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Abstract—This paper addresses the problem of cluster defining criteria by proposing a model-based characterization of interpattern

relationships. Taking a dissimilarity matrix between patterns as the basic measure for extracting group structure, dissimilarity increments

between neighboring patterns within a cluster are analyzed. Empirical evidence suggests modeling the statistical distribution of these

increments by an exponential density; we propose to use this statistical model, which characterizes context, to derive a new cluster

isolation criterion. The integration of this criterion in a hierarchical agglomerative clustering framework produces a partitioning of the data,

while exhibiting data interrelationships in terms of a dendrogram-type graph. The analysis of the criterion is undertaken through a set of

examples, showing the versatility of the method in identifying clusters with arbitrary shape and size; the number of clusters is intrinsically

found without requiring ad hoc specification of design parameters nor engaging in a computationally demanding optimization procedure.

Index Terms—Clustering, hierarchical methods, context-based clustering, cluster isolation criteria, dissimilarity increments, model-

based clustering.
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1 INTRODUCTION

IN this section, we review existing clustering methodolo-
gies and algorithms, and outline the goals and the main

ideas proposed in this paper.

1.1 Review of Clustering Approaches

Clustering has been applied in a variety of domains, whose
main goals are exploratory pattern analysis and data mining,
decision-making, and machine learning. Most of the existing
work in clustering deals with developing new clustering
algorithms. Two main strategies have been adopted: hier-
archical methods and partitional methods [1], [2].

Partitional methods organize patterns into a small number
of clusters. Model-based techniques assume that patterns
belonging to a cluster can be given a simple and compact
description in terms of a parametrical distribution (such as a
Gaussian), a representative element (the centroid or the
median, for instance), or some geometrical primitive (lines,
planes, circles, ellipses, curves, surfaces, etc.). Such ap-
proaches assume particular cluster shapes, partitions being
obtained, in general, as a result of an optimization process
using a global criterion. Parametric density approaches, such
as mixture decomposition techniques [3], [4], [5], [6], and
prototype-based methods, such as central clustering [7],
square-error clustering [8], K-means [2], [1], or K-medoids
clustering [9], emphasize compactness, imposing hyper-
spherical clusters in the data. Model order selection is
sometimes left as a design parameter or it is incorporated in
the clustering procedure [10], [11], [5]. The K-means is
probably the best known and most widely used algorithm
in this category. Assuming a priori knowledge about the
number of classes, and based on the square-error criterion, it

is a computationally efficient clustering technique that
identifies hyperspherical clusters. Extensions of the basic
method include: use of Mahalanobis distance to deal with
hyperellipsoidal clusters [2]; fuzzy algorithms [12]; adapta-
tions to straight line fitting [13]. Optimization-based cluster-
ing algorithms adopting shape fitting approaches include
[14], [15], [16]. Cost-functional clustering methods based on a
minimum variance criterion favor spherical clusters. Other
optimization-based clustering algorithms do not assume
particular cluster shapes, such as the work in [17], proposing a
pairwise clustering cost function emphasizing cluster con-
nectedness. Nonparametric density-based clustering meth-
ods attempt to identify high-density clusters separated by
low-density regions by either exploiting regions of high
sample density [18] or regions with less data, such as in valley
seeking clustering algorithms [19], [20].

Hierarchical methods, mostly inspired by graph theory

[21], consist of a sequence of nested data partitions in a

hierarchical structure, that can be represented graphically as a

dendrogram [2]. Both agglomerative [2], [22] and divisive

approaches [23] (such as those based on the minimum

spanning tree—MST [2]) have been attempted. Variations of

the algorithms are obtained depending on the definition of

similarity measures between patterns and between clusters

[24], the later ultimately determining the structure of the

clusters identified. The single-link (SL) and the complete-link

(CL) methods [2] are the best known techniques in this class,

emphasizing, respectively, connectedness and compactness.

Prototype-based hierarchical methods define similarity be-

tween clusters based on cluster representatives, such as the

centroid or the median; like the prototype-based partitional

algorithms, these techniques fail to identify clusters of

arbitrary shapes and sizes, imposing spherical structure in

the data. Variations of the prototype-based hierarchical

clustering include the use of multiple prototypes per cluster,

as in the CURE algorithm [25]. Other algorithms compute

similarity between clusters by the aggregate of the similarities
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(emphasizing interconnectivity, such as the group-average
method [2]) among pairs of patterns belonging to distinct
clusters, or selecting a particular pair. Other hierarchical
agglomerative clustering algorithms follow a split and merge
technique; the data being initially split into a high number of
small clusters and merging being based on intercluster
similarity. A final partition is selected among the clustering
hierarchy by thresholding techniques or based on measures of
cluster validity. Density-based techniques usually define
initial clusters by seeking high-density points (by simple use
of K-means clustering [28], applying kernel-based density
estimation [18] or using density gradient estimation, the
modes being detected with the hill climbing mean shift
procedure [29], [30]), density similarity guiding the merging
process; simple thresholding [28] or cluster validity indices
weighting intercluster connectivity and cluster isolation (low-
density regions separating clusters) [18] are used to select a
clustering. In the work in [30], an initial random space
tessellation is produced to which a mean shift procedure is
applied to detect cluster centers. A two phase clustering
algorithm is presented in [31], according to which initial
subclusters are obtained using a graph partitioning technique
to the K-nearest neighbor graph of the data set, followed by a
dynamic merging of subclusters under a hierarchical agglom-
erative framework. The density-based clustering algorithm
presented in [32] explores the idea of intracluster homo-
geneity and uniformity, working on links from a complete
graph.

