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Abstract

The problem of cluster defining criteria has been ad-
dressed in various forms. In this paper, a new cluster
1solation criterion is proposed, underlying a hypothesis
of smooth dissimilarity increments between neighboring
patterns within a cluster. This isolation criterion is
merged in a hierarchical agglomerative clustering algo-
rithm, producing a data partitioning and simultaneous
accessibility to the intrinsic data inter-relationships in
terms of a dendrogram-type graph. By defining ade-
quate dissimilarity measures, the new algorithm is ap-
plied to vector based pattern analysis and to categoriza-
tion of structural patterns. Both simulated data and
real applications, in the contexrt of automatic analysis
of contour images, are presented to illustrate and eval-
uate the method. Examples demonstrate the versatility
of the method in identifying arbitrary shape and size
clusters, intrinsically finding the number of clusters.

1. Introduction

Clustering algorithms play an important role in ex-
ploratory data analysis and datamining, providing a
means to ascertain structure within the data. Two
main strategies are used for clustering: hierarchical
methods and partitional methods [3, 7). Partitional
structure organizes patterns into a small number of
clusters.

Hierarchical methods propose a nesting of clus-
terings, providing additional information about data
structure, represented graphically as a dendrogram. A
particular algorithm can be obtained by the definition
of the similarity measure between patterns and clusters
[4], the later ultimately conditioning the structure of
the clusters identified. The single link algorithm is one
of the most popular methods in this class [7]. Data
partitioning is usually obtained by setting a threshold
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on the dendrogram; cluster validity studies have also
been proposed [2, 1] for the a posteriori analysis of
structures, in order to evaluate the clustering results
and define meaningful clusters.

In this paper we propose a new criterion for cluster
isolation based on a hypothesis of smooth dissimilar-
ity increments between neighboring patterns within a
cluster. The integration of this criterion in a hierarchi-
cal clustering framework produces a partitioning of the
data, while exhibiting data inter-relations in terms of a
dendrogram type graph. The structure of the obtained
dendrogram, unlike conventional hierarchical cluster-
ing methods, is isolation criterion dependent, expand-
ing the range of pattern structures handled by these
methods. Additionally, the problem of deciding the
number of clusters is subsumed and intrinsically dic-
tated by the criterion.

Section 2 outlines the new cluster isolation criterion.
A hierarchical agglomerative algorithm adopting this
criterion is described in section 3. The characteristics
of the new method are analysed and illustrated in based
on examples, covering both simulated (section 4) and
real data, the later in the context of automatic analysis
of contour images (section 5). Conclusions are drawn
in a last section.

2. Smoothness Hypothesis and Cluster
Isolation Criterion

The proposed cluster isolation criterion derives from
the following intuitive concepts and assumptions:

o A cluster is a set of patterns sharing important
characteristics in a given context;

o A dissimilarity measure encapsulates the notion of
pattern resemblance;



o Higher resemblance patterns are more likely to be-
long to the same cluster and should be associated
first;

e Dissimilarity between neighboring patterns within
a cluster should not occur with abrupt changes;

e The merging of well separated clusters incur in
abrupt changes in dissimilarity values.

The first two assumptions emphasize the fact that
the way clustering algorithms address patterns inter-
relationships are context dependent, context being as-
serted in terms of dissimilarity functions.
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Figure 1. Definition of gap in an example of 18 2-
dimensional pointsassociated using the single-link
method, adopting the Euclidean distance. On top:
plot of data, grouped in two clusters. Bottom:
corresponding dendrogram.

The above considerations suggested the definition of
a new cluster isolation criterion for aglomerative type
algorithms, based on the analysis of increments of dis-
similarity measures between neighboring patterns. Let
Ci, C; be two sets of patterns, candidate for merg-
ing, and assume that patterns are included in clus-
ters with increasing order of dissimilarity. Let d;(C;)
(d¢(C;)) represent the minimum dissimilarity for the
formation of cluster ¢ (j, respectively), that is, the

value of the dissimilarity of the latest pattern associ-
ation, and d(C;, C;) the dissimilarity between the two
clusters. We define dissimilarity increment or gap be-
tween cluster 7 and j as the asymmetric increase in the
dissimilarity value, needed in order to allow the data
association into a single cluster:

gap; = d(C;, Cj) — di(C;) (1)

Figure 1 illustrates the concept using the single link
method for cluster association.
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Figure 2. Distribution of gaps. The plots on the
left represent histograms (dotted lines) and fit-
ted exponentials for the gaps computed between
neighboring patter ns generated randomly from a
uniform distribution in the interval [0, 10]; on the
right, the curves represent estimated gap distri-
butions for data generated from the same uni-
form distribution or from a gaussian N (0, 5). As
shown, higher data densities (corresponding, for
each data model, to a higher number of generated
patterns) lead to narrower distributions.

