

INSTITUTO SUPERIOR TÉCNICO

LICENCIATURA EM ENGENHARIA ELECTROTÉCNICA E DE COMPUTADORES

GUIA DO 1º TRABALHO DE LABORATÓRIO

DE

SISTEMAS DE TELECOMUNICAÇÕES I

Espectro da Voz e Conversão A/D

Ano Lectivo de 2002/2003

1º Trabalho de Laboratório

Espectro da voz e conversão analógico-digital

Objectivos

- 1) Observar e analisar a representação da voz no domínio do tempo e da frequência;
- 2) Observar e analisar a conversão analógico-digital de um sinal sinusoidal.

Duração média da sessão de laboratório

Quarenta e cinco minutos.

Legenda: **PSU** - alimentação do DSP (Processador Digital de Sinal); **Com 1/2** - porta de comunicação do PC com o DSP.

Introdução

Esta sessão utiliza:

- Um analisador espectral baseado no processador digital de sinal (DSP) da Texas Instruments TMS320C5x para efectuar a análise espectral da voz e um PC para visualização do espectro da voz. O DSP amostra e digitaliza o sinal eléctrico que tem à sua entrada e processa o sinal digital. Nesta experiência, os processamentos efectuados pelo DSP são, primeiramente, uma transformada de Fourier discreta rápida (*Fast Fourier Transform* FFT) e, depois, a conversão analógico-digital em que o número de bits de codificação é controlado pelo utilizador através do teclado do PC. Nesta segunda operação, a informação resultante da conversão A/D é enviada pelo DSP para o PC podendo ser observada no ecrã do PC como se fosse observada num ecrã de osciloscópio o ecrã do PC funciona como "ecrã de osciloscópio virtual".
- Um conversor analógico-digital (A/D) baseado no DSP da Texas Instruments TMS320C5x e um PC para visualização do resultado da conversão A/D (o PC funciona como osciloscópio virtual). Por comparação do resultado da conversão A/D, observada no ecrã do PC, com o sinal original, observado no osciloscópio, podem avaliar-se os efeitos dos erros de quantificação e do *aliasing*.

Equipamento necessário

- Placa DSP + PSU + cabo de interface série com o PC;
- PC com ecrã, de preferência a cores, e sistema operativo MSDOS 4.01 ou mais recente;
- Osciloscópio;
- Gerador de sinais capaz de gerar ondas sinusoidais, rectangulares e triangulares com frequências entre 30 Hz e 20 kHz;
- Microfone;
- Cabos necessários para assegurar as ligações representadas na Figura 1.

<u>1º OBJECTIVO: REPRESENTAÇÃO DA VOZ NO DOMÍNIO DO TEMPO E DA</u> <u>FREQUÊNCIA</u>

Montagem (hardware)

Efectue a montagem indicada na Figura 1. Ligue o microfone ao osciloscópio através de um "T". Ligue a outra saída do "T" à entrada do DSP. De momento, não ligue o gerador de sinal. Ajuste a *base de tempo* do osciloscópio para 1 ms por divisão. Ajuste a *entrada X* do osciloscópio de forma a obter uma boa visualização do sinal de voz (sugere-se 1 V por divisão).

Figura 2 - Ecrã do PC apresentando o resultado da análise espectral.

Legenda: DSK - DSP Starter Kit

Montagem (software)

Ligue o PC e coloque-se na directoria onde estão armazenados os programas necessários a esta experiência, através do comando:

C:> CD \DSK <Enter>

Dê início ao programa, através do comando:

C:\DSK> FFT -C1 <Enter>

Após a introdução deste comando, o ecrã do PC deve apresentar uma figura típica de um ecrã de um analisador de espectros (Figura 2).

O DSP determina o espectro da voz, aplicando a FFT a troços temporais do sinal de voz. O ecrã do analisador de espectros pode apresentar o "espectro" resultante da média de vários espectros determinados pelo DSP ao longo do tempo. Consegue-se, deste modo, eliminar flutuações rápidas do espectro. Se pretender visualizar o espectro resultante da média dos espectros de 8 troços consecutivos, carregue três vezes na tecla "A". Neste caso, o ecrã apresentará uma resposta mais lenta. Se quiser alterar para 1 o número de espectros a partir

dos quais se obtém o resultado apresentado no analisador espectral, carregue uma vez na tecla "A". O ecrã apresentará, então, uma resposta mais rápida.

O analisador de espectros apresenta 128 valores do espectro do sinal numa gama de frequências que vai de DC até 4.7 kHz. Estes valores foram obtidos a partir de amostras do sinal original tiradas a um ritmo de, aproximadamente, 10000 amostras por segundo. Cada linha vertical representada é "coroada" por uma barra vermelha pequena que lentamente vai actualizando o valor do espectro permitindo ficar com uma ideia da evolução espectral do sinal ao longo do tempo.