1.2 Goals and Outline of the Paper

In this paper, we address the problem of cluster defining

criteria under a model-based framework. A new cluster

isolation criterion, briefly outlined in [33], underlying a

hypothesis of smooth dissimilarity increments between

neighboring patterns, is presented and discussed. It is shown

that dissimilarity increments between neighboring patterns

within a cluster have a smooth evolution, whose statistical

distribution can be modeled by an exponential density

function. Dissimilarity increments, by means of their statis-

tical model, characterize context. The proposed isolation

criterion is supported on a pair-wise context analysis. This

isolation criterion is merged in a hierarchical agglomerative

clustering algorithm, producing a data partitioning and

simultaneous accessibility to the intrinsic data interrelation-

ships in terms of a dendrogram-type graph. The structure of

the obtained dendrogram, unlike conventional hierarchical

clustering methods, is constrained by the isolation criterion,

expanding the range of pattern structures handled by these

methods, namely, situations containing both sparse and

dense clusters. Additionally, the problem of deciding the

number of clusters is subsumed and intrinsically dictated by

the criterion.

Section 6 studies the distribution of dissimilarity

increments, supporting the smooth evolution hypothesis,

and outlines the new cluster isolation criterion (Section 2.2).

Critical evaluation and mathematical manipulation of the

parametric context model—exponential distribution—leads

to the definition of an intrinsic isolation parameter

(Section 2.3). A hierarchical agglomerative algorithm

adopting this criterion is described in Section 3. The

novelty of the proposed method and its relation to work

in the literature is outlined in Section 4. The characteristics

of the new method are analyzed and illustrated through a

set of examples (Section 5), covering synthetic data

(random data, Gaussian mixtures, concentric patterns,

and clusters of arbitrary shape and size) and examples

from the UCI Machine Learning Repository [34] (Iris data

and the Wisconsin Breast Cancer Data Set). Results are

compared with the single-link method and the k-means

algorithm. A discussion of the proposed method with the

SL and the K-means algorithm is presented in Section 6.

Conclusions are drawn in Section 7.

2 SMOOTHNESS HYPOTHESIS AND CLUSTER

ISOLATION CRITERION

Let X be a set of patterns, and xi represent an element in

this set. Assume that interpattern relationships are mea-

sured by some dissimilarity function, dð:; :Þ. The definition

of dð:; :Þ is problem and data representation dependent; it

may be, for instance, the Euclidean distance for patterns in

multidimensional feature spaces; string edit distances [35],

[36], [37], [38] are commonly used for quantifying resem-

blance between string patterns.
The proposed cluster isolation criterion is derived from

the following intuitive concepts and assumptions:

. A cluster is a set of patterns sharing important
characteristics, defining a context.

. Dissimilarity between neighboring patterns within a
cluster should not occur with abrupt changes.

. The merging of well separated clusters results in
abrupt changes in dissimilarity values.

The first concept states that a cluster gathers interrelated
patterns, the pattern dependence profile being a character-
istic of the cluster, thus defining a context; this enables its
distinction from other clusters. The last two items state a
hypothesis of smooth evolution of dissimilarity changes, or
increments, between neighboring patterns within a cluster,
nonsatisfaction of this condition being associated with
cluster isolation. This smoothness hypothesis is the genesis
of the proposed cluster isolation criterion, the dissimilarity
increments measuring continuity within a cluster.

2.1 Distribution of Dissimilarity Increments

Consider a set of patterns X. Given xi, an arbitrary element
of X and some dissimilarity measure, dð:; :Þ, between
patterns, let ðxi; xj; xkÞ be the triplet of nearest neighbors,
obtained as follows:

ðxi; xj; xkÞ � nearest neighbors

xj : j ¼ arg min
l

dðxl; xiÞ ; l 6¼ if g

xk : k ¼ arg min
l

dðxl; xjÞ ; l 6¼ i; l 6¼ j
� �

:

The dissimilarity increment between the neighboring
patterns is defined as

dincðxi; xj; xkÞ ¼ jdðxi; xjÞ � dðxj; xkÞj;
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which can be seen as the first derivative of the dissimilarity

function at the first point of the ordered list of neighboring

samples.
There is experimental evidence that the increments of the

dissimilarity measure between neighboring patterns, as

defined above, typically exhibit an exponential distribution,
pðxÞ ¼ � exp��x; x > 0, as illustrated in Fig. 1. This figure plots
histograms and corresponding fitted distributions of dissim-
ilarity increments for a variety of data sets. Two-dimensional
examples were chosen for simplicity of representation:
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Fig. 1. Histograms (bar graphs) and fitted exponential distributions (solid line curves) of the dissimilarity increments computed over neighboring
patterns in the data. The Euclidean distance was used as the dissimilarity measure. (a) There are 2,000 uniformly distributed patterns within a square,
(b) 500 patterns generated from a Gaussian distribution (Nð½0; 0
; ½10 0; 0 10
Þ), (c) ring-shaped data (1,000 random patterns), (d) 1,000 patterns
generated according to the stochastic model: yðkþ 1Þ ¼ yðkÞ þ n1ðkÞ, xðkþ 1Þ ¼ xðkÞ þ n2ðkÞ, with n1ðkÞ, n2ðkÞ being noise uniformly distributed in the
interval ½�:25; :25
, (e) directional expanding data generated by the model: xðkþ 1Þ ¼ xðkÞ þ nsðkÞk, yðkþ 1Þ ¼ yðkÞ þ nðkÞ, where ns and nðkÞ
represent uniform noise in the range ½�10; 10
 and ½0; 10
, respectively, and (f) grid corrupted by zero mean Gaussian noise, with standard deviation 0.1.



. random samples (uniform distribution),

. 2D Gaussian process,

. noisy ring shaped pattern,

. 2D stochastic process,

. directional expanding pattern, and

. grid corrupted by Gaussian noise.

The Euclidean distance is used as the dissimilarity measure
in these examples.

As shown in Fig. 2d, the statistical distribution of the
dissimilarity increments within the same context or data
formation model (cluster) has a smooth evolution, where the
parameter � of the fitted exponential probability density
function characterizes data sparseness. It can be observed
that distinct data generation models lead to very similar
curves (for instance, patterns in Figs. 1c and 1d), while an
increasing number of observations from the same process
(corresponding to decreasing data dispersion levels) results
in increasing values for the parameter � of the exponential
distribution (see Fig. 2).

