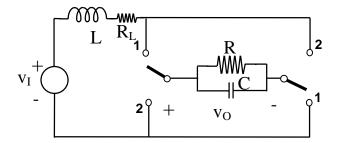

6. Modelização de conversores

Exercício nº6.1

No conversor redutor-ampliador da figura, a bobina tem uma resistência de perdas R_L. Todas as outras perdas são nulas.

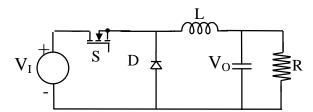
- a) Determine uma expressão para a relação de conversão não ideal V_O/V_I.
- b) Fazendo variar o factor de ciclo D entre 0 e 1 e R_L/R entre .001 Ω e .005 Ω trace as curvas características V_O/V_I (MATLAB).
- c) Determine uma expressão para o rendimento, determine também a variação do rendimento com o factor de ciclo e com a resistência de perdas.



Exercício nº6.2

Determine um modelo equivalente para o conversor do problema 6.1. O seu modelo deverá mostrar explicitamente o andar de entrada e deve conter dois transformadores.

Exercício nº6.3


Considere o conversor da figura onde a bobina apresenta uma resistência de perdas R_L. Todas as outras perdas são nulas. Os interruptores operam alternadamente nas posições 1 e 2 durante meio período. Repita as alíneas do problema 6.1.

Exercício nº6.4

Considere o conversor redutor da figura onde o MOSFET tem uma resistência igual a Ron e o diodo pode ser modelado por uma fonte de tensão constante VD. Todas as outras perdas são nulas.

- d) Determine um modelo equivalente completo para o conversor.
- e) Resolva o modelo para determinar Vo.
- f) Determine uma expressão para o rendimento,

