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Abstract – In this paper we propose a problem that 
concerns the calculation of the band structure of periodic 
media with delta-function permittivity distributions. The 
objective is to obtain an analytical solution for the 
dispersion characteristic, or alternatively an efficient 
numerical solution. The proposed problem is in a certain 
sense canonical, and is of interest to understand how the 
propagation of electromagnetic waves in periodic structures 
depends on the medium topology. 
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I. INTRODUCTION 

In recent years, the engineering of composite periodic media 
has experienced an extraordinary impulse after the discovery 
of electromagnetic band gap structures [1]-[3], and more 
recently of left-handed media [4]. The emergence of new 
“engineered” materials is expected to have a great impact in 
the performance of antennas and other devices for radio and 
millimeter wave applications. Artificial materials consist of 
a host medium with metallic or dielectric implants. 

The problem proposed in this paper is connected to the 
calculation of the dispersion characteristic of periodic 
dielectric materials.  

The propagation of electromagnetic waves is described by 
the Maxwell-Equations [5]. In periodic structures, a generic 
solution of the Maxwell-Equations can be decomposed into 
Floquet solutions, which are characterized by a wave vector 
k.  

For a given wave vector, the Floquet solutions occur only 
for a numerable set of “resonant frequencies”, nβ , n=1,2.... 
The band structure of the periodic medium is formed by the 
multi-valued application ( )kk nβ→  [2].  

The calculation of the band structure of periodic media is an 
intricate problem. Mathematically the problem can be 
reduced to the calculation of the spectrum of a Hermitian 
operator. Several methods have been proposed for the effect 
[2]-[3], [6]-[7]. The most popular method is perhaps the 
plane wave method [7], which, simply put, consists in 
expanding the pertinent physical quantities in a Fourier 

series, reducing in this way the eigenvalue problem to the 
calculation of the spectrum of an Hermitian matrix. 

The numerical calculation of the band structure of periodic 
materials, although computationally demanding, is well 
established. In this paper, we propose the study of a new 
class of media of highly localized delta-function permittivity 
distributions. 

Although this class of media is not physically realizable, its 
band structure may provide valuable information concerning 
the effect of the medium topology on the propagation of 
electromagnetic waves. The interest in introducing this 
problem is related to the fact that problems involving delta 
functions are more likely to have analytical solutions than 
problems with stepwise continuous permittivity 
distributions. 

II. EXAMPLES 

In this section we present examples that illustrate the 
objective of the paper with two particular cases.  

A. 1-D problem 

First we consider a one-dimensional problem. In this case 
the objective is to determine the Floquet modes of the 
following equation: 

( ) 02
2

2

=+ ψεβψ x
dx
d     (1) 

where ( )xε  is the periodic (relative permittivity), ( )xψψ =  
is the wave function, and β  is the “wave number”. The 
permittivity satisfies: 

( ) ( )xax εε =+ , generic x   (2) 

where a is the period. We assume that the permittivity is 
given by: 

( ) ( ) ( ) ( )xax pav
111 δεε −+=     (3) 

( ) ( ) ( )∑ −=
n

p naxx δδ 1     (4) 



where δ  is Dirac’s distribution, avε  is the average 
permittivity, and n is a generic integer. 

We look for Floquet solutions of equation (1), that is for 
solutions such that: 

( ) ( )kxjx expψ  is periodic    (4) 

where 1−=j  and k is the “wave vector” (the wave vector 
is a given real number that can always be assumed in 
[ ]aa ππ ,− : the Brillouin zone [2], [3], [8]). The objective 
is to determine the wave numbers β , such that (1) subject 
to (3) has a non-trivial solution. 

The solution of the enunciated problem can be easily 
obtained. We can for example approximate the periodic 
delta distribution in (4) by sequence of stepwise constant 
functions, and reduce the problem to Hill’s equation [8]. In 
this way, we conclude that for a given k, equation (1) has 
non-trivial solutions for β  such that: 

( ) 01,, =−avkF εβ     (5) 

where,  

( ) ( ) ( ) ( )aauakaukF ββββ sin
2
1coscos,, −+−=  (6) 

The particular case in which we let avε  approach infinity is 
particularly relevant, since it corresponds to the analog of a 
periodic medium with metallic inclusions. In this case, the 
solutions of (5) are: 

( )
2

2







=
a

nk πβ ,   n=1,2,...   (7) 

Notice that the right-hand side of the above equation is 
independent of k. The medium is thus “dispersionless”. The 
calculated resonant frequencies are unsurprisingly 
coincident with those of a metallic cavity. 