Thus, by adopting the dissimilarity derivatives as
features for context characterization, a single parametric
model (exponential distribution) is obtained for distinct
cluster shapes or data generation paradigms. When con-
sidering well-separated clusters, it is clear that dissimilarity
increments between patterns in different clusters are
positioned far on the tail of the distribution associated with
the other cluster. We explore this property in defining a
cluster isolation criterion in the next section.

2.2 Isolation Criterion

We extend the previous concept of dissimilarity increments
between neighboring patterns to define the concept of gap
between clusters.

Let Ci, Cj be two clusters candidate for merging, as the
ones shown in Fig. 3, and consider the nearest pattern pair,

ðxi; xjÞ, linking these clusters, such that xi 2 Ci and xj 2 Cj
(xi  x12 and xj  x18 Fig. 3). We shall represent the
dissimilarity between these patterns, dðxi; xjÞ, as dðCi; CjÞ
(corresponding to the distance between the two clusters,
according to the nearest-neighbor rule). Let xk be the nearest
neighbor of xi within Ci (pattern x3 in Fig. 3), and let
dtðCiÞ ¼ dðxi; xkÞ. The triplet ðxk; xi; xjÞ, therefore, corre-
sponds to neighboring patterns. We define dissimilarity
increment or gap between clusters i and j as the asymmetric
increase in the dissimilarity value, needed in order to allow
the data association into a single cluster:

gapi ¼ jdðCi; CjÞ � dtðCiÞj: ð1Þ
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Fig. 2. Fitted exponential distributions for the dissimilarity increments of 2D data, randomly generated from a uniform distribution: (a) 2,000 samples,
(b) 1,000 samples, and (c) 500 samples. (d) Steep exponentials (higher � parameter) correspond to high-density patterns.

Fig. 3. Definition of gap. The figure shows 18 two-dimensional patterns
grouped in two clusters. The patterns are linked by the minimum
spanning tree, adopting the Euclidean distance as the edge weight.



In a similar way, we find xl (x17 in Fig. 3), the nearest
pattern to xj belonging to Cj, and define gap between cluster
j and i: gapj ¼ jdðCi; CjÞ � dtðCjÞj ¼ jdðCi; CjÞ � dðxj; xlÞj.

Dissimilarity increments between neighboring patterns
within a cluster is a measure of pattern continuity. The
statistical distribution of dissimilarity increments is modeled
by an exponential distribution. Let �̂i�i ¼ 1

�̂i�i
, �̂j�j, be the average

of dissimilarity increments in cluster Ci and Cj, respectively.
Tails of these distributions correspond to patterns in frontier
or borderline situations, where continuity is broken. The
gaps, gapi, gapj, represent the increase in neighboring pattern
distances needed in order to join the two clusters, measuring
intercluster continuity, as seen from each cluster perspective.
If the two clusters are well separated, these gaps will have
high values (compared to intracluster statistics), being
located on the tails of each cluster statistic, and corresponding
to a discontinuity in both clusters structure. In situations of
touching clusters with distinct densities, as in the example
shown in Fig. 4, context analysis is needed in order to identify
the clusters. The dashed line in Fig. 4 links the nearest-
neighbor patterns connecting the two clusters; remaining
lines link the intracluster nearest neighbors to each of these
elements. From this figure, it is intuitive to see that the
element from the cluster on the right could naturally be
included in the left cluster since the increment (gap1 ¼ 0:0150)
is small compared to the intracluster statistic (�̂1�1 ¼ 0:0268).
From the context of the cluster on the right, however, the
dissimilarity increment (gap2 ¼ 0:0542) is large compared to
the average dissimilarity increments within this cluster:
�̂2�2 ¼ 0:0068. Therefore, taking the one-sided perspective of
clusterC1, the two clusters could be merged; from the context
of C2, the clusters are isolated.

The cluster isolation criterion consists of setting a limit on
the dissimilarity increments, such that most of the patterns
exhibiting the same statistical structure or model (densely or
sparsely connected) are included in the same cluster, while all
others, not satisfying this smoothness hypothesis, are
rejected:

. LetCi,Cj be two clusters which are candidates for merging,
and let �i, �j be the respective mean values of the
dissimilarity increments in each cluster. Compute the
increments for each cluster, gapi and gapj, as defined in
(1). If gapi � ��i (gapj � ��j), isolate clusterCi (Cj) and
continue the clustering strategy with the remaining
patterns. Ifneither cluster exceeds the gap limit, merge them.

Notice that the above criterion can be regarded as a
context-dependent cluster isolation rule where the context
is modeled by the parametric distribution of dissimilarity
increments. The isolation rule consists of comparing the
value of the dissimilarity increment, seen from the context
of each cluster, with a dynamic threshold, ��i, computed
from this context; inconsistency of gap values in a given
context (cluster) determines the isolation of that cluster.

The design parameter, �, constrains the degree of
isolation; values in the range 3 to 5 provide reasonable
choices, as justified in the next section.

2.3 Setting the Isolation Parameter

As seen previously, the structure of the dissimilarity
increments within a cluster is summarized by an exponen-
tial distribution; the parameter � of this distribution thus
characterizes each cluster. Well-separated clusters are
clearly identified by the analysis of these distributions, as
samples not belonging to a given cluster will be placed far
in the tail of the cluster distribution. A reasonable choice for
the isolation parameter, �, is to set it at a point on the tail
that does not reject a significant amount of data nor does it
allow grouping of patterns that are clearly atypical.

Theoretical analysis of the exponential distribution leads
to the following interesting result (see Appendix A): The
crossing of the tangential line, at points which are multiples of
the distribution’s mean value, i� 1

� , with the x axis, is given
by ðiþ 1Þ � 1

� ; this is shown in Fig. 5.
Therefore, setting the threshold, �, to some multiple of

the distribution mean, i.e., � inside the interval 3 to 5 is a
reasonable choice. In examples throughout the paper, the
typical value used is � ¼ 3.

