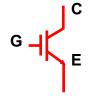

DISPOSITIVOS SEMICONDUTORES DE POTÊNCIA:


- 1. diodo AK
- 2. tiristor (SCR) "silicon controlled rectifier". $\frac{A}{G}$
- 3. tiristor de corte comandado (GTO) "gate turn off thyristor".
- 4. transistor bipolar (TJB).

5. transistor de efeito de campo de potência (MOSFET).

6. IGBT - "insulated gate bipolar transistor".

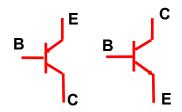
7. MCT - "MOS controlled thyristor".

DISPOSITIVOS ELECTRÓNICOS DE POTÊNCIA

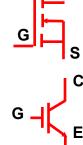
DIODO

5000 V, 10000A

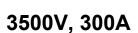
TIRISTOR


lentos: 5000V, 5000A, tq=100μs rápidos: 2000V, 200A, tq=20μs

GTO


4500V, 1000A 9000V, 9000A (módulos)

TRANSISTOR BIPOLAR



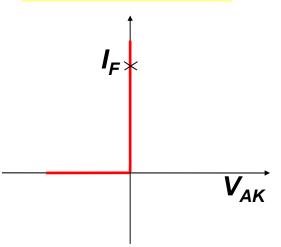
2000V, 2 a 10A 1000V, 100A

MOSFET

100V, 30A 1000V, 6A

IGBT

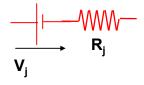
Diodo



Conduz se a tensão v_{AK} se tornar positiva.

Bloqueia se a corrente I_F se tornar negativa

Característica ideal


Característica real

Esquema equivalente do diodo em condução

Potência dissipada:

$$P_F = V_F I_F = V_j I_{Fav} + R_j I_{Fef}^2$$

Resistência térmica do dissipador:

$$T_{jmax} - T_a = R_{th j-a} P_F$$

Limites de operação:

V_{RRM} - tensão inversa máxima de pico repetitivo

I_{FRMS} - máximo valor eficaz da corrente directa

I_{FAV} - máximo valor médio da corrente directa

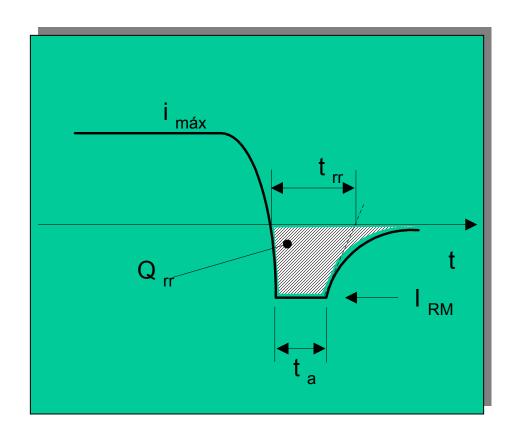
I_{FRM} - máximo valor de pico rep. da corrente directa

I_{FSM} - máximo valor de pico não rep. da

corrente directa

l²t - característica de choque térmico

$$I^2t = \int_0^t i_D^2 dt$$

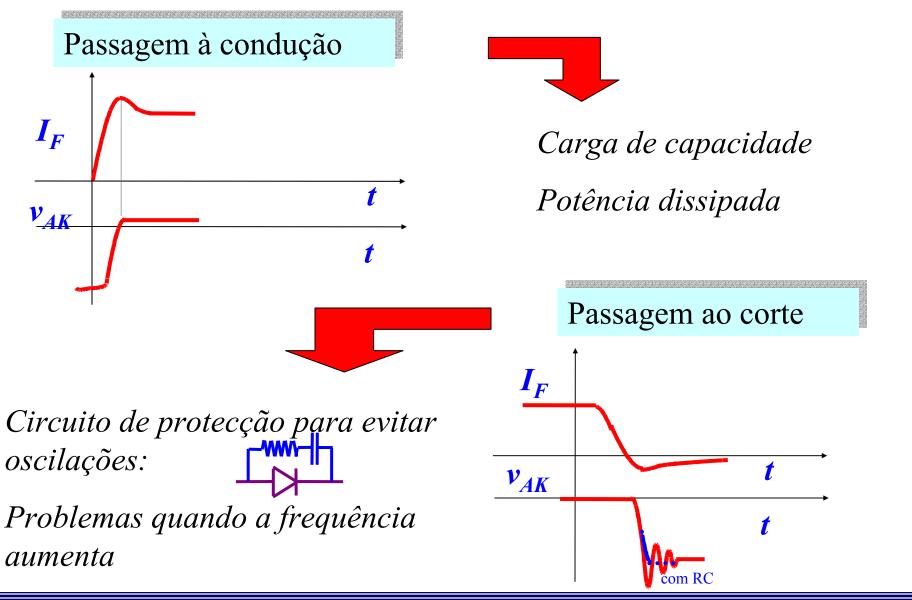

valor médio da corrente directa

$$I_{F(av)} = \frac{1}{T} \int_{0}^{t} i_{D} dt$$

valor eficaz da corrente directa

$$I_{F(RMS)} = \frac{1}{T} \int_{0}^{t} i_{D}^{2} dt$$

Característica dinâmica

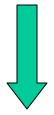


t_{rr} – <u>tempo de recuperação inversa</u>; intervalo de tempo entre a inversão da corrente e a intersecção da tangente no início da subida com o eixo t

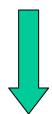
Q_{rr} – <u>carga de recuperação inversa</u> (C); Carga eléctrica removida da junção durante a transição ON-OFF

t_a – <u>tempo de armazenamento</u>;
 Intervalo desde que se inverte até começar a subir exponencialmente

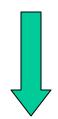
DISPOSITIVOS ELECTRÓNICOS DE POTÊNCIA



Classificação de díodos


Schottky

Recuperação rápida (fast recovery)