The statistical distribution of these increments
within a cluster has a smooth evolution, and can be
modelled by an exponential probability density func-
tion, p(z) = Bexp P*,x > 0, the parameter 3 char-
acterizing the data dispersion. Figure 2 shows his-
tograms and estimated exponentials for gaps computed
from data randomly generated according to Gaus-
sian and uniform distributions. This shows that dif-
ferent data generating models lead to almost coinci-
dent curves, the parameter ( essentially reflecting data
sparseness. Tails of these distributions correspond to
patterns in frontier or borderline positions between
clusters. On the other hand, increments computed for
elements in distinct clusters will, in general, have high
values, located on the tail of the statistic for each clus-
ter.

The idea for cluster isolation is therefore to de-
fine a limit on the dissimilarity increments such that



most of the patterns densely connected are included
in the same cluster,while all others, not conveying this
smoothness hypothesis, are rejected. The setting of
this threshold is motivated by the following fact, char-
acteristic of the exponential distribution: the crossing
of the tangential line, at points multiple of the distri-
bution mean value, ¢ x é, with the x axis, is given by
(i +1) x %, as shown in figure 3. This suggests the
choice of a threshold as a multiple of the mean value of
the distribution. The isolation criterion can be stated

as:

o Let C;, C; be two clusters, candidate for merg-
ing, and p,;, p; be the respective mean values of
dissimilarity increments in each cluster. Compute
the increments for each cluster, gap;, gap;, as in
expression 1. If gap; > ap; (gap; > apy) isolate
cluster C; (C;) and proceed the clustering strategy
with the remaining data. If neither cluster exc-
ceeds the gap limit, join them.

The design parameter, «, constrains the degree of
isolation; values in the range [3, 5] provide reasonable
choices, as illustrated in figure 3.
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Figure 3. Defining a threshold on the gaps value
(x axis). Dotsarelocated on points multiple of the
distribution mean, %, and red lines are tangents
at those points. The crossing at the x axis occur
at points &, i being a positive integer. Values for
7 in the range [3, 5] cover the significant part of
the distribution, being reasonable choices.

3. Hierarchical Agglomerative Partition-
ing Algorithm

The following describes a hierarchical aglommera-
tive clustering algorithm that incorporates the pro-
posed cluster isolation criterion.

Input: Ny samples; a.
Output: Data partitioning.
Steps:

1. Set: Final clusters = ®; n = Ng;
di[i] = pli] = jumps[i] =0, i =1,...,n;
Put each sample in a cluster C;;
Clusters = |, Cy;

2. If Clusters = ® or n =1 stop, returning the

clusters found in Final_clusters| ) Clusters;
else continue.

3. Choose the most similar pair of clusters
(Cs,Cy) from Clusters. Let
gap; = d(C;, Cy) — dyli]
gap; = d(Cy, C5) — dyj]
4. If ((p]i] = 0) or (gap; < apli])) and
((pls] = 0) or (gap; < aplj]))
Join the clusters C;, C; into cluster C; ; :
Ciy = CGUC;
Let I be the index for the merged cluster;
Replace C;, C; by C; ; in Clusters;
dull] = d(Cy, Cy);
jumps(I] = jumps(i) + jumps(j] + 2

pl) = pFEE el
gapitgap; .

Jumps[I]

Go to step 2.

else continue.
5. If (gap; > apfi]) set
Final_clusters = Final_clusters|JCy;
Remove C; from Clusters;
n=n-—1.

If (gap; > aplj]) set
Final_clusters = Final_clusters| ) Cj;
Remove C; from Clusters;
n=n-—1.
Go to step 2.

As the estimates of the mean values p[i] are not reli-
able for very small samples sizes premature igolation of
clusters may occur. In order to overcome this situation,
inhibition of cluster isolation actions may be adopted
when clusters have very low dimensions; in the exam-
ples provided next, inhibition of cluster isolation was
only implemented when both clusters under analysis
had less than 10 samples.

This algorithm, while producing a partitioning of
the data, also provides relevant information on the re-
lations between patterns, that can be graphically dis-
played as a dendrogram. It is important to note that,



unlike classical hierarchical clustering algorithms, the
partitions obtain do not correspond to cutting the den-
drogram at a given threshold, since, according to the
isolation criterion proposed, clusters obeying the crite-
rion will be frozen in the dendrogram, the remaining
clusters continuing in the pursuit for possible merging.
Therefore the structure of the resulting dendrogram is
conditioned by the cluster isolation criterion. This and
other characteristics are illustrated and analyzed in the
next sections in light of examples.