3 HIERARCHICAL CLUSTERING ALGORITHM

In this section, we incorporate the cluster isolation criterion
described in Section 2.2 in a hierarchical agglomerative
clustering algorithm. Each cluster, Ci, is characterized by:
�½i
—the estimate of the mean value of the dissimilarity
increments within the cluster; jumps½i
—the number of
elements used in this estimate. The algorithm starts with
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Fig. 4. Touching classes with distinct densities.

Fig. 5. Defining a threshold on the gap values (x axis). Dots are located
on points which are multiple of the distribution mean, 1

� ¼ 0:05 and
dashed lines are tangents at those points. The crossing at the x axis
occur at points i

� , i being a positive integer. Values for i in the range ½3; 5

cover the most significant part of the distribution.



each pattern in a cluster, the dissimilarity matrix between
pattern pairs being computed. It evolves by selecting the most
similar pair of clusters and applying the cluster isolation
criterion from each cluster context; clusters are thus either
isolated (one or both) and frozen on the dendrogram, or
merged; frozen clusters are not available for further merging.
Statistics �½i
 are updated along the merging process.

Estimates of the mean values �½i
 are not reliable for very
small cluster sizes; this may lead to premature isolation of
clusters. In order to overcome this situation, widening of the
isolation parameter � for small cluster sizes may be adopted
[39]; alternatively, inhibition of cluster isolation actions may
be implemented when clusters are very small [33]. In this
paper, we replace the term ��̂i�i by the dynamic threshold

tdyn Cið�; �̂�i; ni; njÞ ¼ ��̂�i � widenfactðni; njÞ þ deltafactðniÞ:
ð2Þ

Expression(2)hastwoterms.Thefirst termincreases thevalue
of the estimate �̂�i by multiplying it by a factor greater than or
equal to 1, widenfactðni; njÞ, where ni  jumps½i
 and nj 
jumps½j
 are the number of elements available for the
computation of the distribution means for cluster Ci and Cj,
respectively. We define the amplifying factorwidenfactðni; njÞ
as a monotonous decreasing function of ni; nj:

widenfactðni; njÞ ¼

1þ� � 1� 1

1þ e�:4ðni�10Þ

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

f1ðniÞ

� 2� 1

1þ e�:4ðnj�10Þ

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

f2ðnjÞ

: ð3Þ

The reasoning underlying (3) is the following (see Fig. 6). If
cluster Ci has few samples, the estimate �̂�ðCiÞ should be
enlarged to compensate for possible underestimation of the
true distribution mean; this widening effect smoothly
vanishes as the number of terms ni used in the computation
of the estimate �̂�ðCiÞ increases (Fig. 6a), which is modeled by
the term f1ðniÞ, a sigmoid-like function. The term f2ðnjÞ
expresses the reinforcement of the widening effect when the
number of elements in the competing cluster Cj is also low
(Fig. 6b), taking values greater or equal to 1. When both
clusters have low cardinality the combined action of f1 and f2

favors clusters merging. When cluster Ci has already a
sufficiently large number of elements, the estimate of �̂�ðCiÞ is
considered to be reliable and term f1ðniÞ tends to zero, thus
annihilating the influence of term f2 (the size of cluster Cj
becomes irrelevant—see Fig. 6a, ni � 25). In (3), � is a scaling
parameter (default value: 3).

When the number of elements available for the estima-
tion of the dissimilarity increments statistic, ni, is extremely
low (such as when the number of cluster’s samples is less
than 10), the estimate for the � parameter is very poor.
Applying a multiplicative factor to the threshold term may
not solve the underestimation problem in this situation, in
particular, when �̂� is near zero. The second term in (2), with
large values vanishing for ni ¼ 10, boosts near zero
estimates for extremely small sized clusters:

deltafactðniÞ ¼ bigval � 1� 1

1þ e�10ðni�5Þ

� �
; ð4Þ

where bigval is a large positive number.
In order to compute the gap between clusters, one needs to

know the distances between nearest neighbor patterns. Using
the nearest-neighbor rule for updating intercluster dissim-
ilarity, dðCi; CjÞ gives the desired distance between nearest
neighbors in each cluster. Considering that most similar
patterns are joined first, dissimilarity values growing along
the evolutionof the clustering algorithm, we will approximate
the exact value of the gap by gapi ¼ dðCi; CjÞ � dt½i
, with dt½i

representing the dissimilarity in the last merging performed
in clusterCi (see Fig. 7). This approximation prevents further
computation of nearest neighbors in each cluster, leading to a
computationally more efficient algorithm.

The following gives a schematic description of the
clustering algorithm.

Input:N samples; � (default value is 3).
Output: Data partitioning.
Steps:

1. Set: Final clusters ¼ !; n ¼ N ;
Put the ith sample in cluster Ci; i ¼ 1; . . . ; n;
Clusters ¼

S
i Ci; i ¼ 1; . . . ; n;

dt½i
 ¼ �½i
 ¼ jumps½i
 ¼ 0; i ¼ 1; . . . ; n;
2. If (Clusters ¼¼ !) or (n ¼¼ 1)
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Fig. 6. Amplification term widenfact associated with the estimate �̂� for cluster Ci. (a) Amplification factor as a function of the number of terms used in
the computation of the gaps distribution mean for cluster Ci (� ¼ 1). (b) Reinforcement of the amplifying term as a function of the number of elements
in cluster Cj (� ¼ 1).



then stop, returning the clusters found in
Final clusters

S
Clusters;

else continue.
3. Choose the most similar pair of clusters ðCi; CjÞ

from Clusters. Let
gapi ¼ dðCi; CjÞ � dt½i
 ni ¼ jumps½i

gapj ¼ dðCi; CjÞ � dt½j
 nj ¼ jumps½j


4. If ((gapi < tdyn Cið�; �½i
; ni; njÞ) and
(gapj < tdyn Cjð�; �½j
; nj; niÞ))

then
join the clusters Ci, Cj into cluster Ci;j : Ci;j ¼ Ci

S
Cj

Let I be the index for the merged cluster;
Replace Ci, Cj by Ci;j in Clusters;
dt½I
 ¼ dðCi; CjÞ;
jumps½I
 ¼ jumps½i
 þ jumps½j
 þ 2;
�½I
 ¼ �½i
 jumps½i
jumps½I
 þ �½j
 jumps½j
jumps½I
 þ

gapiþgapj
jumps½I
 ;

Go to step 2.
else continue.

