ELECTRÓNICA DE POTÊNCIA

2º TRABALHO DE LABORATÓRIO

PARTE B

CONVERSOR CA/CC MONOFÁSICO DE ONDA COMPLETA COMANDADO

Rectificador de onda completa totalmente comandado e semicomandado

GRUPO:	TURNO:		
DIA:	HORAS:		
ALUNO:		N°:	
ALTINO:		N°:	
ALUNO:		N°:	
ALUNO:		N°:	

3º TRABALHO DE LABORATÓRIO

PARTE B

CONVERSOR CA/CC MONOFÁSICO COMANDADO

Rectificador de onda completa totalmente comandado e semicomandado

1. INTRODUÇÃO E OBJECTIVOS

Neste trabalho vamos estudar os rectificadores monofásicos em ponte totalmente controlados e semi-controlados com cargas puramente resistiva e indutiva. Para isso utilizaremos a placa de comando estudada na primeira parte deste trabalho que está preparada para disparar quatro tiristores.

Os rectificadores em ponte, contrariamente aos rectificadores em meia ponte estudados na parte A deste trabalho, têm aplicação industrial pois a corrente de entrada apresenta neste caso valor médio nulo, não contendo compomente contínua que provoque o sobredimensinamento do transformador. Além disso, o conteúdo harmónico das grandezas eléctricas de saída surge muito mais reduzido. Na maioria das aplicações de baixa potência (<2kW) onde seja necessário obter-se tensão negativa na carga, utilizam-se rectificadores totalmente controlados. É o caso de controlo de velocidade de motores de corrente contínua, em que se pretenda enviar energia para a fonte de alimentação durante a travagem, isto é, proceder ao aproveitamento da energia cinética durante a travagem. Não é, no entanto possível, proceder com

este rectificador, à travagem regenerativa do motor, pois como se sabe os rectificadores não permitem a inversão de polaridade da corrente de saída (para isso seria necessário dispor de um rectificador dual).

Se a carga alimentada pelo rectificador não exigir a inversão de tensão aos seus terminais, pode ser utilizado um rectificador em ponte semicomandado. Esta topologia é mais simples e mais económica, pois utiliza apenas dois tiristores e dois diodos em vez de quatro tiristores. Neste rectificador os diodos impõem que a tensão de saída seja sempre positiva ou nula. Este tipo de rectificador é utilizado carregador de baterias.

2. LISTA DE MATERIAL

Placa com circuito de comando

R – Reóstato de carga $0 - 33\Omega$; 3,1 A

L – Bobine 10mH

D1, D2, D3, D4 – 4 diodos IR 25F100

T1,T2,T3,T4 - 4 a tiristores IR 25 RIA100

A – Amperímetro de quadro móvel: 5A

V2 – Voltímetro de quadro móvel: 50V

V1 – Voltímetro TRMS

Tr1 – Transformador de isolamento, 220V/220V, 300VA

Tr2 – Auto-transformador Philips UP=220V, US=0-260V

Fonte de alimentação -15/0/+15 V

Osciloscópio Analógico

Sonda de corrente

Pontas de prova

Cabos de interligação

3. PRECAUÇÕES

<u>Se nada lhe for dito em contrário, utilize sempre só um terminal de</u> massa de osciloscópio, para evitar possíveis e perigosos curto-circuitos.

Mantenha o reóstato de carga com o cursor a meio, antes de ligar o circuito. Se o deslocar para um dos lados não saberá se está a aumentar ou a diminuir a resistência (a numeração existente nos reóstatos é enganosa).

Se houver algum problema desligue imediatamente o disjuntor de bancada.

Não faça nenhuma ligação com o disjuntor de bancada ligado.

Quando o circuito estiver ligado nunca toque em dois pontos do circuito com as duas mãos ao mesmo tempo.

4. CONDUÇÃO DO TRABALHO

4.1 Rectificador controlado de onda completa totalmente comandado.

4.1.1. CARGA R

Coloque a ponte a tiristores como indica a Fig.1. Ligue os terminais Gi Ki (i=1,2,3,4) da placa de controlo aos terminais correspondentes nas placas dos tiristores. Retire a bobina do circuito, mantenha apenas o reóstato