Rectificadores

- Von = 0.3
- $Vm\acute{a}x < 150V$

- t_{rr} baixo ($<\mu$ s)
- $V_{m\acute{a}x} < kV$
- $I_{m\acute{a}x} < kA$

- t_{rr} elevado
- $V_{m\acute{a}x} > kV$
- $I_{m\acute{a}x} > kA$

DISPOSITIVOS

→ Tensão de condução

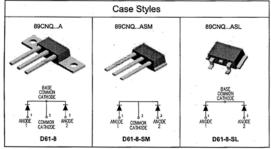
Corrente de fuga

no corte

International IOR Rectifier

89CNQ...A Series

SCHOTTKY RECTIFIER New GenIII D-61 Package amA 08


Major Ratings and Characteristics

Characteristics	89CNQA	Units		
I _{F(AV)} Rectangular waveform	80	Α		
V _{RPM}	135 to 150	v		
L _{PSM} @tp=5µssine	4300	А		
V _F @40Apk,T _j =125°C (perleg)	0.69	٧		
T _j range	-55to175	*C		

Description/Features
The 89CNQ...A centertap Schottsy rectifer module has been optimized for very low forward voilage drop, with moderate leakage. The proprietary barrier technology allows for reliable operation up to 175°C junction temperature. Typical manufacturism are in switching power supples, converters, free

- High purity, high temperature epoxy encapsulation for enhanced mechanical strength and moisture resistance
- Low forward voltage drop

- New fully transfer-mold low profile, small footprint, high current package

ELECTRÓNICOS DE POTÊNCIA

89CNQA Series	International
Bulletin PD-20046 rev. B 01/02	ICR Rectifier

Voltage Ratings

Partnumber	89CNQ135A	89CNQ150A]
V _R Max. DC Reverse Voltage (V)	135	150	├──→ Máx. tensão de bloqueio
V _{cust} Max. Working Peak Reverse Voltage (V)	135	150	_

Absolute Maximum Ratings

Parameters	89CNQ	Units	Conditions	
	40 80	Α	50% dutycycle@T _c =130°C,rectangularwaveform (Rated V _R)	→ Máx. Corrente direc
Max.PeakOneCycleNon-Repetitive	4300	Ι Δ	5μs Sine or 3μs Rect. pulse Following any rated] valor médio
Surge Current (Per Leg) See Fig. 7	500	1 ^	10msSineor6msRect.pulse rated Vr applied	1
Non-RepetitiveAvalancheEnergy	290	mλ	T _J = 25 °C, I _{AS} = 1 Amps, L = 18 mH	1
(PerLeg)				1
RepetitiveAvalancheCurrent	1.0	Α	Current decaying linearly to zero in 1 µsec	
(PerLeg)			Frequency limited by T _J max. V _A = 1.5 x V _R typical	
	Max.Av.ForwardCurrent (PerLeg) SeaFig.5 (PerDevice) Max.PeakOneCycleNon-Repetitive SurgeCurrent (PerLeg) SeeFig. 7 Non-RepetitiveAvalancheEnergy (PerLeg) RepetitiveAvalancheCurrent	Max.Av.ForwardCurrent (PerLeg) 40 See Fig. 5 (PerDevice) 80 Max.PeakOneCycleNon-Repetitive 4300 Surge Current (Per Leg) See Fig. 7 500 Non-RepetitiveAvalancheEnergy 290 (Per Leg) RepetitiveAvalancheCurrent 1.0	Max.Av.ForwardCurrent (PerLeg) 40 A See Fig. 5 (PerDevice) 80 80 Max.PeakOneCycleNon-Repetitive 4300 4300 A Surge Current (Per Leg) See Fig. 7 500 A Non-RepetitiveAvalancheEnergy 290 mJ (Per Leg) RepetitiveAvalancheCurrent 1.0 A	Max.Av.ForwardCurrent (PerLeg) 40 A 50%dutycycle@T _C =130°C, rectangularwaveform See Fig. 5 (PerDevice) 80 (Rated V _R) Max.PeakOneCycleNon-Repetitive 4300 A 5µs Sineor3µsRect.pulse Following any rated load condition and with rectangly rectangly Surge Current (Per Leg) See Fig. 7 500 mJ T _J = 25 °C, I _{AS} = 1Amps, L = 18mH Non-RepetitiveAvalancheEnergy (PerLeg) T _J = 25 °C, I _{AS} = 1Amps, L = 18mH A Currentdecayinglinearlytozeroin 1 µsec

Electrical Specifications

	Parameters	89CNQ	Units		Conditions	
V _{EM}	Max. Forward Voltage Drop	0.99	٧.	@ 40A	T, = 25 °C	
rm	(Per Leg) See Fig. 1 (1)	1.14	V	@ 80A	1,- 25 0	
		0.69	V	@ 40A	T = 405 00	
		0.78	V	@ 80A	T _J = 125 °C	
I _{RM}	Typical Reverse Leakage Current	1.5	mA	T, = 25 °C	V _R = rated V _R	
	(Per Leg) See Fig. 2 (1)	21	mA	T, = 125 °C	V _R = rated V _R	
C _r	Max. Junction Capacitance (Per Le	g) 980	pF	V _R = 5V _{DC} , (I	test signal range 100Khz to 1Mhz) 25°C	
Ls	Typical Series Inductance (Per Le	g) 5.5	nΗ	Measured lead to lead 5mm from package body		
dv/dt	Max. Voltage Rate of Change (Rated V _R)	10000	V/ µs			