5. If (gapi � tdyn Cið�; �½i
; ni; njÞ)
then set Final clusters ¼ Final clusters

S
Ci;

Remove Ci from Clusters;
n ¼ n� 1.

end if
If (gapj � tdyn Cjð�; �½j
; nj; niÞ)
then set Final clusters ¼ Final clusters

S
Cj;

Remove Cj from Clusters;
n ¼ n� 1.

end if
Go to step 2.

4 RELATED WORK

The distinctive feature of the proposed scatter measure,
which forms the basis of the cluster isolation criterion,
consists of analyzing and modeling dissimilarity increments
in neighboring patterns, instead of statistical or geometrical
manipulations of the dissimilarity values between patterns.
Dissimilarity increments measure continuity within a cluster.
The work presented in [32] explores the concept of uniformity
to detect clusters with similar interior distances. It works on
links from a complete graph. Initial clusters are defined by
gathering links differing in length by no more than a given
threshold. The length difference within these clusters, which

is similar to the dissimilarity increment proposed in this
paper, has an a priori fixed upper value; in our method,
increments are compared to an adaptive threshold, which
depends on individual cluster statistics. The merging process
proposed in [32] is based on the comparison of intracluster
average distances; in our method, the distribution of
increments within a cluster is modeled by a parametric
model (exponential distribution), the parameter summariz-
ing cluster structure being the average value of increments
between neighboring patterns. Increment values computed
from the nearest pair of patterns in distinct clusters are
compared to each cluster statistic to decide for merging.

The proposed cluster isolation criterion has been evaluated
in the context of hierarchical agglomerative clustering,
adopting a nearest-neighbor rule for measuring the similarity
between clusters. This new algorithm is therefore closely
related to graph-theoretical methods, in particular, with the
single-link method: both methods start with single element
clusters, merging most similar clusters first, and updating the
similarity matrix according to the nearest-neighbor rule. A
major distinction between the two methods is that the
standard SL method uses a fixed threshold on dissimilarity
values for cutting the resulting dendrogram, while the herein
proposed method uses an adaptive threshold on dissimilarity
first derivatives, based on the computation of intracluster
statistics of dissimilarity increments. These statistics are
scatter measures, characterizing density of clusters. With the
proposed cluster isolation criterion, the new algorithm is able
to identify clusters with different densities, which requires
special treatment when using graph-theoretical methods,
such as detecting and removing denser clusters, and then
clustering the remaining patterns. With the proposed
approach, this situation is easily handled as, according to
the asymmetric isolation criterion, denser clusters are
identified and frozen on the dendrogram, the clustering
process based on dissimilarity increments proceeding with
the remaining data. Some authors have adopted postproces-
sing of the dendrogram produced by the SL method [26], [27]
or, equivalently, processing of the minimum spanning tree
(MST), in order to obtain a final data partition. Zhan [21]
proposed a technique for the identification of clusters from a
minimum spanningtree by removing inconsistent links based
on the comparison of the link distance (dissimilarity between
linked patterns) with the average of nearby link distances on
both sides of the link. Inconsistent links removal is therefore
based on local dissimilarity statistics; our method, however,
evaluates overall clusters statistics (of dissimilarity incre-
ments instead of distances) along the clustering process,
eventually conditioning the final form of the dendrogram.
This dynamic construction of the dendrogram, the final
topology being conditioned by intracluster statistics, opposes
to the static behavior of the above methods, based on
postprocessing of structures. A dynamic hierarchical agglom-
erative procedure is proposed in [31]. In that work, however,
similarity between clusters combines interconnectivity and
relative closeness measures based on the K-nearest neighbor
graph of the data set, isolation criteria consisting of the
comparison of the similarity value with a user specified
parameter, controlling, simultaneously with the K parameter,
the characteristics of the desired clusters.

FRED AND LEIT~AAO: A NEW CLUSTER ISOLATION CRITERION BASED ON DISSIMILARITY INCREMENTS 7

Fig. 7. Definition of gap on the dendrogram produced by the single-link
method for the data in Fig. 3.



5 ANALYSIS AND ILLUSTRATIVE EXAMPLES

The analysis of the proposed criterion will be carried out
through a set of examples. Clustering results will be
compared with two very popular and well-known strategies:
the single-link method and the k-means algorithm.

5.1 Clustering of Random Data

The first question that should be asked whenever a clustering
algorithm is to be applied concerns the clustering tendency of
the data. Does the data entail some structure, ultimately
exposed by some clustering algorithm or is it random data? A
typical approach consists of applying some test for random-
ness before further analysis by clustering be performed. This
is a wise strategy as most clustering algorithms can impose
inappropriate clustering structure in the presence of un-
structured or random data.

In this section, we analyze how the algorithm behaves in
the presence of patterns randomly generated from uniform or
Gaussian distributions. These examples are also used to
illustrate the effect of the parameter�on the data partitioning.