Efectue agora os seguintes procedimentos. Seja breve em cada alínea deste objectivo.

- a) Assobie ao microfone e observe o sinal no tempo e o seu espectro. No ecrã, será observado um pico único, indicando a frequência do assobio. Esboce uma representação do assobio no tempo e também do seu espectro.
- **b**) Altere o tom do assobio e observe o pico a deslocar-se para a esquerda ou direita, dependendo de o assobio se tornar mais grave ou mais agudo. <u>Relacione o tom do assobio com a frequência onde a maior parte da energia se concentra.</u>
- c) Emita alguns sons ao microfone e observe a variação do sinal no tempo e na frequência. A diferença de espectros consoante a palavra produzida é a base de uma das formas de reconhecimento de voz. <u>Represente o espectro de várias palavras (ou das sílabas que as constituem) e comente a banda de frequências ocupada</u>.
- d) Observe o sinal no tempo e o espectro da mesma palavra dita por pessoas diferentes (de preferência de sexo diferente). <u>Represente os espectros</u> e observe que são diferentes. É esta diferença nos espectros que nos permite identificar as pessoas pela voz. Tente relacionar o sinal no tempo com o espectro observado. <u>Comente os resultados obtidos.</u>

IMPORTANTE: Desligue o amplificador e saia do programa. Faça o "reset" do DSP (para fazer o reset do DSP, desligue e volte a ligar a alimentação do DSP)

<u>2º OBJECTIVO: OBSERVAR E ANALISAR A CONVERSÃO ANALÓGICO-DIGITAL</u>

Montagem (hardware)

Efectue a montagem indicada na Figura 1. Ligue o gerador de sinal ao osciloscópio através de um "T". Ligue a outra saída do "T" à entrada do DSP. Ajuste a *base de tempo* do osciloscópio para 1 ms por divisão. Ajuste a *entrada X* do osciloscópio para 1 V por divisão. No gerador de sinais, seleccione um sinal sinusoidal e ajuste a sua amplitude para 5 V pico a pico e a sua frequência para cerca de 200 Hz. Verifique que o sinal é facilmente visualizado no osciloscópio e tem componente DC nula (sinal AC).

Figura 3 - Ecrã do PC apresentando o resultado da conversão A/D.

Montagem (software)

Ligue o PC e coloque-se na directoria onde estão armazenados os programas necessários a esta experiência, através do comando:

C:> CD \DSK <*Enter*>

Dê início ao programa, através do comando:

C:\DSK> OSCOPE -C1 < Enter>

Após a introdução deste comando, o ecrã do PC deve apresentar uma figura típica de um ecrã de osciloscópio (Figura 3). <u>Se isto não acontecer, reinicie as ligações assegurando-se de que</u>:

i) faz o "reset" do DSP

ii) a porta de comunicação do PC com o DSP é a 1. Se esta porta fôr a 2, o comando a introduzir deverá ser:

C:\DSK> OSCOPE -C2 < Enter>

Em funcionamento normal, o ecrã do osciloscópio virtual apresenta as amostras quantificadas resultantes da conversão A/D do sinal original assim como o sinal reconstruído a partir dessas amostras. Pode avaliar-se o ruído de quantificação através da alteração do número de bits que representam cada amostra do sinal. O número de bits possível varia entre 1 e 8 e pode ser alterado carregando nas teclas "1" a "8", respectivamente, do teclado "não numérico". A *base de tempo* do osciloscópio virtual pode também ser alterada usando as teclas de movimento do cursor para a direita e para a esquerda. Para parar o ecrã do osciloscópio virtual, utilize a tecla "Pause" e para eliminar a sua acção carregue na tecla "Enter".

Experiência 1: Aliasing

- a) Ajuste o gerador de sinais para uma onda sinusoidal de 250 Hz e 5 V de pico a pico (certifique-se de que o osciloscópio virtual tem uma *base de tempo* de 1 ms e uma resolução de 8 bits). Nesta situação, o sinal observado no osciloscópio virtual é aproximadamente igual ao observado no osciloscópio analógico. As linhas vermelhas indicam as amostras recebidas do DSP. A linha a branco, que une as amostras, dá a aproximação ao sinal original.
- **b**) O período de amostragem do conversor A/D pode ser determinado dividindo o período da sinusóide pelo número de amostras utilizadas na sua representação no osciloscópio virtual. Através deste processo, <u>calcule a frequência de amostragem do conversor A/D.</u>
- c) Altere a frequência do sinal de entrada para 1 kHz. Se o ecrã parecer "confuso", pode alterar a base de tempo do osciloscópio virtual. A representação da sinusóide é agora mais imprecisa devido ao menor número de amostras. Mesmo assim, há ainda, teoricamente, informação suficiente para recuperar a forma original do sinal. Justifique.
- **d**) Aumente agora lentamente a frequência até um pouco abaixo de 2.5 kHz. Esta é a frequência máxima que se pode ter como frequência do sinal a amostrar. Justifique.
- e) À frequência de 2.5 kHz, a sinusóide é representada por duas amostras por período dando um sinal triangular à saída, a partir do qual se pode ainda recuperar a sinusóide. Embora duas amostras por período sejam o mínimo exigido para representar a sinusóide, são necessárias mais amostras para produzir uma melhor representação do sinal original. Desenhe os sinais observados no ecrã do osciloscópio real e no ecrã do osciloscópio virtual.
- f) Aumente, lentamente, a frequência do sinal até 30 kHz. A partir de 2.5 kHz o sinal observado no osciloscópio virtual é uma sinusóide cuja frequência é claramente diferente da do sinal que lhe deu origem. Explique porquê. Observe e explique o que acontece para frequências da sinusóide próximas de múltiplos de 5 kHz.