(1) Pulse Width < 300µs, Duty Cycle <2%

Thermal-Mechanical Specifications

	Parameters		89CNQ	Units	Conditions
т,	Max.JunctionTemperatureR	Range	-55to175	℃	
T _{stg}	Max.StorageTemperatureR	ange	-55to 175	℃	
R	Max.ThermalResistanceJunction to Case (Per Leg)		0.85	*C/W	DCoperation
R _{essc}	Max.ThermalResistanceJunction toCase(Per Package)		0.42	*C/W	DCoperation
R _{thCS}	TypicalThermalResistance,Case to Heatsink (D61-8 Only)		0.30	*C/W	Mountingsurface,smoothandgreased Deviceflatness<5mils
wt	ApproximateWeight		7.8(0.28)	g(oz.)	
Т	MountingTorque	Min.	40(35)	Kg-cm	
	(D61-8 Only) Max.		58(50)	(lbf-in)	

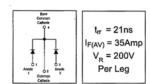
www.irf.com

www.irf.com

DISPOSITIVOS ELECTRÓNICOS DE POTÊNCIA

Recuperação rápida

Preliminary Data Sheet PD-20619 rev. A 04/01


International IOR Rectifier

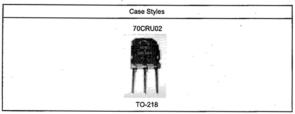
70CRU02

Ultrafast Soft Recovery Dual Diode

- Ultrafast Recovery
- 175°C Operating Junction Temperature

- Benefits
 Reduced RFI and EMI
- Higher Frequency Operation
 Reduced Snubbing
- Reduced Parts Count

Description/Applications


These diodes are optimized to reduce losses and EMI/ RFI in high frequency power conditioning systems.

The softness of the recovery eliminates the need for a snubber in most applications. These devices are ideally suited verters and other applications where switching losses are not significant portion of the total

Absolute Maximum Ratings

	Parameters (*)		Max	Units
VR	Cathode to Anode Voltage		200	v
I _{F(AV)}	Continuous Forward Current, T _C = 145°C	Per Leg	35	A
I _{FSM}	Single Pulse Forward Current, T _C = 25°C	· Per Leg	300	1
IFRM	Single Repetitive Forward Current	Per Leg	100	
Pmax	Maximum Power Dissipation, T _C = 145°C	Per Module	67	w
T _J , T _{STG}	Operating Junction and Storage Temperature	is .	- 55 to 175	*C

70CRU02 International IOR Rectifier Preliminary Data Sheet PD-20619 rev. A 04/01

Electrical Characteristics per Diode @ T_J = 25°C (unless otherwise specified)

	Parameters	Min	Тур	Max	Units	Test Conditions		Máy tangão
V _{BR} , V _r	Breakdown Voltage, Blocking Voltage	200	-		٧	I _R = 60μA		Máx. tensão de bloqueio
VF	Forward Voltage	-	0.95	1.09	٧	l _F = 35A		
		-	0.9	1.0	٧	I _F = 35A, T _J = 125*C		no corte
			0.85	0.9	v	I _F = 35A, T _J = 175°C].	
I _R	Reverse Leakage Current	-	-	60	μА	V _R = V _R Rated		Corrente fuga
		-	-	2	mA	T J = 150°C, V _R = V _R Rated]1	
CT	Junction Capacitance		50	-	ρF	V _R = 200V		no corte
Ls	Series Inductance	-	3.5	-	nH	Measured lead to lead 5mm from package body		

Dynamic Recovery Characteristics per Diode @T_J = 25°C (unless otherwise specified)

	Parameters	Min	Тур	Max	Units	Test Condition	ıs
t _{rr}	Reverse Recovery Time	1.	-	28	ns	T _J =25°C	I _F = 1A V _R = 30V
			34]	T _J = 125°C	di⊭ /dt = 200A/µs
		-	26	-		T _J = 25°C	
			49	-		T _J = 125°C	I _F = 35A V _{RR} = 100V
Qrr	Reverse Recovery Charge		48.7	-	nC	T _J = 25*C	di/dt = 200A/μs
		-	202	-		T _J = 125°C	

Tempo de recuperação

Thermal - Mechanical Characteristics

	Parameters		Min	Тур	Max	Units
R _{thJC}	Thermal Resistance, Junction to Case	Per Diode	-	8.0	0.9	кw
RINC	Thermal Resistance, Junction to Case	Both Leg	-		0.45	
R _{thCS} (1)	Thermal Resistance, Case to Heatsink		-	0.2	-	
Wt	Weight		-	5.5	-	9
	·		-	0.2	-	(oz)
Т	Mounting Torque		1.2		2.4	N·m
			10	-	20	lbf.in

(1) Mounting Surface, Flat, Smooth and Greased

www.irf.com

www.irf.com

DISPOSITIVOS ELECTRÓNICOS DE POTÊNCIA

Rectificadores

V_{RRM} = 5000 V I_{FAVM} = 1850 A I_{FRMS} = 2900 A I_{FSM} = 23500 A V_{F0} = 0.99 V r_E = 0.282 mΩ

Doc No 55VA1162-01 Jan 01

- · Very low on-state losses
- · Optimum power handling capability

Blocking

Part Number 5SDD 20F5000		5SDD 20F4800	5SDD 20F4400	Conditions		
V _{RRM}	5000 V	4800 V	4400 V	f = 50 Hz, t _p = 10ms		
V _{RSM}	5200 V	5000 V	4600 V	f = 5 Hz, t _p = 10ms		
I _{RRM}		≤ 75 mA		V _{RRM} T _i = 160°C		

Mechanical data

	oriumour uutu			
Fin	Mounting force	nom.	. 22	kN
		min.	. 20	kN
		max.	24	kN
а	Acceleration			
	Device unclamped		50	m/s ²
	Device clamped		100	m/s ²
m	Weight		0.5	kg
Ds	Surface creepage d	listance	30	mm
Da	Air strike distance		20	mm

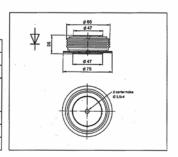


ABB Semiconductors AG reserves the right to change specifications without notice

On-state

011 3			
I_{FAVM}	Max. average on-state current	1850 A	Half sine wave, T _C = 90°C
I _{FRMS}	Max. RMS on-state current	2900 A	
1 _{FSM}	Max. peak non-repetitive	23500 A	tp = 10 ms T_j = 160°C
	surge current	24300 A	tp = 8.3 ms After surge:
l²t	Limiting load integral	2760 kA ² s	tp = 10 ms $V_D = V_R = 0V$
		2460 kA ² s	tp = 8.3 ms
V _F	On-state voltage	2.13 V	I _F = 4000 A
V _{F0}	Threshold voltage	0.99 V	I _F = 2500 - 7500 A T _j = 160°C
ľF	Slope resistance	0.282 mΩ] .