There were 25 tests performed with random data uni-
formly distributed in d-dimensional hypercubes, with d in the
interval ½2; 10
 and the number of points being randomly
selected from the interval ½100; 1; 000
. A typical example is
shown in Fig. 8. Results on these trials show a single cluster,
for � � 3. When using � � 2 (which is in disagreement with
the analysis performed in Section 2.3), a large cluster and
additional spurious, small sized clusters were obtained due
to too narrow limits on the exponential distribution: With
� ¼ 2, a single cluster was obtained in 16 data sets; in the
remaining nine data sets, a spurious cluster was obtained
with one or two patterns (no cluster size limiting rule was
applied). The occurrence of spurious, small sized clusters
increases for � ¼ 1 (12 cases).

Data sets drawn from Gaussian distributions produce
nonhomogeneous scatter plots, with a small percentage of
patterns dispersed around a high-density nucleus. Typical
clustering results obtained with the proposed algorithm
consists of two clusters, the atypical data being gathered in
a cluster, as illustrated in Fig. 9. In order to merge all the
data in a single cluster, higher values of � are usually
required (� � 4).

5.2 Mixture of Gaussians

The separation of Gaussian mixtures with equal covariance
matrix is illustrated in a study of the number of clusters found
as a function of the Mahalanobis distance between two
Gaussian distributions. To this end, data was generated with
sample sizes of 100, 200, 300, 400, and 500 per class, each class
obeying a two-dimensional Gaussian distribution; separa-
tion between the classes is measured by the Mahalanobis
distance (MD). Each experiment consists of the generation of
data from two classes with a given MD and cluster size. There
were 15 realizations of the experiment performed for each
situation (75 experiments for each MD, when considering
variable cluster sizes).

The proposed algorithm consistently separated the data
sets in two large clusters for Mahalanobis distances higher
than 5, a third cluster being formed gathering spurious data
(see Fig. 10a for a typical example). For MD = 5, the two
natural clusters were merged most of the times (as in Fig. 10b);
no cluster separation was obtained for lower MD values. The
single link method produced similar results. The K-means
algorithm always finds two clusters (with k ¼ 2), outper-
forming the proposed method for MD < 6, although results
are dependent on centroid initialization (see Fig. 10c).

With the examples provided above, where clusters exhibit
identical covariance, it would appear that, among the three
approaches evaluated, the k-means is the best performing
method, allowing separation of clusters for lower values of
the MD. The Mahalanobis distance, however, is not an
adequate index to characterize the performance of the
methods, as they present remarkably different behaviors,
for instance, in situations of uneven data sparseness. This
aspect is put in evidence in the example depicted in Fig. 11a,
concerning a mixture of two Gaussians with identical mean
(MD = 0) and disparate covariance matrices. In this case, the
situation of coinciding cluster centroids is responsible for the
failure of the k-means algorithm. The single link method is
unable to handle the distinct data sparseness, joining patterns
around the denser cluster, and breaking down the low-
density cluster into a set of small sized clusters (Fig. 11b). The
proposed method, on the other hand, identifies two con-
centric clusters, which is a partition consistent, for instance,
with a Bayes classifier for the given data. The ability to
separate the overlapping clusters results from the distinctive
feature of unbalanced cluster densities, which is exploited by
the method. Cluster separability, as addressed by the
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Fig. 8. Two-dimensional projection of 200 samples in a nine-dimensional
space. A single cluster is identified for � � 1.

Fig. 9. Clustering 700 patterns from a bivariate Gaussian. The plot
corresponds to � ¼ 3. A single cluster is identified for � � 4.



isolation criterion, does not necessarily require well-sepa-
rated clusters, as shown in this example.

5.3 Concentric Clusters

The situation of concentric patterns is examined in this
section with several experiments with ring-shaped patterns.
Fig. 12 shows a series of increasingly difficult clustering
problems, by either tightening the gaps between the rings,
or increasing the number of clusters. The k-means method
is unable to handle this type of patterns, imposing globular
shaped clusters on the data. The single link method can
only cope with situations where the separation between
clusters is higher than the maximum within cluster distance
between neighboring patterns. The proposed method
consistently outperforms both methods in all situations, in
terms of correct identification of the number of clusters and
data assignment into clusters (plots on the left of Fig. 12).

5.4 Arbitrary Shape Clusters

A complex composition of 739 patterns organized into eight
irregularly shaped, variable sized clusters is proposed here
for analysis. Data comprises (see Fig. 13) two concentric ring-
shaped clusters (200 patterns each); two parallel bar-
delimited groups of random patterns (uniform distribution),

with 100 patterns per class; two neighboring sets of 50 points,
drawn from Gaussian distributions with distinct covariances;
a star-shaped cluster with 29 patterns; 10 equally spaced
points forming an outer circle, intermingled with bar and ring
shaped clusters.

Figs. 13 and 14 present partitions of this complex pattern
composition using the three methods. As shown in Fig. 13a,
although the reasonable choice for � is 3 or 4, there is a large
range of values (2 < � < 9) for which adequate pattern
associations are produced. Values above the upper limit of
the interval for � leads to the gathering of clusters (the bar-
shaped ones being the first to be merged), while values below
the lower limit break down sparser clusters (the star-shaped is
the first candidate for splitting) into spurious, lower size
clusters.

Accounting for data proximity directly, and comparing
this with a threshold, a design parameter for which no a priori
selection criteria exists, the single link method is unfit to
handle the variability of density of data, splitting sparse
groups of data into, often, single point clusters (Fig. 13b). The
k-means algorithm does not cope with irregularly shaped
and/or concentric patterns, producing odd pattern associa-
tions (see Fig. 14).
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Fig. 10. (a) MD = 6, (b) MD = 5, (c) MD = 7, K-means results. Dependency of clustering of mixtures of two Gaussians with unit covariance on the

Mahalanobisdistance (MD) between the distributions means:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�1 � �2ÞT ð�1 � �2ÞÞ

q
.� ¼ 3. (a) and (b) are obtainedwith theproposedmethodand (c) is

the result of inadequate initialization of the K-means algorithm, leading to poorer data partitions.

