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Abstract

We have considered some peculiarities of light reflection by several types of fractal surfaces. The two-dimensional Weierstrass function for modeling of fractal surfaces was used. The computer simulation of real rough surfaces was performed by means of this function. The electromagnetic waves scattering indicatrix was obtained for the concrete fractal surfaces based on the scalar Kirchhoff theory. The computer simulation of light reflection by fractal surfaces was performed.
1.  Introduction
All the surfaces are rough in some way or another. Therefore the studying of the scattering of electromagnetic waves by rough surfaces is an important and interesting theoretical and experimental task. The investigation of the peculiarities of such scattering is an important first of all for a non-destructive control of real surfaces. Real surfaces are most adequately described by fractal functions as they are neither pure deterministic nor pure casual. Last time the fractal nature of a number of different surfaces have been experimentally determined (sea surface and sea bottom, Earth relief, cloud surfaces, thin film surfaces, deposited on the substrate, etc.).
The aim of this work was the simulation of the electromagnetic waves scattering indicatrix based on the scalar Kirchhoff theory for particular surfaces. The analogues calculations were performed by others authors [2], but our results have some distinctive features, particularly in the expression for the averaged scattering coefficient there are some additional terms which can significantly influence on the resulting scattering indicatrix at a certain geometry of the experiment. 
2.
Theory

We have chosen the two-dimensional Weierstrass function 
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were 
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 is  a normalizing factor; 
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 is the fundamental spatial frequency;
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 is the fundamental wavenumber of the surface; 
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 is the fractal dimension (
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 is a phase term. The example of a rough surface simulated using the function (1) is shown on Fig. 1(a).


Let us consider the wave falling on the rough surface 
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 at an angle 
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and scattering at a polar angle 
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 and at an azimuth angle 
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. We will be finding the scattered field
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 based on the scalar Kirchhoff method [4]:
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where 
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 is the wavenumber of the incident wave,
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is the angle factor, 
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 is the reflection coefficient,
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is the phase function,
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is the bound term,
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The above formalism is valid under the following conditions[4]: the incident wave is monochromatic and plane; the scattering surface is rough inside a certain square and smooth outside its; the surface dimensions are much large than the incident wavelength; all the surface points have finite gradient; the reflection coefficient is a constant across the surface area; the scattered field is observed far from the surface. 

After some transformations from Eq.(2) considering Eq.(1) we obtain the expression for the average scattering coefficient 
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where 
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is the intensity of a wave reflected from the respective smooth surface. Neglecting the terms higher than 
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), this expression has the following approximate form 
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where, 
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is the root mean square height of the surface roughness, X and Y are the dimensions  reflecting area
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3.  Numerical results 

We have calculated the averege reflected coefficient 
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 as a function of 
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 and 
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 (the scattering indicatrix) based on Eq. (5). We have assumed that 
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, in other words we have not considered the real dependence of the reflectance 
[image: image49.wmf]R

 on the wavelength 
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 and on the incident angle 
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. The example of the scattering indicatrix is shown on Fig. 1 (b).
4.  Conclusion
The analysis of the obtained results leads to some inferences:

· The waves scattering is symmetrical relatively the plane of incidence;

· The most intensity of the scattered waves is observed in the specular direction;

· There are others directions, where some splashes of intensity are observed;

· The picture of the reflection complicates with increasing of the surface large scale homogeneity.

These peculiarities are due to combination of chaotic character and self-similarity of the real surface relief. 
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Fig. 1
a) The simulation of the fractal surface by means of Weierstrass function K = 6.3, N = M = 5, D = 2.5; b) The reflection coefficient 
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 for the fractal surface with D = 2.5, q = 1.8;    N = M = 10.

References
[1]
M. V. Berry and Z. V. Lewis, Proc. R. Soc. London A, vol. 370, p. 459, 1980.
[2]
N. Lin et al., J. Mod. Opt., vol. 42, No. 1, p. 225, 1995.

[3]
D. L. Jaggard and Y. Kim, J. Opt. Soc. Am. A, vol. 4, p. 1055, 1987.

[4]
J. A. Ogilvy, Theory of Wave Scattering from Random Rough Surfaces. New York: Adam Hilger, 1991.
_1027947302.unknown

_1027947601.unknown

_1027947719.unknown

_1027949045.unknown

_1027949047.unknown

_1027949049.unknown

_1027949046.unknown

_1027947789.unknown

_1027947814.unknown

_1027947822.unknown

_1027948446.unknown

_1027947802.unknown

_1027947760.unknown

_1027947768.unknown

_1027947752.unknown

_1027947653.unknown

_1027947699.unknown

_1027947711.unknown

_1027947671.unknown

_1027947632.unknown

_1027947646.unknown

_1027947611.unknown

_1027947456.unknown

_1027947555.unknown

_1027947580.unknown

_1027947592.unknown

_1027947564.unknown

_1027947514.unknown

_1027947548.unknown

_1027947467.unknown

_1027947374.unknown

_1027947389.unknown

_1027947447.unknown

_1027947382.unknown

_1027947348.unknown

_1027947365.unknown

_1027947312.unknown

_1027947208.unknown

_1027947258.unknown

_1027947272.unknown

_1027947280.unknown

_1027947265.unknown

_1027947227.unknown

_1027947238.unknown

_1027947217.unknown

_1027947176.unknown

_1027947192.unknown

_1027947199.unknown

_1027947184.unknown

_1027947095.unknown

_1027947168.unknown

_1024219869.doc
��aaaaaaa



b







�
















_1027947075.unknown

_1024146666.doc
��



a







�
















