

(c) MCL.

Figure 7: Clustering of the Dragon-Sweep data set.

4.2.3 Recursive Structure Line Patterns

The structural resemblance of string patterns in this example is correctly
captured by the model-based techniques. The error-correcting parsing based
clustering method correctly identifies two clusters in the data, for a wide
range of values of th (0.1 < th ≤ 0.6). Similar results are obtained with
the minimum grammar complexity clustering algorithm, a clear separation
between the two clusters being evident in the dendrogram in figure 8(b).
The results obtained with the SL-NED show the dependency of the dissim-
ilarity measure on the strings length, higher similarity being found between

26

matching sized strings: the dendrogram in figure 8(a) shows that strings s1
and s2 are first joined with strings s5 and s6 (with different structure but
similar length); strings s3 and s4 will join these when a single cluster with
all strings is formed. The MCL method is unable to identify the correct
structure of the data (see figure 8(c)).

(a) SL-NED (b) RDGC. (c) MCL.

Figure 8: Clustering of the patterns in figure 2.

4.2.4 Email Messages

The categorization of email text is essentially dependent on content, the
order of the narrative being arbitrary. In this case, only the MCL method
was able to provide meaningful associations (figure 9(c)), correctly forming
the classes 1 to 3; sample 7 (class 4) was assigned to class 1 due to the
existence of a common theme in the conference and journal advertisements.
Low similarity values (< 0.01) were found by the RDGC method at the
character level, no significant associations being made. Methods based on
error transformations failed to discover common patterns in the data (figures
9(a) and 9(b)). The normalized dissimilarity values of the SL-NED method
were high and in narrow ranges, resulting in no associations for threshold
values above 0.73; figure 9(a) corresponds to imposing 4 classes in the data.

4.2.5 Contour Images

Figure 10 shows the results of clustering of the contour images data set.
The correspondence between string indices and tool classes is given by: s1
to s10 – tool 1; s11 to s20 – tool 2, pose closed; s21 to s30 – tool 2, pose

27

(a) SL-NED: parti-
tion obtained when
forcing 4 clusters.

(b) ECP-NED (th =
0.5).

(c) MCL.

Figure 9: Clustering of the email data set.

half opened; s31 to s40 – tool 3, pose half opened; s41 to s50 – tool 3, pose
wide opened. While tool 1 is quite different from the remaining, tools 2 and
3 are more similar to each other.

Analysis of the dendrograms in figure 10 show that, based on a nearest-
neighbor rule, all methods tend to organize string patterns based on pose
rather than on tool shape: while tool 1 is well isolated from the remaining
classes in all dendrograms, opened poses (wide open and half opened) are
first gathered in the dendrograms (tool 3 first joined and then connected
with tool 2 - half opened, with the SL-NED method, half-opened tools 2
and 3 being merged first with the RDGC technique, and no clear separation
being noticed with the MCL algorithm) and only after that the strings from
tool 2, pose closed, are joined. By thresholding on the dendrograms, two
classes are obtained with the SL-NED method: tool 1 vs (tool 2 + tool
3). The RDGC method clearly separates tool 1 and tool 2, pose closed; the
identification of tool 3, pose wide opened, would imply a splitting of the half-
opened tools into several clusters. In order to avoid single element clusters,
the threshold is selected to detect two clusters with the MCL tecnhique:
tool 1 vs remaining tools.

Partitions produced with the error-correcting parsing based method (ECP-
NED) are similar to the ones obtained with RDGC, except that no separa-
tion between classes is achieved without obtaining single-element clusters.
Setting the threshold to 0.1, four clusters are obtained: an element from
tool 1 is detected as an outlier (single-element cluster), the remaining strings

28

(a) SL-NED: den-
drogram.

(b) RDGC. (c) MCL.