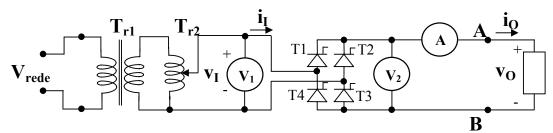
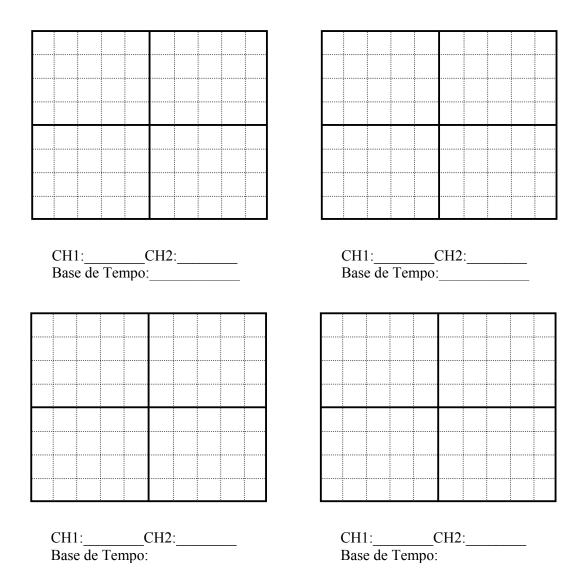
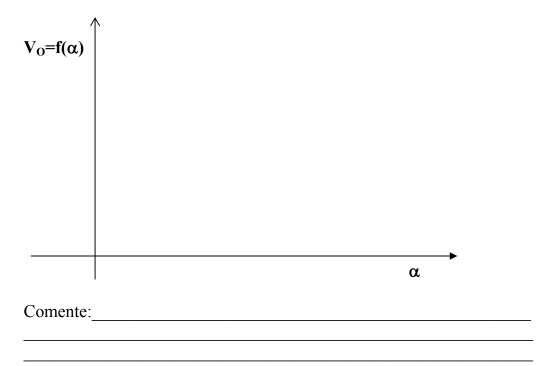
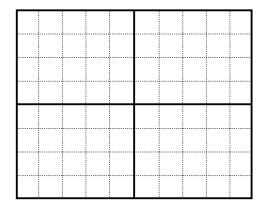



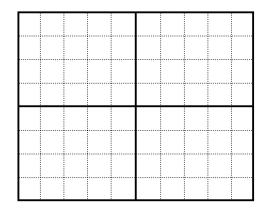
Fig. 1 Esquema eléctrico de um rectificador monofásico onda completa totalmente comandado.


- 4.1.1.a) Visualize no osciloscópio a forma de onda da tensão de entrada, $v_{\rm I}$, e com o auxílio da sonda de corrente observe também a corrente de entrada $i_{\rm I}$. Registe as formas de onda para um ângulo de disparo diferente de zero.
- 4.1.1.b) Visualize no osciloscópio a forma de onda da tensão na carga, $v_{\rm O}$, e com o auxílio da sonda de corrente observe também a corrente de saída $i_{\rm O}$. Registe as formas de onda para um ângulo de disparo diferente de zero.
- 4.1.1.c) Para o mesmo ângulo de disparo registe as formas de onda da tensão e corrente no tiristor, v_{AK1} , i_{T1} .

4.1.1.d) Visualize no canal A a tensão de entrada (no secundário do auto-transformador) e seleccione o "trigger" para o canal A. No canal B visualize a tensão na carga. Varie o ângulo de disparo e trace a característica de comando do conversor $(V_O=f(\alpha))$. Compare com a característica de comando teórica.

Ângulo de disparo	V _O [teórico]	V _O [experimental]
0°		-
30°		
60°		
90°		
120°		
150°		


Represente gráficamente as características de comando real e teórica:

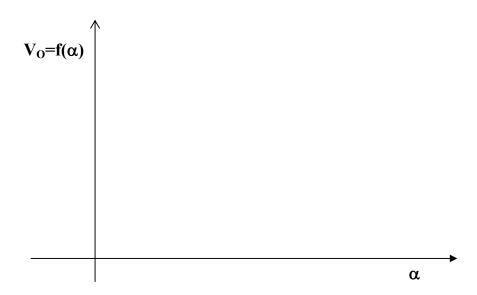

4.1.2 CARGA RL

Coloque a bobina no circuito em série com o reóstato.

4.1.2.a) Visualize no osciloscópio a forma de onda da tensão e da corrente na carga, $v_{\rm O}$, e $i_{\rm O}$. Registe as formas de onda para um ângulo de disparo em que o funcionamento seja lacunar. Varie o valor da resistência (Cuidado! Não ultrapassar a corrente máxima!) por forma a observar melhor a tensão negativa na carga.