Switching

Q _{rr}	Recovery charge	min	3800 μAs	di _F /dt = -30A/µs	V _R = 200 V
		max	5200 µAs	I _{FRM} = 1000A	T _j = 160°C

Thermal

T _{j max}	Max. junction temperature	160°C	
T _{j stg}	Storage temperature range	-40175°C	1
R _{thJC}	Thermal resistance	30 K/kW	Anode side cooled
	junction to case	30 K/kW	Cathode side cooled
		15 K/kW	Double side cooled
R _{thCH}	Thermal resistance case to	8 K/kW	Single side cooled
	heat sink	4 K/kW	Double side cooled

Analytical function for transient thermal impedance:

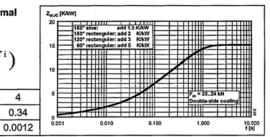
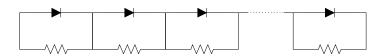
$$Z_{\text{thJC}}(t) = \sum_{i=1}^{n} R_{i} (1 - e^{-t/\tau_{i}})$$

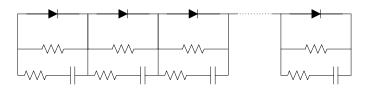
$$\frac{i}{R_{i}(K/KW)} \frac{1}{8.96} \frac{2}{4.66} \frac{3}{1.02} \frac{4}{0.34}$$

0.0643

0.0051

0.4078

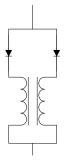

Fig. 1 Transient thermal impedance junction to case

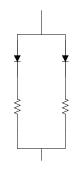
DISPOSITIVOS ELECTRÓNICOS DE POTÊNCIA

Díodos em série (repartir tensões inversas)

Díodos em paralelo (repartir correntes directas)

Equalização por dispositivo


Selecção de díodos com características muito semelhantes

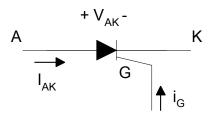

Equalização por acomplamento magnético

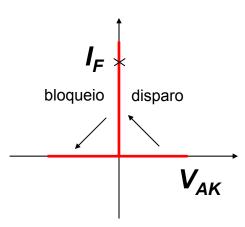
Só para correntes de kA; processo caro e complexo; mais peso, mais volume.

Equalização por resistências

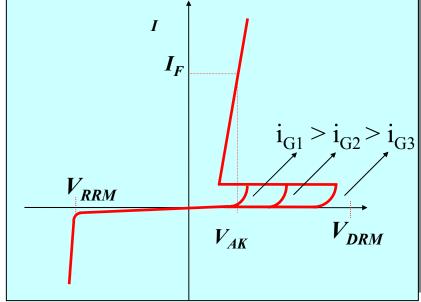
Só para correntes mais baixas

DISPOSITIVOS ELECTRÓNICOS DE POTÊNCIA


Tiristor SCR


Semi-controlado

Conduz se v_{AK} for positivo e se existir um impulso de corrente na "gate", de curta duração. Bloqueia se a corrente I_F se anular.


Controlo apenas na passagem a ON

Característica ideal

Característica real

Transição **OFF-ON**

 v_{GK} = V_{GKT} > 0, i_G = i_{GT} > 0 durante um intervalo de tempo mínimo

Transição **ON-OFF**

- inversão de tensão
- I_{AK} < I_H (corrente de manutenção)

<u>Limites de</u> operação:

V_{RRM} - tensão inversa máxima de pico repetitivo

V_{DRM} - tensão directa máxima de pico repetitivo com o tiristor no corte

I_{TRMS} - máximo valor eficaz da corrente directa

I_{TAV} - máximo valor médio da corrente directa

I_{TRM} - máximo valor de pico rep. da corrente directa

I_{TSM} - máximo valor de pico não rep. da corrente directa

l²t - característica de choque térmico

(di/dt)_{max} - máxima taxa de crescimento da corrente directa

(dv_{AK}/dt)_{max} - máxima taxa de crescimento da tensão ânodo cátodo

I_H - corrente de manutenção ("holding current") (1% I_{TAV})

L - corrente de lançamento ("latching current") (> I_H)

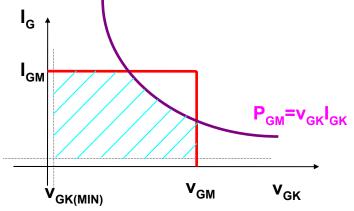
t_d - tempo de passagem à condução 0,1μs - 10μs

t_α - tempo de passagem ao corte 1μs - 110μs

IST-DEEC

2003

DISPOSITIVOS ELECTRÓNICOS DE POTÊNCIA


Características de "GATE"

V_{GM} ----- máximo valor da tensão "gate"- cátodo

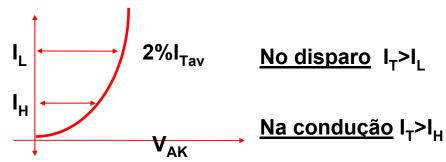
P_{GM} ----- máximo valor da potência na "gate"