(s1), (s2 . . . s10), (s11 . . . s20), (s21 . . . s50)

(d) ECP-NED. Partition obtained with th = 0.1

Figure 10: Clustering of the contour images data set. (a) to (c) represent
dendrograms produced by the indicated hierarchical methods.

forming another cluster; tool 2, pose closed also constitutes a cluster; the
fourth cluster gathers the remaining strings. Although the strings have a
fixed length (50 characters) and differentiation between classes are present
in the dendrograms using the string matching paradigm, the grammar com-
plexity similarity measure leads to a better normalization of dissimilarities,
making it simpler to detect classes by cutting the dendrograms.

4.3 Conclusions

Both model-based techniques, supported on grammatical models (ECP-
NED and RDGC), are able to handle structural information where the order
of sub-patterns in strings is important. The error-correcting parsing method
combines the advantages of model based dissimilarity (being independent on
strings length) with the string matching mechanism. Its major limitations

29

are the computational complexity, and the lack of criteria to set the de-
sign parameter, th. Being a hierarchical method, cluster isolation criteria
[10, 1, 21] can be adopted to extract a data partition from the dendrogram
produced by the RDGC method. Additionally to a data partition, both
methods provide a compact model describing the identity of patterns within
a cluster.

The string matching paradigm, on the contrary, cannot handle structural
similarity, being sensitive to strings length. The MCL method is the only
method, among the ones under study, that recognizes similarity based on
inter-pattern dependencies, where the order of sub-sequences is irrelevant.

4.4 Current Trends in Clustering

In the previous sections, several similarity measures have been described and
discussed, being further analyzed in the context of clustering, either explor-
ing nearest-neighbor based hierarchical agglomerative methods, or a parti-
tional type method using the error-correcting parsing based dissimilarity.
As seen, the similarity measures between string patterns strongly condition
the final partitions produced. The similarity measure between clusters is
another variant that, in particular in hierarchical methods, is related to the
cluster shape concept. While the RDGC and the MCL method define a sim-
ilarity between clusters by extrapolating the concept of similarity between
strings, the SL-NED algorithm, which is a simple single-link method by us-
ing as proximity matrix the (weighted normalized) Levensthein distance, is
easily adapted to other hypothesized clusters shapes. Figure 11(a) presents
the dendrogram produced on the contour images data set, when adopting
the farthest neighbor rule for updating the dissimilarity matrix, under the
normalized string edit distance paradigm: complete link method over the
same initial dissimilarity matrix (CL-NED). As shown, patterns tend now
to be organized by tool type rather than pose. Thesholding on this dendro-
gram will, nevertheless, produce the same two-cluster solution. Still, using
the hierarchical agglomerative technique, a cluster isolation criterion that
is able to handle this distinct data sparseness situation has been recently
proposed [21]. The cluster isolation criterion is based on the computation of
a statistic of dissimilarity increments within a cluster, isolation of a cluster
being produced when the increment towards further pattern associations is
high in comparison with the cluster statistic (see [21] for a more detailed
description of the method). Figure 11(b) shows the dendrogram obtained
when adopting this cluster isolation criterion with the complete-link method
over the NED matrix, with three clusters being formed, each corresponding

30

to a different tool.

(a) CL-NED. (b) CL-NED with
cluster isolation
criterion.

Figure 11: Clustering of the contour images data set. (a) dendrogram pro-
duced by the farthest neighbor rule applied to the normalized edit distance
between pattern pairs; (b) corresponding dendrogram when adopting a clus-
ter isolation criterion based on the analysis of dissimilarity increments statis-
tics [21].

Other clustering algorithms based on the previous proximity measures
could be developed. For instance, single link or complete link methods
applied to an initial proximity matrix based on the ECP, RDGC or NRDCL
paradigms; partitional type clustering, such as the K-means algorithm, using
either of the proximity definitions, etc.

Different combinations of clustering strategies with dissimilarity paradi-
gms will in general produce distinct results. The question that arises is:
what is the best strategy to use? As shown in previous examples, the qual-
ity of a similarity measure/clustering method depends on the particular
application problem. Knowledge about the situation modelled may dictate
a particular measure as the most natural, and eventually determine under-
lying parameters and clustering strategies. Alternatively, several algorithms
can be tested and checked for their performance.