4. Clustering of 2-D Patterns with Vari-
able Structure

In order to evaluate the ability of the algorithm, and
underlying criterion, in the identification of arbitrary
shape, variable sized clusters, a complex test was built
compriging the following simulated data: a 10, equally
spaced, points circle; two concentric rings of dense (200
samples each), uniform distributed points; two parallel,
bar-shaped, random sets with distinct densities (100
samples each); two neighboring, 50 point, Gaussian
distributions with distinct covariances; a star-shaped
pattern formed by 29 points. The above patterns were
joined in an intermixed structure, where concentric and
crossing patterns were configured.

Figure 4 summarizes the results obtained with the
algorithm of section 3, using the Fuclidean distance,
for several values of the parameter «, in a direct com-
parigon with the single link method.

Dense clusters will form earlier in the dendrogram
than sparse data. While this type of structure could be
handled by post validation of clusters within the den-
drogram produced by the single link algorithm, a dis-
tinct feature of the proposed clustering criterion con-
cerns the change in patterns associations due to cluster
freezing in the agglomerative process. This is appar-
ent in the comparison of the dendrograms produced by
the two approaches. As described previously, when two
patterns are confronted for merging (meaning that they
are the ones most similar at the time) if the increase of
dissimilarity needed for merging is not consistent with
one of the cluster’s statistic, but being with the other,
the first is isolated (frozen in the dendrogram); the sec-
ond is kept to the continued process of finding possible
associations. This enables the gathering, for instance,
of the points of the exterior circle (black dots in the
middle left picture).

As shown, setting a too small (top left picture) pro-
duces spurious clusters due premature thresholding of
the exponential density (see section 2). On the other
hand, high values of a (picture on the top right), while
not refining cluster identifiability, lead to cluster merg-
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Figure 4. Clustering of complex structures using
the new approach. Excessive or low value for
the density limiting parameter, «, lead to merg-
ing of two clusters (top right) and the creation of
aspuriouscluster (top left), respectively. Thethe-
oretically meaningful choice for « leads to com-
plete separation of clusters (middle left). The sin-
gle link algorithm (middle right) cannot handle
concentric, intermixed or highly disparate den-
sity patterns. On the bottom, the dendrograms
produced by the new method (left) and the single
link (right) are displayed.




ing as a result of tail superposition between neighboring
clusters. The results obtained for « in the theoretically
meaningful range (middle left picture) comply with in-
tuitive separation of data, being able to cope with the
different types of structures and sizes of clusters. The
single link method cannot handle the mingled struc-
tures or the variability of data densities involved.

5. Application in Automatic Analysis of
Contour Images

The problem here concerns the categorization of
181 contour images of 5 types of hardware tools (see
figure 5) using string descriptions. Each image was
segmented to separate the object from the background
and the object boundary was sampled at 50 equally
spaced points; object’s shapes were encoded using an
8-directional differential chain code [6, 5]. We have
shown previously [4] that direct application of hierar-
chical clustering based on string matching using sym-
bol editing operations to this data does not produce a
consistent partitioning of patterns; this is mainly due
to non homogeneous distances between patterns in dif-
ferent classes as shown in figure 5, which presents the
results of the single link algorithm, using the Levens-
thein distance normalized by the length of the editing
path [8, 9] as dissimilarity measure. With the new al-
gorithm, total separation between classes of tools was
achieved by setting o = 4. Furthermore, tool t3 was
split into two clusters corresponding to distinct poses:
open and closed.

6. Conclusions

A new criterion for cluster isolation was proposed
based on the assumption of smooth dissimilarity incre-
ments between neighboring patterns within a cluster.

A hierarchical agglomerative algorithm adopting the
isolation criterion was described and applied to both
simulated and real data in the context of object recog-
nition from contour images. As corroborated by the ex-
amples, the proposed criterion leads to potentially dif-
ferent dendrograms from the ones obtained with stan-
dard hierarchical procedures, based on the pruning ef-
fect on dendrogram branches; while conditioning the
graph formation and shape, it also provides, at the
end, a partitioning of the data.

Examples illustrate the versatility of the method in
identifying arbitrary shape and size clusters, intrinsi-
cally finding the number of clusters. This has been
shown in extensive tests, not presented here due to
space limitations
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Figure 5. Typical samples of contour images and
dendrogram obtained using the single link algo-
rithm.
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