Fig. 11. Clustering of a mixture of two overlapping Gaussians with zero mean and covariance matrices 20I (100 patterns) and 0:1I (50 patterns), with

I being the identity matrix. (a) Proposed method, � ¼ 3. (b) Single-link method, th ¼ 3.



5.5 Iris Data

The Iris data set consists of three types of Iris plants (Setosa,
Versicolor, and Virginica) with 50 instances per class,
represented by four features. This data, extensively used
in classifier comparisons, is known to have one class
(Setosa) linearly separable from the remaining two classes,
the latter not being linearly separable.

Two clusters are found with the proposed method
(1 < � < 10), corresponding to a merging of types Virginica
and Versicolor, and a single cluster for the Setosa type.
Results are therefore comparable with the ones obtained with
the single link method, according to which the same data
partition is obtained by adequate selection of a threshold on

the dendrogram (see Fig. 15). A similar result is reported in

[40] where the proposed criteria for selecting the number of

cluster leads to two clusters. The K-means method gave the

best clustering results, one cluster including the Setosa type,

and the other types of plants being separated in two clusters,

with an overall error rate of 11 percent.

5.6 Breast-Cancer Data

The final test data consists of the Wisconsin Breast Cancer

Data set available at the UCI Machine Learning Repository

[34]. Data of two types (benign and malignant, 444 and

239 samples, respectively) are represented by nine features

(fully instantiated, class labels are ignored in clustering).
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Fig. 12. Concentric patterns. Left column plots: results with the proposed method, � ¼ 3. Right column: single-link method. Threshold are as follows:

(b) th ¼ :53 (three clusters). (d) th ¼ :4 (21 clusters). (f) th ¼ :49 (12 clusters).



Fig. 16 represents the dendrogram produced by the
single-link method by ordering data according to their class
labels: benign patterns are on the right side of the graph. As
shown, this method is not able to differentiate between the
two types of data: Simple thresholding on this graph leads
to a cluster with most of the samples and spurious single
pattern clusters. It also obvious that the two classes are not
well separated but exhibit different structures of interpat-
tern distances. Therefore, with the proposed method, a
single cluster is obtained for � ¼ 3 (which assumes good
cluster separation), but by lowering this threshold to the
value 1 two clusters are identified. By comparing the
partitions, thus obtained with the patterns class labels, a
recognition rate of 96.63 percent was achieved (23 samples
were misclassified). This result compares favorably to the
cluster center based methods reported in [40] and [41],
where performances obtained on the same data were 94.28
percent and 95.5 percent, respectively. Using the k-means
algorithm, with k = 2, results are dependent on the initial
cluster centers. After several experiments, the best accuracy
achieved was 96.49 percent (24 samples misclassified)
which is comparable with the result obtained with the
proposed method. The corresponding cluster centers are
indicated in Table 1.

6 DISCUSSION

The k-means algorithm [2] is a square-error partitional
method. Its major drawbacks are the necessity of a priori
knowledge of the number of clusters, dependence of the
partition found on the centroids initialization, and an
inability to identify irregularly shaped clusters. While
methods have been proposed to handle the selection of the
number of clusters [11], the centroid-based error computation
leads to globular shaped clusters. The inadequacy in
identifying other shapes has been illustrated, for instance,
in Fig. 14. More recently, k-means derived methods have been
proposed that can identify specific shapes in patterns [13],
[16], the models of which (line, circle, ...) being defined in
advance, not data driven.

The single-link method, manipulating a dissimilarity
matrix between patterns, imposes a hierarchical structure
on data, graphically displayed as a dendrogram; it is able to
identify irregularly shaped clusters whenever the minimum
dissimilarity between clusters in higher than within cluster
dissimilarity between neighboring patterns. As illustrated
in the examples provided above, unbalanced density
clusters are not adequately handled by this method. Also,
an undesirable characteristic of the method consists of the
“chaining effect,” meaning the gathering of distinct clusters
whenever there is a chain of data points bridging the gap.

The method outlined in Section 3 incorporates the
proposed cluster isolation criterion into a hierarchical
agglomerative type algorithm. Although it provides a
dendrogram type graph describing the structure of data,
the new algorithm is a partitional procedure that intrinsi-
cally identifies the number of clusters without necessity of
ad hoc definition or a priori knowledge of design para-
meters. The distinctive features of the new method
responsible for overcoming difficulties not solved by the
previous methods are now discussed.

The first aspect that distinguishes the proposed method
from other clustering methods is the exploration of the first
derivative of the dissimilarity (called dissimilarity increments
between neighboring patterns, or gaps, when considering
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Fig. 13. Clustering of complex cluster structures. (a) Clustering using the proposed method: for 2 < � < 9, our algorithm correctly identifies eight

clusters. (b) Single-link method with th ¼ :5: 33 clusters are identified.

Fig. 14. K-means partition when imposing eight clusters.



clusters), instead of the dissimilarity directly, for cluster
evaluation.

A parametrical distribution—exponential density—mo-
dels the statistical properties of this feature within a cluster,
forming the basis of the proposed isolation criterion.
Continuously updated along the cluster formation process,
the distribution mean, 1=�, multiplied by the factor � (by
default, 3), constitutes an adaptive, cluster dependent thresh-
old to which dissimilarity increments are compared when
two clusters are considered for merge. This is illustrated in
Fig. 17 showing the dendrogram produced by the single-link
method for the three concentric patterns in Fig. 12e. In this
figure, d1 and d2 correspond to distances between clusters.
While clusters present diverse structure and are well
separated, cluster isolation based on a global threshold on
the distances, as happens with the single-link method, poses
difficulties: The inner clusters cannot be isolated without
consequent fragmentation of the outer cluster. Group
structure is assessed by the proposed approach by means of
the statistical model for the dissimilarity increments within
the cluster. According to the new isolation criterion, the
proposed method, instead of looking at distances, analyzes
the gaps g1 and g2 and compares each with the distribution of
dissimilarity increments of the adjoint cluster. As a result,
these two clusters are isolated and frozen in the dendrogram.
Association steps continue with the remaining data which
leads to the formation of a third cluster. Therefore, in this case,
application of the proposed clustering method is equivalent

to cutting the dendrogram produced by the single-link

method at three points with the overall shape of the graph

remaining the same.
The dynamic thresholding strategy applied during the

cluster formation process may, however, conduct to drastic

changes in pattern associations, reflected in distinct topol-

ogy dendrograms. This is illustrated in the next example,
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Fig. 15. Dendrogram produced by the single-link method for the iris data. From the graphs, the iris types Virginica and Versicolor are

undistinguishable-rightmost 100 samples, while the Setosa forms a well-separated cluster.