31

(a) Combination of the partitions obtained in section 4.2.5 (four clusterings)
using a voting mechanism.

(b) Including more clustering results, exploring, for instance, the farthest neighbor
rule in hierarchical clustering.

Figure 12: Combining clustering results.

Inspired by the work in sensor fusion and classifier combination tech-
niques in pattern recognition [37, 38], the work reported in [17] proposes a
combination of clusterings in order to devise a consistent data partition. The
idea of evidence accumulation clustering is to combine the results of multiple
clusterings into a single data partition, by viewing each clustering result as
an independent evidence of data organization. In [17] the K-means algo-
rithm is used as the basic algorithm for decomposing the data into a large
number, k, of compact clusters; evidence on pattern association is accumu-
lated, by a voting mechanism, over multiple clusterings obtained by random
initialization of the K-means algorithm. This produces a mapping of the
clusterings into a new similarity measure between patterns, summarized in
a matrix, co assoc, where co assoc(i, j) indicates the fraction of times the
pattern pair (i, j) is assigned to the same cluster among N clusterings. The
final data partition is obtained by applying the single-link method over this
similarity matrix, using a fixed threshold, t.

Figure 12 presents results of the combination of data partitions, accord-

32

ing to the evidence accumulation framework, on the contour images data set
(dendrograms produced by the single-link method over the co assoc matrix
are shown). In figure 12(a) we combined results produced by the SL-NED,
ECP-NED, RDGC and MCL clustering algorithms using the voting mecha-
nism proposed in [17]; by thresholding on this dendrogram we can identify
the clusters formed by: (1)- tool 1; (2)- tool 2, pose closed; (3)- tool 2,
pose half-opened, and tool 3. In a second experiment, more clusterings were
added: the NED, ECP, RDGC and NRDCL similarity matrices between
string patterns were used in a complete-link clustering strategy. The den-
drogram resulting from this combination is shown in figure 12(b). We can
now identify a more clear separation between classes. By adequate thresh-
olding on the dendrogram, one obtains four clusters: (1)- tool 1; (2)- tool
2, pose closed; (3)- tool 2 and tool 3, pose half-opened; (4)- tool 3, pose
wide-opened.

The combination of clusterings is therefore a new direction in cluster
analysis, that is worth further investigation.

Acknowledgments

This work was partially supported by the Portuguese Foundation for Science
and Technology (FCT), Portuguese Ministry of Science and Technology, and
FEDER, under grant POSI/33143/SRI/2000.

References

[1] T. A. Bailey and R. Dubes. Cluster validity profiles. Pattern Recogni-
tion, 15(2):61–83, 1982.

[2] J. Buhmann and M. Held. Unsupervised learning without overfitting:
Empirical risk approximation as an induction principle for reliable clus-
tering. In Sameer Singh, editor, International Conference on Advances
in Pattern Recognition, pages 167–176. Springer Verlag, 1999.

[3] H. Bunke. String matching for structural pattern recognition. In
H. Bunke and A. Sanfeliu, editors, Syntactic and Structural Pattern
Recognition, Theory and Applications, pages 119–144. World Scientific,
1990.

33

[4] H. Bunke. Recent advances in string matching. In H. Bunke, editor,
Advances in Structural and Syntactic Pattern Recognition, pages 107–
116. World Scientific, 1992.

[5] M. Chavent. A monothetic clustering method. Pattern Recognition
Letters, 19:989–996, 1998.

[6] J-Y. Chen, C. A. Bouman, and J. P. Allebach. Fast image database
search suing tree-structured VQ. In Proc. of IEEE Int’l Conf. on Image
Processing, volume 2, pages 827–830, 1997.

[7] J. M. Coggins. Dissimilarity measures for clustering strings. In
D. Sankoff and J. Kruskal, editors, Time Warps, String Edits, and
Macromolecules: The Theory and Practice of Sequence Comparison,
chapter 1, pages 311–321. Reprint, with a forward by J. Nerbonne,
Stanford, CA: CLSI Publications, [1983] 1999.