CH1: CH2: CH2: Base de Tempo:

CH1: ____CH2: ____ Base de Tempo:


			_	razăc		e caso				a ca	irga (ė neg	;atıv ——
		-			os ter mente		da	car	ga F	RL (e tar	nbém	ıa
/11111	111415	ua ics	1510110	1a. Co		•							
				_	ulo de , v _{ak1} ,	-	ro re	egiste	e as	forn	nas d	le one	da
7115a	10 5 0	OHEH	e no i	1115101	, VAK1,	IT1.							
;	: :	· •		 		r	:	-	: :			: :	
	†			1 1	: .	ľ			: :		:		

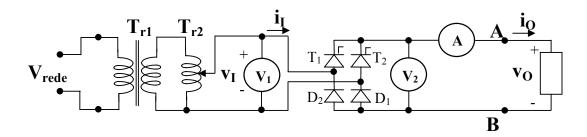
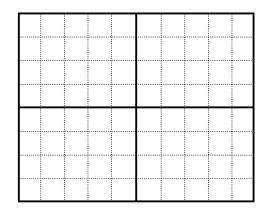
CH1: CH2: CH2: CH2: Base de Tempo: Base de Tempo:

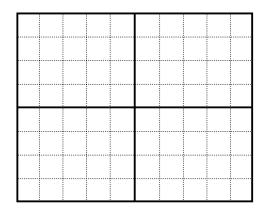
4.1.2.e) Regule o ângulo de disparo por forma que obtenha um funcionamento não lacunar e a registe as formas de onda da tensão e corrente de entrada, $v_{\rm I}$, $i_{\rm I}$. Registe também as as formas de onda da tensão e corrente na carga, $v_{\rm O}$, $i_{\rm O}$.

4.1.2.d) Visualize no canal A a tensão de entrada (no secundário do auto-transformador) e seleccione o "trigger" para o canal A. No canal B visualize a tensão na carga. Varie o ângulo de disparo e trace a característica de comando do conversor $(V_O=f(\alpha))$. Compare com a característica de comando teórica.

Ângulo de disparo	V _o [teórico]	V _O [experimental]
0°		
30°		
60°		
90°		
120°		
150°		

4.2 - Rectificador controlado de onda completa semi-comandado.

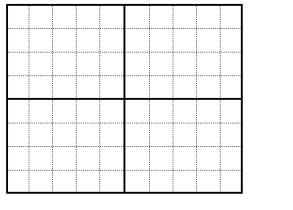




Fig. 2 Esquema eléctrico de um rectificador monofásico onda completa semi comandado.

4.2.1 CARGA RL

Coloque a bobina no circuito em série com o reóstato.

- 4.2.1.a) Visualize no osciloscópio a forma de onda da tensão de entrada, $v_{\rm I}$, e com o auxílio da sonda de corrente observe também a corrente de entrada $i_{\rm I}$. Registe as formas de onda para um ângulo de disparo diferente de zero.
- 4.2.1.b) Visualize no osciloscópio a forma de onda da tensão na carga, $v_{\rm O}$, e com o auxílio da sonda de corrente observe também a corrente de saída $i_{\rm O}$. Registe as formas de onda para um ângulo de disparo diferente de zero.
- 4.2.1.c) Para o mesmo ângulo de disparo registe as formas de onda da tensão e corrente no tiristor, v_{AK1} , i_{T1} .



IST Base de Tempo:

CH1:____CH2:___

Base de Tempo:

ı						
ı						
L		 	 			
I						
ı						
ı						
t	 	 	 	 		
ı						
ı						
ł	 	 	 	 		
ı						
ı						
L						
ı						
ı						
ı						
ı	 			 		
ı						
ı						
ł	 	 ļ	 	 	!	
ı						
1						
ŀ	 	 	 	 		
1						
1						
L						

CH1: ____CH2: ____ Base de Tempo: CH1: ____CH2: ____ Base de Tempo:

4.2.1.d) Visualize no canal A a tensão de entrada (no secundário do autotransformador) e seleccione o "trigger" para o canal A. No canal B visualize a tensão na carga. Varie o ângulo de disparo e trace a característica de comando do conversor $(V_0 = f(\alpha))$. Compare com a característica de comando teórica.

Ângulo de disparo	V _O	V_0
disparo	[teórico]	[experimental]
$0_{\rm o}$		
30°		
60°		
90°		
120°		
150°		

4.2.1.e) Explique porque razão a corrente na carga nunca é negativa
4.2.1.f) Com um ângulo de disparo igual a 60° calcule o valor médio da tensão na carga
4.2.1.g) Diga se é possível utilizar este rectificador para controlar a
velocidade de um motor de corrente contínua com travagen regenerativa.
4.2.1.h) Se tivesse exigências em termos de conteúdo harmónico da
tensão e da corrente de saída, que tipo de filtro utilizaria? Pode liga directamente um condensador em paralelo à saída do rectificador. Porquê?