P_{Gav} ----- máximo valor da potência média na "gate"

máximo valor da corrente de "gate

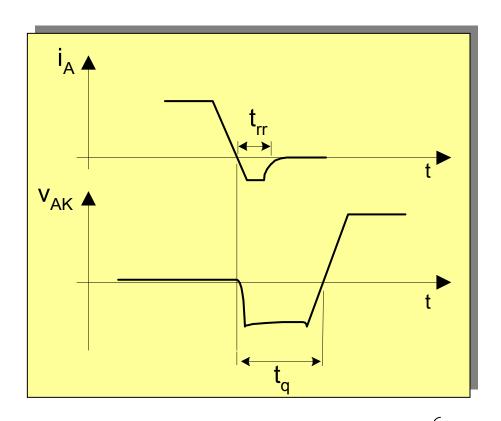
t_d - tempo de disparo (diminui com o aumento de energia fornecida à "gate")

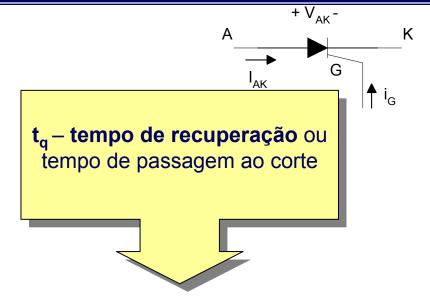
o impulso de "gate"



Correntes de fuga:

$$I_f \cong \frac{I_{Tav}}{10^4}$$
 $\operatorname{Re} q_{off} \cong \frac{V_{RRM}}{I_f}$


$$\operatorname{Re} q_{off} \cong \frac{V_{RRM}}{I_f}$$

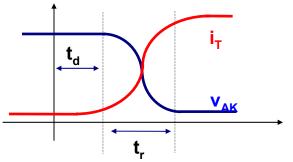

Correntes de lançamento e manutenção:

DISPOSITIVOS ELECTRÓNICOS DE POTÊNCIA

Característica dinâmica

É necessário assegurar uma tensão negativa durante um tempo superior a $t_{\rm q}$ para que o tiristor corte; caso contrário conduz logo que polarizado directamente, mesmo sem impulso de gate.

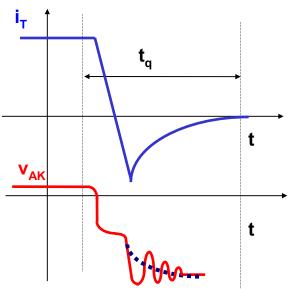
Outras limitações dos tiristores

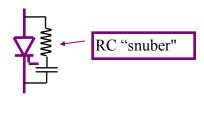

Taxa máxima de variação da corrente di_A / dt

Taxa máxima de variação da tensão dv_{AK} / dt

DISPOSITIVOS ELECTRÓNICOS DE POTÊNCIA

entrada em condução


t_d + t_r tempo de passagem à condução


ATENÇÃO a:
Potência dissipada
di/dt máximo
t_r (depende do circuito
exterior)

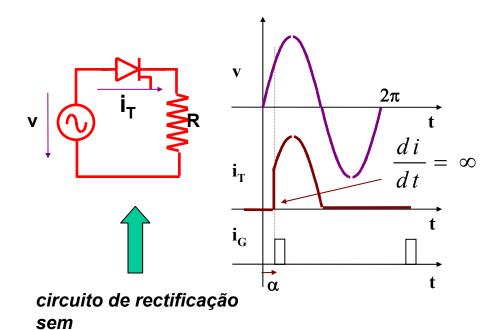
passagem ao corte

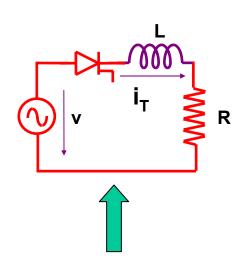
 $\mathbf{t}_{\mathbf{q}}$ tempo de passagem ao corte (depende da temperatura)

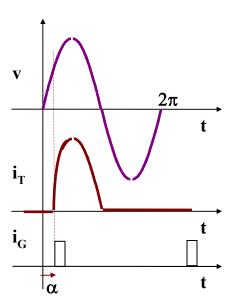
ATENÇÃO a:
Potência dissipada
dv_{AK}/dt máximo
1μs<t_q<110μs
protecções

não deve ser aplicada tensão directa ao tiristor enquanto não decorrer t_q , caso contrário o tiristor retoma a condução.

DISPOSITIVOS ELECTRÓNICOS DE POTÊNCIA


Protecções contra di/dt e dv_{AK}/dt excessivos di/dt


concentração de corrente numa área muito pequena dissipação de potência elevada que pode levar à destruição do tiristor


Para proteger o tiristor contra di/dt utiliza-se uma bobine em série

 $(di/dt)_{máx}$ - 200A/ μ s lentos

 $(di/dt)_{máx}$ -2000A/ μ s rápidos

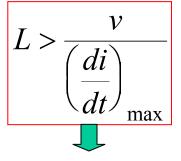
circuito de rectificação com protecção contra di/dt

protecção contra di/dt

DISPOSITIVOS ELECTRÓNICOS DE POTÊNCIA

<u>Dimensionamento da bobine de protecção:</u>

$$v = Ri + L\frac{di}{dt}$$


$$i(\omega t = 0) = 0$$

(existência da bobine)

$$v = L \frac{di}{dt}$$

$$\mathbf{em}\ t = 0$$

$$\frac{di}{dt} = \frac{v}{L} < \left(\frac{di}{dt}\right)_{\text{max}}$$

Exemplo:

$$\left(\frac{di}{dt}\right)_{\text{max}} = 200A / \mu s$$

v(max) ---
$$\alpha$$
 = 90° $v = \sqrt{2}220$

 $R=10\Omega$

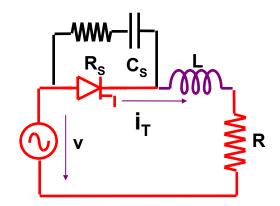
$$L > \frac{\sqrt{2220}}{200} = 1.56 \mu H$$

L=2μH

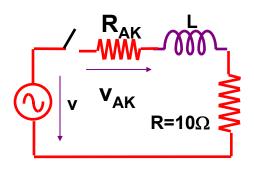
(não afecta as características do circuito)