[8] G. Cortelazzo, D. Deretta, G. A. Mian, and P. Zamperoni. Normalized
weighted levensthein distance and triangle inequality in the context of
similarity discrimination of bilevel images. Pattern Recognition Letters,
17:431–436, 1996.

[9] G. Cortelazzo, G. A. Mian, G. Vezzi, and P. Zamperoni. Trademark
shapes description by string-matching techniques. Pattern Recognition,
27(8):1005–1018, 1994.

[10] R. Dubes and A. K. Jain. Validity studies in clustering methodologies.
Pattern Recognition, 11:235–254, 1979.

[11] R. O. Duda, P. E. Hart, and D. G. Stork. Pattern Classification. Wiley,
second edition, 2001.

[12] Y. El-Sonbaty and M. A. Ismail. On-line hierarchical clustering. Pattern
Recognition Letters, pages 1285–1291, 1998.

[13] J. Barros et al. Using the triangle inequality to reduce the num-
ber of computations required for similarity-based retrival. In Proc. of
SPIE/IS&T, Conference on Storage and Retrieval for Still Image and
Video Databases IV, volume 2670, pages 392–403, 1996.

[14] M. Figueiredo and A. K. Jain. Unsupervised learning of finite mix-
ture models. IEEE Trans. Pattern Analysis and Machine Intelligence,
24(3):381–396, 2002.

34

[15] W. B. Frakes. Stemming algorithms. In William B. Frakes and Ricardo
Baeza-Yates, editors, Information Retrieval: Data Structures and Al-
gorithms, chapter 8, pages 131–160. Prentice Hall, 1992.

[16] A. L. Fred. Clustering of sequences using a minimum grammar com-
plexity criterion. In Grammatical Inference: Learning Syntax from Sen-
tence, pages 107–116. Springer-Verlag, 1996.

[17] A. L. Fred. Finding consistent clusters in data partitions. In Josef
Kittler and Fabio Roli, editors, Multiple Classifier Systems, volume
LNCS 2096, pages 309–318. Springer, 2001.

[18] A. L. Fred and J. Leitão. A minimum code length technique for clus-
tering of syntactic patterns. In Proc. Of the 13th IAPR Int’l Conference
on Pattern Recognition, pages 680–684, Vienna, 1996.

[19] A. L. Fred and J. Leitão. Solomonoff coding as a means of introducing
prior information in syntactic pattern recognition. In Proc. of the 12th
IAPR Int’l Conference on Pattern Recognition, pages 14–18, 1994.

[20] A. L. Fred and J. Leitão. A comparative study of string dissimilarity
measures in structural clustering. In Sameer Singh, editor, Int’l Con-
ference on Advances in Pattern Recognition, pages 385–384. Springer,
1998.

[21] A. L. Fred and J. Leitão. Clustering under a hypothesis of smooth dis-
similarity increments. In Proc. of the 15th Int’l Conference on Pattern
Recognition, volume 2, pages 190–194, Barcelona, 2000.

[22] A. L. Fred, J. S. Marques, and P. M. Jorge. Hidden markov models vs
syntactic modeling in object recognition. In Int’l Conference on Image
Processing, ICIP’97, pages 893–896, Santa Barbara, October 1997.

[23] K. S. Fu. Syntactic pattern recognition. In Handbook of Pattern Recog-
nition and Image Processing, pages 85–117. Academic Press, 1986.

[24] K. S. Fu and S. Y. Lu. A clustering procedure for syntactic patterns.
IEEE Trans. Systems Man Cybernetics, 7(7):537–541, 1977.

[25] K. S. Fu and S. Y. Lu. Grammatical inference: Introduction and survey
-part I and II. IEEE Trans. Pattern Analysis and Machine Intelligence,
8(5):343–359, 1986.

35

[26] J. A. Garcia, J. Valdivia, F. J. Cortijo, and R. Molina. A dynamic
approach for clustering data. Signal Processing, 2:181–196, 1995.

