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Abstract − Accurate numerical computation of a set 
of stochastic partial differential equations presents 
considerable difficulties. A technique to deal with 
this problem in a time efficient way is sought. 
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I. INTRODUCTION 
Semiconductor optical amplifiers and semiconductor 
distributed feedback lasers are key components for 
optical networks. The dynamics of those devices, 
including noise features, is usually described by a set 
of stochastic partial differential equations (SPDEs), 
see for instances [1]. The accurate noise 
characterisation of these devices is of particular 
interest from a telecommunications point of view or, 
by other words, the accurate statistical 
characterisation of the stochastic process at the 
device output. The accuracy of a numerical scheme 
for integrating a set of SPDEs is judged on the basis 
of its ability to provide samples of the stochastic 
process from which accurate estimates of some 
statistical parameters can be computed. 
In the general case, each equation of the set of 
SPDEs is nonlinear. Therefore, the rigorous 
characterisation of noise at the device output can 
only be obtained by accurately solving, in a 
numerical way, the set of SPDEs. Often, we are 
mainly interested in the estimation of moments, 
probabilities or other functional as the noise power 
spectral density from samples of the solution of the 
set of SPDEs. Furthermore, it is also particularly 
important to obtain accurate estimates in a short time 
interval because these estimates are often used in a 
more general process of system optimisation. So, a 
time efficient and accurate technique of numerically 
solving a set of stochastic partial differential 
equations is very desirable and, to the author’s 
knowledge, the development of such technique still 
remains.  
Techniques based on first order approximation in the 
step size of each independent variable [2] should be 
avoided because of the high time required to assess 
each sample. Furthermore, the accuracy, as described 
above, of the techniques presented in reference [2] is 
questionable. Techniques like those presented in [2] 
seem to be particularly devoted to deal with another 

problem of numerical solution of a set of SPDEs, 
namely its robustness.  
 

II. FORMULATION OF THE PROBLEM 
The problem may be formulated as the derivation of 
a procedure for accurate numerical integration of the 
following set of stochastic partial differential 
equations (propagation equations of the fields inside 
the device)  
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where the index i refers to the different complex 
fields with a total count of n, the independent 
variables corresponding to time and space 
coordinates are t and z, respectively, L is the 
maximum space coordinate of interest (device 
length), Ai(z, t) is the ith complex field, ki is a 
constant, fi(A1, …, An, z, t) is a complex nonlinear 
function of the complex fields representing the 
nonlinear field evolution, and ηi(z, t) is a complex 
Gaussian-distributed stochastic field. The two 
Gaussian components of the complex field ηi(z, t) are 
statistically independent, and the stochastic fields 
ηi(z, t) are generally uncorrelated in t and z, so that 
they satisfy the following property: 
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where <x> means expected value of x, ξi is constant, 
and δ(x) is the delta Dirac function. 
The procedure should generate representative values 
of Ai(z,t) at discrete times tj for the specific z=L by 
direct solution of the SPDEs. These values of Ai(z, t) 
are then used to estimate accurately the statistical 
parameters of interest, as those above mentioned. 
Preferably, the procedure should produce results that 
are statistically correct to a given order in the time 
and space step. Higher order approximations, if they 
exist, seem desirable because of shorter computation 
time. 
 

III. A PARTICULAR CASE AND A 
SUGGESTION 

A very interesting and useful technique to solve a set 
of stochastic differential equations (SDEs) was 
presented in [3]. The set of SDEs can be seen as a 
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particular case of (1) where the space dependence 
does not exist. The technique is an extension of the 
Runge-Kutta method for numerical solution of 
deterministic differential equations. The main idea of 
the technique is to evaluate the nonlinear function at 
stochastically selected points, so that all moments of 
the extrapolated estimate after a time step are correct 
to some order in the step size. This extension of the 
Runge-Kutta method for SDEs, with some 
modifications, was used to obtain samples of the 
electric field at a single-mode bulk laser output, as 
described in [4], [5]. It was proved to be 
simultaneously very efficient and accurate in the 
power spectral density estimation of intensity and 
frequency noises of the field at the laser output and 
after transmission along a single-mode fibre [4], [5]. 
Its accuracy was also confirmed for the probability 
density function of the intensity noise at the laser 
output.  
A generalisation of the Runge-Kutta method to 
SPDEs or the development of a completely new 
technique with similar features, regarding accuracy, 

time efficiency and complexity, would be very 
desirable. 
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