Experiência 2: Erros de quantificação

- a) Ajuste o gerador de sinais para uma onda sinusoidal de 250 Hz e 5 V pico a pico. Ajuste os dois osciloscópios para uma *base de tempo* de 1 ms por divisão. O osciloscópio virtual deve apresentar uma sinusóide. Carregue na tecla "1" para utilizar apenas um bit na representação da amplitude das amostras.
- **b**) <u>Desenhe a forma do sinal observado no osciloscópio virtual.</u> <u>Compare a forma de onda original com a reconstruída em termos de forma, frequência e amplitude.</u>
- c) Repita a alínea a) aumentando os níveis de quantificação até ao máximo de 8 bits por amostra. Para cada valor do número de níveis de quantificação, varie a amplitude da sinusóide para avaliar quão bem o sinal de entrada é representado para todas as amplitudes. A partir de que valor do número de níveis de quantificação se pode considerar o sinal quantificado como uma boa réplica do sinal original? Desenhe o sinal resultante da quantificação da sinusóide com 2, 4 e 8 bits por amostra. Estabeleça a correspondência entre o número de níveis e o número de bits.

1º Trabalho de Laboratório de Sistemas de Telecomunicações

Turno	Grupo
Nº	Nome
Nº	Nome
Nº	Nome

1- REPRESENTAÇÃO DA VOZ HUMANA NO DOMÍNIO DO TEMPO E DA FREQUÊNCIA

a)

			 					-		_	 -	-		-
				!				!						
- 1								1						1
i	Ì						Ī					<u> </u>		
								1				!		
			 	 <u> </u>			 ę.	<u> </u>						<u> </u>
i	i	i i		i	i i	i i	i	i	i i			i	i i	i i
				 			 Ē	<u> </u>			 	<u> </u>		i
								1						1
							j –							
i	i	i i		i	i i	i i	i	i	i i			i	i i	i i
i	i			i——			i i	i—				<u> </u>		î –
								1						
				 							 	<u> </u>		<u> </u>
!				!			!	!				!		! -
				 				<u> </u>			 			<u> </u>
													i	1
				!										ł.,
				 			 1					<u> </u>		1
								1						
				 i —			 i i i i i i i i i i i i i i i i i i i	i			 	——	<u> </u>	i
								1						1
							ļ							

b)

c)

	· · · · ·			
	<u> </u>	<u> </u>		
		1 1		
	 	+	_	_
		1 1		
				 _
I I	1 1	1 1		1
<u> </u>	<u> </u>	1		
		1		
i i i	i i	i i	—i——i	 -i -i
i i	i i	i i	i i	1 1
	1 1	1 1		1
i i	i i	i i	i i	1 1
	1 1	1		
1	1 1			
		<u> </u>		
		1		1

i i	i i	i i	i i	i i	i i	i i	i i	i i
						i		
		i i				i i		
L I		i j	i j	i j			i j	
		-						
		1 1				1 1		

IST, LEEC, GUIAS DE LABORATÓRIO DE SISTEMAS DE TELECOMUNICAÇÕES I, 2002/2003

	 			 -

d)

				-				
					 		_	
			_		 			
				-				
					 -			
-								
			-		 			
	-				 			
	1			1				. i
	1			1				. i
		_	-			_		
1								i i
					 		-	

				 			4 F
	-		-				
	-		-				
	-		-				
i							
	-		-				
6			 	 			
				 			4 F
	-		-				
						4 1	4 1
2	-	-	 -	-	-		
				_			
- 1				 			
						4 1	4 1
						4 1	4 1
- 1				 			
-							
<u> </u>						i i	i i
				i i	i i	i i	i i
			i i	i i	i i	1 1	1 1

2 – OBSERVAR E ANALISAR A CONVERSÃO ANALÓGICO-DIGITAL

2.1 Aliasing b) c) d) e) f)

2.2 Erros de quantificação

b)

	-11	i i	 <u> </u>	
			 - <u> </u>	
 		—-i-	 	

c)