Fig. 16. Dendrogram produced by the single-link method for the breast cancer data.

TABLE 1
Cluster Center Locations Obtained with the k-Means Algorithm Fig. 17. Dendrogram produced by the single-link method for the data in

Fig. 12e. The distances d1 and d2 are here plotted as levels at which
clusters are joined. Single-link method: A vertical line on the dendrogram
defines a data partitioning. Proposed method: Dissimilarity increments
are compared with a dynamic, class dependent threshold. For instance,
the gaps, g1 and g2, are compared with the corresponding class
threshold (3=�1 ¼ 0:053 and 3=�2 ¼ 0:035, respectively). As a result, two
clusters are isolated and frozen in the dendrogram; merging steps
continue with the remaining data, thus leading to a third cluster, as gaps
are smaller than the cluster threshold, 3=�3 ¼ 0:21.



which clarifies how the outer circle in Fig. 13a is detected.
For simplicity, only the circle and the star-shaped clusters
are considered. Fig. 18a shows the dendrogram produced
by the single-link method. Due to spatial proximity, a few
points of the circle are associated with the star-shaped
cluster. The proposed method (Fig. 18b) changes the way
the dendrogram is produced by eliminating the association
of the star with its nearest point on the circle (pink cross on
the plot in Fig. 18a). Since this association is not possible
according to the statistics of dissimilarities in the star
pattern, the later is frozen in the dendrogram; further
associations continue with the remaining data, making it
possible to connect the circle (plot in Fig. 18b).

7 CONCLUSIONS

We have shown that clusters of distinct shapes or different
data generation paradigms can be adequately modeled by
an exponential distribution when analyzing the dissim-
ilarity increments between neighboring patterns; the mean
value of this parametric model is closely related to data
sparseness, irrespective of orientation or shape features.

Adopting this parametric model for cluster representa-

tion, a new criterion for cluster isolation was proposed. A

hierarchical agglomerative algorithm adopting the proposed

isolation criterion was described and applied to several test

data. A comparison of the new method with other

approaches covered the following techniques: a hierarchical

agglomerative clustering algorithm—the single-link method;

a cluster center based technique—the k-means algorithm.

The analysis of the method and of the results obtained

revealed its ability to identify clusters that have arbitrary

shape and size, greatly outperforming the single-link and

k-means methods, taken as reference; the number of clusters

is intrinsically found without requiring ad hoc specification

of design parameters or engaging computationally demand-

ing optimization processes. Furthermore, the algorithm does

not impose clusters on the data, as corroborated by the results

with random data.

Results with the Iris data set and with Gaussian data with

equal covariance matrices and varying Mahalanobis dis-

tance, revealed sensitivity of the method to noise. While using

a global statistic of dissimilarity increments to characterize

cluster structure, the isolation criterion is applied locally to a

single pair of patterns: the nearest neighbors linking the

clusters candidate for merging. Therefore, the presence of

noise may induce the merging of clusters with similar

structure. In order to overcome this difficulty, one can apply

some denoising technique over the data, eliminating atypical

patterns. Otherwise, the isolation criterion can be applied to

the average dissimilarity increments, computed over a set of

pairs (instead of a single pair) of nearest-neighbor patterns

linking the two clusters.
Examples provided in this paper used the Euclidean

distance as dissimilarity measure between patterns described

as real-valued vectors. The proposed method is not, however,

conditioned to any specific dissimilarity measure or pattern

representation form. An application example concerning

clustering of contour images described in the string format

and using a normalized string edit distance [38], [24] as

dissimilarity measure has been presented in [33].
The proposed cluster isolation criterion based on the

concept of continuity between neighboring patterns within a

cluster (the overall structure being captured by dissimilarity

increments statistics) has been evaluated in this paper in the

context of hierarchical clustering. Ongoing work includes the

application of this criterion and its extension to local

neighborhoods, to other clustering frameworks, namely, in

K-means-based clustering and formal justification for the

exponential behavior of dissimilarity increments.

APPENDIX A

Let pðxÞ ¼ � exp��x be an exponential distribution with

mean value !xx ¼ 1
� . The slope of the distribution at points

which are multiples of the mean, x ¼ i!xx ¼ i
� , is given by
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Fig. 18. Dendrograms produced by the single-link and the proposed method. A plot of the clustering obtained is overlayed on the graph. (a) Single-

link method. Clustering: cut at level 2. (b) Proposed method: clustering obtained with � < 10.



dpðxÞ
x


x¼ i

�

¼ ��2 exp�� i� ¼ ��2 expi :

The equation of the tangential line at this point is of the

form

y ¼ ��2 expi xþ y0:

Since y  pðx ¼ i
�Þ ¼ � exp�i , from the equality

� exp�i ¼ ��2 exp�i i
�
þ y0

one obtains y0 ¼ � exp�iðiþ 1Þ.
The crossing, x0, of this tangential line with the x-axis is

therefore given by

y ¼ 0 ) 0 ¼ ��2 exp�i x0 þ � exp�iðiþ 1Þ
� exp�iðiþ 1� �x0Þ ¼ 0

x0 ¼
iþ 1

�
¼ ðiþ 1Þ!xx:
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