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Abstract

An electrodynamic description of bianisotropic particles on the base of strip-line-coupled magnetostatic wave (MSW) resonators is developed and analytical closed-form expressions for their tensor polarizabilities are obtained for an arbitrary direction of a magnetizing field and an arbitrary resonator shape. Numerical calculations are performed for a normally magnetized thin-ferrite-film disk resonator with a metal strip on its surface.

1. Introduction

Recently proposed composite non-reciprocal bianisotropic materials [1] represent ensembles of magnetized thin-ferrite-film magnetostatic wave resonators with surface metallization. Induced electric and magnetic dipole moments 

and 

of such artificial particles are related to the external electric and magnetic fields as




,
(1)




where 

, 

, 

and 

 are corresponding tensor polarizabilities. Although a nature and qualitative physical picture of magnetoelectric coupling in these elements is quite obvious and an experimental evidence of the effect has been obtained [2], the electrodynamic description of the particles and quantitative evaluation of magnetoelectric coupling till the present time has not been performed. In this paper we consider a thin-ferrite-film resonator with a linear metal strip of the width b on its surface, as shown in the Fig.1 for a disk resonator magnetized by the field H0 in an arbitrary direction (. Dimensions of the resonator are much less than a wavelength in the surrounding media with the permittivity (, so electric and magnetic fields in (1) can be assumed uniform and quasi-static. Magnetization of oscillation modes mq for the type q and corresponding eigenfrequencies (q are supposed to be known, as well the ferromagnetic resonance linewidths (Hq. The approach is based on the earlier obtained solutions of self-consistent electrodynamic problems of the excitation of one-port [3] and two-port [4] MSW resonators. In this formulation, in particular, dipole moments of a particle, induced by an external magnetic field are found through a resonator high-frequency magnetization, which is determined taking into account the "back" influence of the current in the strip on this magnetization. Neglecting of this interaction results in the non-accurate determination of the polarizabilities 

 ,

 and their resonant frequency. Presented electrodynamic description of magnetoelectric particles enables to obtain constitutive relations for composite media in a closed form.

2. Self-Consistent Electrodynamic Problem for 

 and 

 Determination

Tensor polarizabilities 

 and 

 are calculated in the assumption that E = 0 in (1).  Magnetization induced by a given magnetic field H is found as an expansion into the series of eigenmodes
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where 
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, ( is the gyromagnetic ratio, (0 is the permeability of free space, M0 is the saturation magnetization, and V is the resonator volume. The "back" influence of a strip current on the magnetization is taken into account by including the magnetic field h( in (2), which can be found as a field of a transmission line excited by an equivalent given magnetic current i(M
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with
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, 

 is the magnetic field of a dominant wave in a strip-line (in the absence of ferrite) with the propagation constant (, N( is a normalization coefficient [4], (1 and (2 are the reflection coefficients for a strip current at x = 0 and x = L ((1 = (1 and (2 = (exp((2i(L) for our case of an open transmission line), and S is the cross section of the line. The system of integral equations (2), (3), formulating a self-consistent electrodynamic problem, has the following solution for amplitudes of electromagnetic waves in the transmission line



, 

,       (4) 
where 
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 and parameter s, depending on the line length, is given in [4] (

 for a special case (L<<1). Substituting (4) in (3) and using Ampere’s law (an integration extends over an arbitrary contour C in the cross section yz which includes the strip)


[image: image11.wmf](

)

ò

=

m

C

x

J

d

l

h

,

one can find an induced electric dipole moment and using (2) - a magnetic dipole moment
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Polarizabilities can be written in a tensor form




, 

 ,
(6)

where for the case 

 coefficients A and B are the following
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and W is a characteristic impedance of a transmission line, which can be calculated as [5]



.                                                      (9)

For a normally magnetized ferrite disk and a fundamental uniform mode of magnetization (when its components can be assumed to be mqx = 1, mqy = (i, mqz = 0) calculated polarizability coefficients A (7) are shown in the Fig.2. Note that in this case an internal biasing magnetic field is uniform. The diameter of the resonator is taken equal to the length of a strip and the particle is characterized by the following set of parameters: L = 0.5mm, b = 20(m, 4(M0 = 1750 Oe, H0 = 5320 Oe, 2(H0 = 0.5 Oe, (=10.



             


Fig. 2
Polarizability coefficient 

 (ferrite film thickness: a) 10 (m, b) 50 (m). Solid curve: Self-consistent solution; Dotted: "Back" coupling neglected.
                                              a)                                                                                b)

3. Calculation of Tensor Polarizabilities 

and 


Tensor polarizabilities 

 and 

 are calculated in the assumption that H = 0 in (1). A current distribution along a narrow strip in an external longitudinal electric field E is known from the antenna theory [5]



,                                                     (10)

where 

, 

 . Induced electric dipole moment pe is obtained by integrating the current J(x) according (5). A magnetic dipole moment pm of the ferrite resonator is excited by the current (10) and can be calculated using (5) with the amplitude coefficients cq being obtained from (2) for H = 0. It can be easily seen that the magnetic field of the transmission line is related to the current as
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where 
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(for this value the following relationship is valid 

). Performing calculations we come to the following polarizabilities for the case (L<<1




 ,  

 ,
(12)

where 

, 

 .

3. Conclusion 
Derived explicit expressions for polarizabilities show that all non-zero tensor elements, except 

, have resonant character with resonance frequencies close, but not equal, to the MSW resonator eigenfrequencies. Elements of tensors of magnetoelectric coupling 

, 

 are proportional to the saturation magnetization M0 of ferrite and to the third power of the strip length L3 and increase with the growth of the resonator quality factor Q.  For low magnetic losses these tensors are related as 

. Elements of the tensor 

 are proportional to the resonator volume V. The tensor 

has no frequency dependence and is proportional to the third power of the strip length L3. In the case when a ferrite resonator has a non-elliptic form (e.g., a straight-edge MSW resonator with a film of a rectangular form), calculations of polarizabilities must be carried out taking into account the influence of nonuniformity of the internal biasing magnetic field [6]. 
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