(ωL=.6m Ω para f=50Hz e R=10 Ω)

DISPOSITIVOS ELECTRÓNICOS DE POTÊNCIA


dv_{AK}/dt

- □ surge quando se estabelece o circuito
- □• na comutação de cargas indutivas
- □ na passagem ao corte ou à condução de outro tiristor


- as cargas eléctricas armazenadas na região espacial de um tiristor bloqueado equivalem a uma capacidade C
- se dv_{AK}/dt é excessivo a corrente $i = Cdv_{AK}/dt$ pode ser suficiente para lançar o dispositivo na condução, intempestivamente

Para proteger o tiristor contra dv_{AK}/dt utiliza-se uma malha capacitiva RC em paralelo com o tiristor

Rectificador com protecções contra dv_{AK}/dt e di/dt

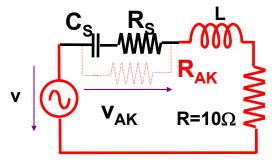
Esquema equivalente com o tiristor no corte sem protecção contra dv_{AK}/dt.

$$R_{AK} >>> R$$

$$R_{AK} = 50 K\Omega$$

$$v = R_{AK}i + L\frac{di}{dt}$$

$$\begin{cases} \frac{di}{dt} = \frac{v}{L} \\ \mathbf{v}_{AK} = \mathbf{R}_{AK}i \end{cases}$$


$$\frac{dv_{AK}}{dt} = R_{AK} \left(\frac{di}{dt}\right)$$

$$\frac{dv_{AK}}{dt} = R_{AK} \left(\frac{V_{\text{max}}}{L} \right)$$

Se
$$dv_{AK}/dt = 300V/\mu s$$

e di/dt = 200A/ μs

<u>Dimensionamento da malha capacitiva:</u>

Esquema equivalente com o tiristor no corte com protecção contra dv_{AK}/dt .

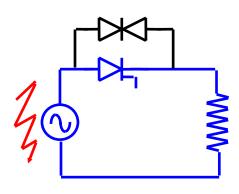
A resistência total medida aos terminais do tiristor fica diminuida quando se põe, em paralelo, a resistência Rs. Assim para R_s << R_{AK} tem-se:

$$\frac{dv_{AK}}{dt} = R_{AK} \left(\frac{V_{\text{max}}}{L} \right)$$

$$\frac{dv_{AK}}{dt} = R_S \left(\frac{V_{\text{max}}}{L}\right) \longrightarrow$$

$$L > \frac{R_S v_{\text{max}}}{\left(\frac{dv_{AK}}{dt}\right)_{\text{max}}}$$

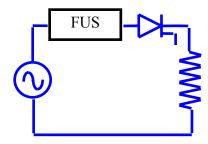
$$L = \frac{50x220x\sqrt{2}}{300}x10^{-6} = 52\,\mu H$$


valor aceitável

 R_s pode baixar mas ficará limitado pelo valor da corrente que percorre o circuito com o transistor bloqueado. C_s =0,1 μ F valor típico C_s >>> Coff=1nF

A corrente que precorre o tiristor no corte aproximadamente 10mA \longrightarrow $Z_c=32K\Omega$ f=50Hz $Z_c=1/_{\odot}C$

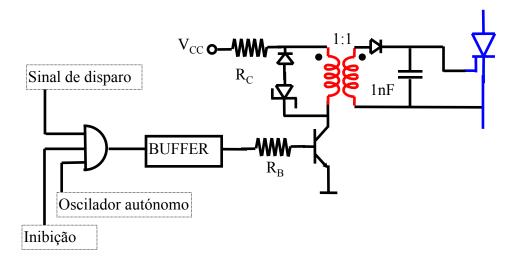
DISPOSITIVOS ELECTRÓNICOS DE POTÊNCIA


Supressão de transitórios

1 1KA V_{DRM}

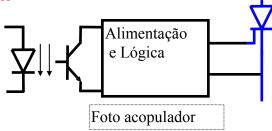
curva característica de um varistor

Protecção contra sobre-intensidades


Fusíveis rápidos ou ultra rápidos

i) Vmax FUS > Vmax

ii) I²t FUS > I²t tiristor


Circuitos de disparo de tiristores "drives"

1 - Isolamento galvânico com transformador de impulso:

2 - Isolamento galvânico com ligação óptica:

Classificação de Tiristores

Tiristores Lentos (Controlo de fase)

- I_{máx}: 4 kA
- V_{máx}: 5-7 kV
- V_{on}: 1,5V (@1kV); 3V (@5-7kV)

Aplicações rede 1φ, 3φ, **50**-60 Hz

Tiristores rápidos (Inversores)

- t_{α} baixos, 1-100 μ s Freqs: 1 -2 **kHz**
- V_{máx}: 2,5 kV, I_{máx}: 1,5 kA
- V_{on} mais baixos

Inversorescom circuitos de comutação forçada

Foto-Tiristores (HVDC)

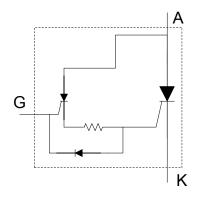
LTT – Ligth triggered T
LASCR – Ligth Activated T

disparados por impulso luminoso (fibra óptica)

• potência no disparo: **mW**

• $V_{máx}$: 8 kV, $I_{máx}$: 3,5 kA

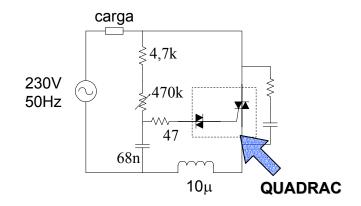
• V_{on}: 2-3 V @3,5 kA


HVDC

DISPOSITIVOS ELECTRÓNICOS DE POTÊNCIA

Outros Tiristores

GATT


Gate-assisted turn-off Tiristor (T de corte assistido pela gate)