B. 3-D scalar problem 

We consider now an example of the three-dimensional 
scalar problem. The objective is to calculate the Floquet 
solutions of the following equation: 

( ) 022 =+∇ ψεβψ r     (8) 

where 2∇  is the Laplacian and ( )zyx ,,=r . The 
permittivity ( )rε  is periodic in both x, y and z. We take it 
equal to: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )[ ]zyx
a

ppp
av 111

3
1

1 δδδεε ++
−

+=r  (9) 

This topology corresponds to the situation in which high 
permittivity regions surround low-permittivity “islands” (the 
high permittivity region is connected). We look for solutions 
of equation (8) such that: 

( ) ( )k.rr jexpψ  is periodic    (10) 

where ( )zyx kkk ,,=k  is a given wave vector ( xk , yk , and 

zk  are real numbers that can always be assumed in 
[ ]aa ππ ,− ).  

Since equation (8) is separable, we easily conclude by 
putting ( ) ( ) ( )zyx 321 ψψψψ =  that the sought dispersion 
characteristic satisfies: 

2
3

2
2

2
1

2 ββββ ++=    (11.a) 

( ) 01
3
1,, 2

1

2

1 =








−avxkF ε

β
ββ   (11.b) 

( ) 01
3
1,, 2

2

2

2 =








−avykF ε

β
ββ   (11.c) 

( ) 01
3
1,, 2

3

2

3 =








−avzkF ε

β
ββ   (11.d) 

If we let avε  approach infinity, it clear that the solution of 
the above system converges to: 
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where 1n , 2n  and 3n  are 0≥  and ( ) ( )0,0,0,, 321 ≠nnn  . As 
in the previous section, if avε  goes to infinity the medium 
becomes dispersionless, and the spectrum consists of a set of 
flat bands. Physically this is easily understood, since the low 
permittivity regions become metallic cavities. 

III. THE PROBLEM 

The problem proposed here is to obtain the band structure of 
the scalar equation (8), or preferably of Maxwell-Equations 
(in the frequency domain): 

( ) 022 =+∇ ErE εβ    (13.a) 
0=∇ .E     (13.b) 

where ( )zyx EEE ,,=E  is the electric field, and .E∇  is the 
divergence. Analytical solutions are sought. Alternatively, 
an efficient numerical solution is also of interest. The 
important case is that in which avε  approaches infinity. 

The relevant permittivity distributions are described in next 
sections. 



A. “Spot Media” 

In the “spot medium” the low-permittivity region is 
connected. This structure is complementary from that 
analyzed in section II.B. The permittivity is given by: 

( ) ( ) ( ) ( )rr 3311 pav a δεε −+=    (14) 

( ) ( ) ( ) ( ) ( )∑ −−−=
lmn

p lazmaynax
,,

3 δδδδ r   (15) 

where n, m and l are generic integers. 

B. “Wire Media” 

The “wire medium” is characterized by “long-thin” high -
permittivity regions (wires or veins) [9]. The corresponding 
permittivity is given by: 

( ) ( ) ( ) ( )yxazyx pav ,11,, 22δεε −+=    (16) 

( ) ( ) ( ) ( )∑ −−=
lmn

p maynaxyx
,,

2 , δδδ    (17) 

C. “2D-Wire Media” 

In the “2D-wire” medium the wires are oriented in two 
possible orthogonal directions:  

( ) ( ) ( ) ( ) ( ) ( )[ ]zyyxazyx ppav ,,
2
111,, 222 δδεε +−+=  (18) 

D. “3D-Wire Media” 

In the “3D-wire” medium [10] the wires are oriented in 
three possible orthogonal directions:  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )[ ]zxzyyxazyx pppav ,,,
3
111,, 2222 δδδεε ++−+=

 (19) 
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