[27] M. Har-Even and V. L. Brailovsky. Probabilistic validation approach
for clustering. Pattern Recognition, 16:1189–1196, 1995.

[28] D. Harman. Ranking algorithms. In William B. Frakes and Ricardo
Baeza-Yates, editors, Information Retrieval: Data Structures and Al-
gorithms, chapter 14, pages 363–392. Prentice Hall, 1992.

[29] J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory,
Languages and Computation. Addison-Wesley, London, 1979.

[30] Q. Huang, Z. Liv, and A. Rosenberg. Automated semantic structure
reconstruction and representation generation for broadcast news. In
Proc. of IS&T/SPIE Conference on Storage and Retrieval for Image
and Video Databases VII, pages 50–62, 1999.

[31] A. Jain. Fundamentals of Digital Image Processing. Prentice-Hall, 1989.

[32] A. K. Jain and R. C. Dubes. Algorithms for Clustering Data. Prentice
Hall, 1988.

[33] A.K. Jain, M. N. Murty, and P.J. Flynn. Data clustering: A review.
ACM Computing Surveys, 31(3):264–323, September 1999.

[34] A. Juan and E. Vidal. Fast median search in metric spaces. In A. Amin
and D. Dori, editors, Advances in Pattern Recognition, pages 905–912.
Springer-Verlag, 1998.

[35] J. A. Kaandorp. Fractal Modelling: Grouth and Form in Biology.
Springer-Verlag, 1994.

[36] R. L. Kashyap and B. J. Oommen. String correction using probabilistic
models. Pattern Recogition Letters, pages 147–154, 1984.

[37] J. Kittler. Pattern classification: Fusion of information. In Sameer
Singh, editor, Int. Conf. on Advances in Pattern Recognition, pages
13–22. Springer, 1998.

[38] J. Kittler, M. Hatef, R. P Duin, and J. Matas. On combining classifiers.
IEEE Trans. Pattern Analysis and Machine Intelligence, 20(3):226–239,
1998.

36

[39] T. Kohonen. Median strings. Pattern Recognition Letters, 3:309–313,
1985.

[40] R. Kothari and D. Pitts. On finding the number of clusters. Pattern
Recognition Letters, 20:405–416, 1999.

[41] J. Kruskal. An overview of sequence comparison. In D. Sankoff and
J. Kruskal, editors, Time Warps, String Edits, and Macromolecules:
The Theory and Practice of Sequence Comparison, chapter 1, pages
1–44. Reprint, with a forward by J. Nerbonne, Stanford, CA: CLSI
Publications, [1983] 1999.

[42] S. Y. Lu and K. S. Fu. Stochastic error-correcting syntax analysis for the
recognition of noisy patterns. IEEE Trans. Computers, C-26(12):1268–
1276, December 1977.

[43] S. Y. Lu and K. S. Fu. A sentence-to-sentence clustering procedure for
pattern analysis. IEEE Trans. Systems Man Cybernetics, 8(5):381–389,
1978.

[44] Y. Man and I. Gath. Detection and separation of ring-shaped clus-
ters using fuzzy clusters. IEEE Trans. Pattern Analysis and Machine
Intelligence, 16(8):855–861, 1994.

[45] C. D. Martinez-Hinarejos, A. Juan, and F. Casacuberta. Use of median
string for classification. In Proc. of the 15th Int’l Conf. on Pattern
Recognition, pages 907–910, 2000.

[46] A. Marzal and E. Vidal. Computation of normalized edit distance and
applications. IEEE Trans. Pattern Analysis and Machine Intelligence,
2(15):926–932, 1993.

[47] G. McLachlan and K. Basford. Mixture Models: Inference and Appli-
cation to Clustering. Marcel Dekker, New York, 1988.

[48] L. Miclet. Grammatical inference. In H. Bunke and A. Sanfeliu, edi-
tors, Syntactic and Structural Pattern Recognition - Theory and Appli-
cations, pages 237–290. Scientific Publishing, 1990.

[49] B. Mirkin. Concept learning and feature selection based on square-error
clustering. Machine Learning, 35:25–39, 1999.