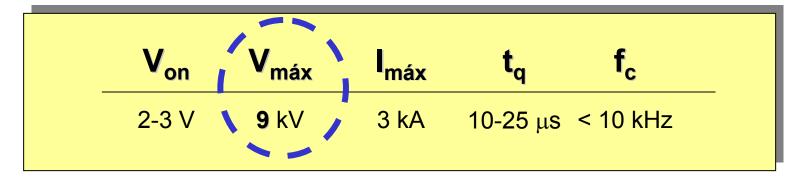
(Electrónica Geral)

TRIAC, DIAC, QUADRAC

(1200V, 300A)

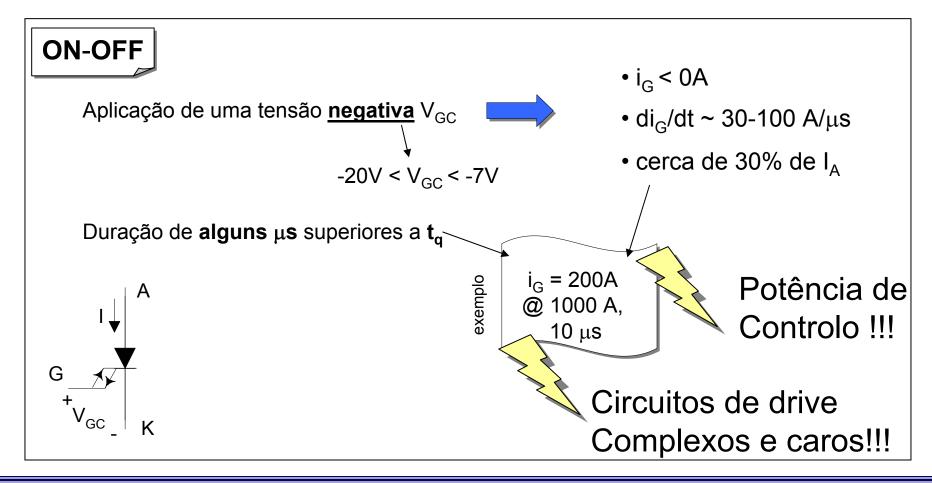
GTO

Gate-turn-off Tiristor


DISPOSITIVOS ELECTRÓNICOS DE POTÊNCIA

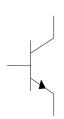
V_{RWM} VAK

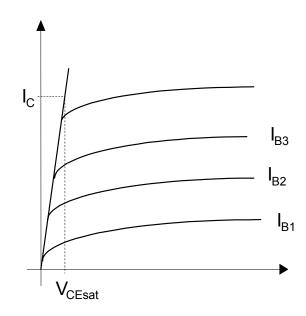
Principais campos de aplicação:


- comboios de alta velocidade
- transporte HVDC*

^{*} transporte de energia eléctrica em cc a muito alta tensão

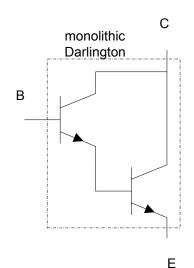
OFF- ON

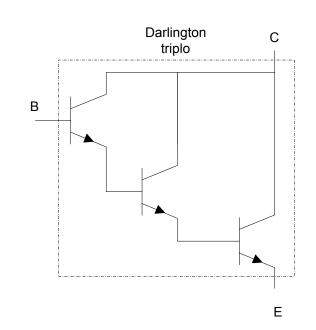

semelhante ao tiristor convencional (1<V $_{GT}$ <2 V; I $_{GT}$) mas a corrente de gate tem que se manter durante toda a condução


DISPOSITIVOS ELECTRÓNICOS DE POTÊNCIA

máximo de 1-2 kV/μs Muito sensível a **dv**_{AK}/**dt** elevados Outro problema especialmente de OFF-ON dos GTOs Circuitos de protecção Problemático para circuitos indutivos solução

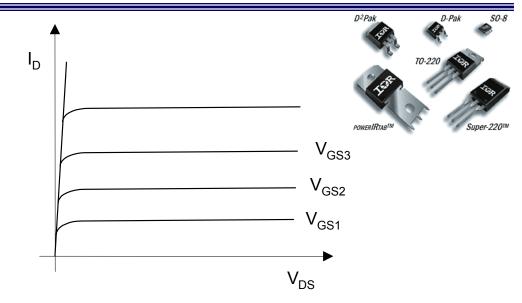
Transistor de junção bipolar




TJB

- baixos h_{FE} $5 < h_{FE} < 10$
- considerável tempo de atraso na passagem ao corte
- décimas μs < tempos de comutação < alguns μs
- 1400 V, centenas de A
- coeficiente "negativo" de T (embalamento térmico)

Soluções para h_{FE} maior



- maior V_{CEsat}
- menos rápidos a comutar

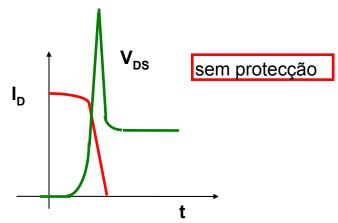
Transistor de efeito de campo de potência

MOSFET

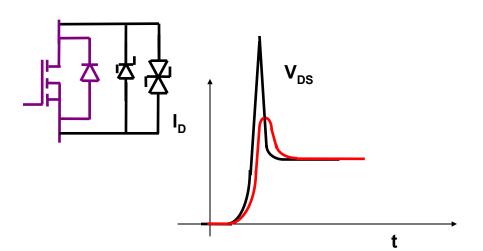
- dissipação na condução dependente de R_{ON}
- competitivos com TJB para < 300/400V e >100kHz
- dezenas ns < tempos de comutação < décimas μs
- 1000 V, < 100 A
- controlo menos complexo
- coeficiente "positivo" de T (auto protecção)

limites de operação:

