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Abstract— We present a problem coming from the area of
congestion control in packet-switching networks. The theme is the
assessment of the stability regions of a time-invariant discrete-time
system. The problem is to find the conditions upon which a given
polynomial, whose coefficients are subject to certain restrictions,
has all roots inside the unit disc.
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I. Introduction

We focus on congestion control mechanisms for packet-
switching networks, looking at schemes where the
sources of traffic receive congestion feedback from the
network. One of the key components for the efficient
control of resources in a large scale network is the provi-
sion of an active mechanism at the core routers (called
router algorithm), which is able to monitoring the cur-
rent state of congestion and react accordingly by send-
ing feedback messages to the sources. There are many
algorithms that have been proposed under different de-
sign objectives and network assumptions, resulting in
different control strategies. In spite of that, a common
concern in the design of these algorithms is the assess-
ment of their stability regions, either through simulation
studies or through a suitable analytic model that cap-
tures the essential characteristics of the overall system.
In one such proposal, the routers perform control actions
without keeping per-flow information (a particular strat-
egy known as stateless congestion control) and update
an internal value pk at discrete epochs k. The value pk

represents the estimated fair share of bandwidth. The
values of pk are communicated back to the sources. At
each router, pk is updated according to the following
relation:

pk = γ pk−1 + αk (Uk − Rk) , (1)

where γ and αk are control parameters, Uk is the avail-
able capacity of the router and Rk is the measured total
input traffic of the router. The sources are responsive
and react to the (delayed) messages pk sent by their
bottleneck routers. This way, the measured traffic com-
ponent Rk can be modeled as a weighted sum of past
values on pk, up to a maximum (discrete) delay n on the
network, as follows:

Rk = a1(k) pk−1 + a2(k) pk−2 + · · · + an(k) pk−n . (2)

The weight factors ai(k) depend on the distribution of
sources in the network and are, in general, time-variant
parameters. The overall interaction among each bottle-
neck router and sources can be modeled as a discrete-
time control system with delayed feedback.
In general, the resulting discrete-time system is sub-

ject to variations on the parameters ai(k) (due to the
dynamics of sources entering and leaving the network)
and, therefore, the control parameter αk must be eval-
uated at each epoch k in order to drive the system into
stable regions. The router has no means to determine
the individual components ai(k) but, instead, is able
to estimate an upper bound on

∑
i ai(k), denoted by

M(k), which represents the number of locally restricted
sources. Even though the distribution of the parameters
ai(k) is unknown to the router, we can apply general
results on the stability of time-variant systems to derive
stability regions for the algorithm, using the estimated
values of M(k) and imposing conditions on the parame-
ter γ and control gain αk.

II. Time-invariant case

We now turn our attention to the special case where
the coefficients ai(k) are invariant , i.e. ai(k) = ai.
The estimated upper bound on the number of locally
restricted sources is now an invariant parameter, given
by M =

∑
i ai. In some network scenarios, it is not

unrealistic to assume that the variation on the popula-
tion of sources competing for bandwidth is very slow as
compared to the evaluation intervals of the routers. In
addition, we are interested in the particular case where
γ = 1. This turns the previous model into a time-
invariant discrete-time system, whose stability can now
be assessed by looking at the roots of the resulting char-
acteristic polynomial:

P (Z) = Zn + (α a1−1)Zn−1+ α a2Z
n−2 + · · ·+ α an .

(3)
The system is stable if and only if P (Z) has all zeros in-
side the unit disc. Under the time-invariant case, we may
look further at particular distributions on the parame-
ters ai which have strong connections to practical net-
work scenarios. For example, we may consider a worst-
case scenario for design purposes, where it is assumed
that all control delays in the network are concentrated



in the parameter an. In other words, this means that all
sources in the network react with the maximum delay
of the network. This particular distribution leads to the
characteristic polynomial

P (Z) = Zn − Zn−1 + µ n ≥ 2 , (4)

where
µ = α an = α M .

It can be proved that the polynomial (4) has all its zeros
inside the unit disc if

µ < 2 sin
π

2(2n − 1)
, (5)

which can be re-written as:

α <
2
M

sin
π

2(2n− 1)
. (6)

Now, let us assume that the system is set according to
(6) (i.e. considering a worst-case scenario) but the net-
work is subject to intermediate configurations, bound to
the maximum delay n, such that

P (Z) = Zn + (α a1−1)Zn−1+ α a2Z
n−2 + · · ·+ α an ,

(7)
where ai are arbitrary nonnegative coefficients and∑

i ai = M .
The question is: is condition (6) sufficient for polyno-

mial (7) having all its zeros inside the unit disc ? We did
not find a formal proof for n > 2, although we suspect
that the answer is yes. Through numerical analysis we
could not find any counter-example.