[50] T. Oates, L. Firoiu, and P. R. Cohen. Using time warping to bootstrap
HMM-based clustering of time series. In R. Sun and C. L. Giles, editors,

37

Sequence Learning: Paradigms, Algorithms and Applications, volume
LNAI of Lecture Notes in Computer Science, pages 35–52. Springer-
Verlag, 2000.

[51] B. J. Oomen and R. S. K. Loke. Pattern recognition of strings contain-
ing traditional and generalized transposition errors. In Int’l Conf. on
Systems, Man and Cybernetics, pages 1154–1159, 1995.

[52] B. J. Oommen. Recognition of noisy subsequences using constrained
edit distances. IEEE Trans. Pattern Analysis and Machine Intelligence,
9(5):676–685, 1987.

[53] N. R. Pal and J. C. Bezdek. On cluster validity for the fuzzy c-means
model. IEEE Trans. Fuzzy Systems, 3:370–379, 1995.

[54] E. J. Pauwels and G. Frederix. Fiding regions of interest for content-
extraction. In Proc. of IS&T/SPIE Conference on Storage and Retrieval
for Image and Video Databases VII, volume SPIE Vol. 3656, pages 501–
510, San Jose, January 1999.

[55] L. Rabiner. A tutorial on hidden Markov models and selected applica-
tions in speech recognition. Proc. of IEEE, 77(2):257–285, 1989.

[56] E. S. Ristad and P. N. Yianilos. Learning string-edit distance. IEEE
Trans. Pattern Analysis and Machine Intelligence, 20(5):522–531, 1998.

[57] S. Roberts, D. Husmeier, I. Rezek, and W. Penny. Bayesian approaches
to gaussian mixture modelling. IEEE Trans. Pattern Analysis and Ma-
chine Intelligence, 20(11), 1998.

[58] D. Sankoff and J. Kruskal. Time Warps, String Edits, and Macro-
molecules: The Theory and Practice of Sequence Comparison. Reprint,
with a forward by J. Nerbonne, Stanford, CA: CLSI Publications, [1983]
1999.

[59] S. Santini and R. Jain. Similarity is a geometer. Multimedia Tools and
Applications, 5(3):277–306, 1997.

[60] P. Sebastiani, M. Ramoni, and P. Cohen. Sequence clustering via
bayesian clustering by dynamics. In R. Sun and C. L. Giles, editors,
Sequence Learning: Paradigms, Algorithms and Applications, number
1828 in Lecture Notes in Computer Science, pages 11–34. Springer-
Verlag, 2000.

38

[61] P. Smyth. Clustering sequences with hidden Markov models. In M. C.
Mozer, M. I. Jordan, and T. Petsche, editors, Advances in Neural In-
formation Processing 9, pages 72–93. MIT Press, Cambridge, 1997.

[62] R. J. Solomonoff. A formal theory of inductive inference (part I and
II). Information and Control, 7:1–22,224–254, 1964.

[63] D. Stanford and A. E. Raftery. Principal curve cluster-
ing with noise. Technical report, University of Washington,
http://www.stat.washington.edu/raftery, 1997.

[64] E. Tanaka. Parsing and error correcting parsing for string grammars.
In Syntactic and Structural Pattern Recognition – Theory and Applica-
tions, pages 55–84. Scientific Publishing, 1990.

[65] H. Tenmoto, M. Kudo, and M. Shimbo. MDL-based selection of the
number of components in mixture models for pattern recognition. In
Adnan Amin, Dov Dori, Pavel Pudil, and Herbert Freeman, editors,
Advances in Pattern Recognition, volume 1451 of Lecture Notes in Com-
puter Science, pages 831–836. Springer Verlag, 1998.

[66] S. Theodoridis and K. Koutroumbas. Pattern Recognition. Academic
Press, 1999.

[67] C. Zahn. Graph-theoretical methods for detecting and describing
gestalt structures. IEEE Trans. Computers, C-20(1):68–86, 1971.

39

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