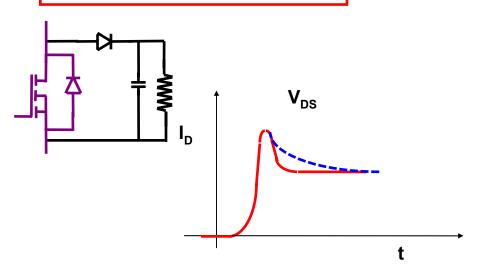

V _{DS} -	Máxima tensão Dreno Fonte	
V _{DG} -	Máxima tensão Dreno Gate	_
I _D -	Máxima corrente de Dreno	$P_{cond} = r_{DS(on)} I_{Def}^{2}$
V _{GS} -	Máxima tensão "gate"Fonte	
P _D -	Potência Máxima dissipada	

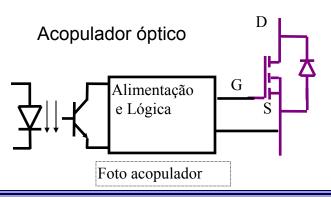

r_{DS(on)} - Resistência em condução (limita a escolha do FET)

Tempos de condução da ordem dos 50 a 300ns

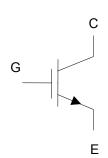

Circuitos de protecção:

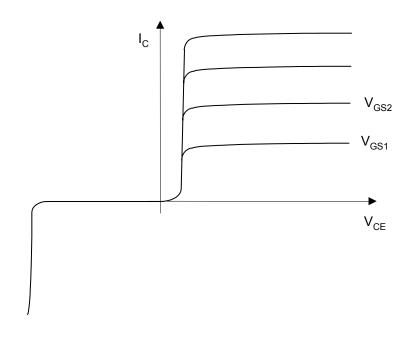
Sendo os tempos de comutação muito baixos há necessidade de proteger o MOSFET contra sobretensões na comutação. Durante a comutação o dispositivo requer correntes elevadas na "gate" (carga descarga de capacidade)






protecção com "snubber"


diodo de substracto (diodo parasita) pode ser utilizado como diodo de roda livre (diodo lento)


circuitos de disparo:

Transistor de gate isolada IGBT

"Insulated Gate Bipolar Transistor"

- gate isolada como no MOSFET
- V_{on} baixos mesmo em dispositivos de HV (2-3V IGBT de 1000V)
- tempos de comutação > μs
- 3 kV, 1200 A

Comparação dos Dispositivos semicondutores

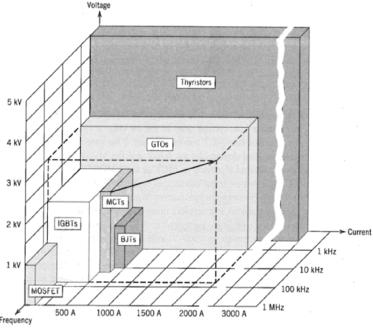
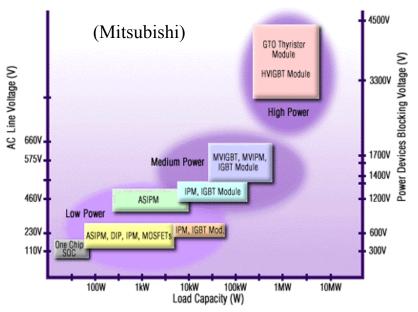



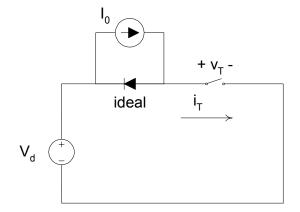
Figure 2-14 Summary of power semiconductor device capabilities. All devices except the MCT have a relatively mature technology, and only evolutionary improvements in the device capabilities are anticipated in the next few years. However, MCT technology is in a state of rapid expansion, and significant improvements in the device capabilities are possible, as indicated by the expansion arrow in the diagram.

ASIPM - Application Specific Intelligent Power Module

IPM - Intelligent Power Module

IGBT - Insulated Gate Bipolar Transistor Module

	Capacidade em	Velocidade
semicondutor	potência	comutação
TBJ / MD	média	média
MOSFET	baixa	alta
GTO	alta	baixa
IGBT	média	média
Tiristor	alta	baixa


Critérios de escolha de semicondutores de potência

- potência do dispositivo (correntes e tensões máximas no circuito)
- •frequência de comutação (tempos de comutação)
- •perdas de condução (tensões de condução ou resistência de condução)
- complexidade e potência dos circuitos de "drive"
- custo do semicondutor

Semicondutores em comutação

- Perdas nulas na condução (v=0 quando fechado)
- corrente nula ao corte (i=0 quando aberto)
- tempos de comutação nulos (abertura e corte instantâneos)
- potência de controlo nula

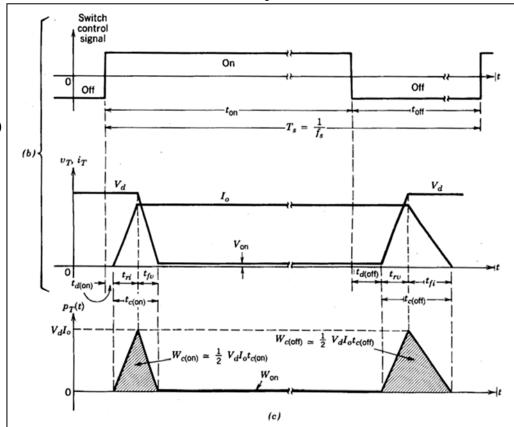


Figure 2-6 Generic-switch switching characteristics (linearized): (a) simplified clamped-inductive-switching circuit, (b) switch waveforms, (c) instantaneous switch power loss.

$$t_{c(on)} = t_{ri} + t_{fv}$$

$$t_{c(off)} = t_{rv} + t_{fi}$$

Perdas na condução

$P_{on} = V_{on} I_0 t_{on} / T_C$

Perdas na comutação

$$P_c = \frac{1}{2} V_d I_0 f_c (t_{c(on)} + t_{c(off)})$$

Perdas totais

$$P_T = P_{on} + P_c$$