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Abstract – We explore the idea of context dependent clus-
tering under a hierarchical agglomerative framework. Inter-
pattern relationships (within a cluster) are modelled by the
statistical distribution of dissimilarity increments between
neighboring patterns. This distribution characterizes context,
forming the basis of a new cluster isolation criterion. The inte-
gration of this criterion into a hierarchical agglomerative clus-
tering framework produces a partitioning of the data, while
exhibiting pattern structure in terms of a dendrogram-type
graph. We further extend the applicability of the method to
large data sets by proposing the integration of sampling tech-
niques into the clustering process.

Keywords– Clustering, hierarchical methods, dissimilarity
increments, context, scalability.

I. I NTRODUCTION

Clustering techniques require the definition of a similarity
measure between patterns. Directly using dissimilarity val-
ues or exploring point densities for the patterns, either em-
phasizing compactness or connectedness in feature space,
two main strategies are adopted: hierarchical methods and
partitional methods [1]. Partitional structure organizes pat-
terns into a small number of clusters; a data partition is ob-
tained as the result of an optimization process or by explor-
ing local structure. Examples of techniques in this class in-
clude mixture decomposition [2, 3, 4], non-parametric den-
sity estimation based methods [5], central clustering [6],
square-error clustering [7], shape fitting approaches [8],
geometrical approaches [9]. The K-means is a very popular
algorithm in this category. Assuminga priori knowledge
about the number of classes and based on the square-error
criterion, it is a computationally efficient clustering tech-
nique that identifies hyper-spherical clusters [1].
Hierarchical methods produce a nesting of data clusterings

in a hierarchical structure, that can be represented graph-
ically as a dendrogram. Mostly inspired by graph theory
[10], both agglomerative [1, 11] and divisive approaches
[12] have been attempted, the first starting with many clus-
ters that are successively merged in accordance with inter
cluster similarity, and the later working in the opposite di-
rection. Variations of the algorithms can be obtained by
the definition of a similarity measure between patterns and
clusters [13]. The single link algorithm is one of the most
popular methods in this class [1]. Data partitioning is
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usually obtained by setting a threshold on the dendrogram;
cluster validity studies have also been proposed [14, 15] for
the a posteriorianalysis of structures, in order to evaluate
the clustering results and define meaningful clusters.
In this paper we explore the idea of context dependent clus-

tering under a hierarchical agglomerative framework. As-
suming a hypothesis of smooth dissimilarity increments be-
tween neighboring patterns within a cluster [16], the statis-
tics of dissimilarity first derivative is modelled by an ex-
ponential distribution. This statistical model characterizes
context, a cluster isolation criterion being derived based on
a pair-wise context analysis (section II). Introduction of
this criterion into a hierarchical agglomerative technique
(section II-A) leads to the partitioning of the data without
requiring ad-hoc specification of parameters (such as the
number of clusters or threshold on the dendrogram). The
characteristics of the method are illustrated through a set
of examples. A major difficulty with hierarchical meth-
ods concerns its complexity, both in terms of time and
space, limiting its range of applicability. We here propose
an extension of the method by integrating sampling tech-
niques into the clustering process, in order to be able to
process larger data sets (section III). The performance of
the method and its extension is evaluated through a set of
examples in section IV.

II. CLUSTER ISOLATION CRITERION AND

HIERARCHICAL CLUSTERING

Let X be a set of patterns andxi ∈ Rd represent an el-
ement in this set. Given patternxi and some dissimilar-
ity measure,d(., .), between patterns, let(xi, xj , xk) be the
triplet of nearest neighbors:

(xi, xj , xk) – nearest neighbors
xj : j = arg minl {d(xl, xi) , l 6= i}
xk : k = arg minl {d(xl, xj) , l 6= i, 6= j} .

We definedissimilarity incrementbetween the neighboring
patterns by

dinc(xi, xj , xk) = |d(xi, xj) − d(xj , xk)|,

which can be seen as the first derivative of the dissimilarity
function at the first point of the ordered list of neighboring
samples. The dissimilarity increments between neighbor-
ing patterns within a natural cluster typically exhibit an ex-
ponential distribution [16], as illustrated in figure 1. Each
cluster is hence characterized by a parametrical model (ex-
ponential distribution), which defines a context. According



to this parameterization of clusters, two clusters are dis-
tinguishable if they exhibit distinct distributions and/or if
they are well separated, in which case patterns in distinct
clusters are placed far in the tail of the other cluster distri-
bution. This constitutes the basis of the proposed cluster
isolation criterion: given two clusters candidate for merg-
ing, evaluate each cluster from its context point of view; if
the dissimilarity increments between neighboring patterns
from the first to the second cluster are inconsistent with the
first cluster statistics, isolate this cluster.
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(a) Plot of 2D Gaussian data
(500 patterns).
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(b) Histogram for the Gaus-
sian data set.
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(c) Directional expanding
data model.
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(d) Histogram for the expand-
ing data set.

Figure 1 - Histograms (bar graphs) and fitted exponential distribu-
tions (solid line curves) of the dissimilarity increments computed
over neighboring patterns in the data. (a)- 2D gaussian distribution
(N([0, 0], [10 0; 0 10])). (c)- Data generated by the model:x(k + 1) =
x(k) + ns(k)k, y(k + 1) = y(k) + n(k), wherens andn(k) represent
uniform noise in the range[−10; 10] and[0; 10], respectively.

Adopting a hierarchical agglomerative strategy, with dis-
similarity between clusters being defined as the minimum
dissimilarity between inter-cluster pattern pairs (dissimilar-
ity between nearest neighbor patterns in either cluster, as
with the single link method), the concept of dissimilarity
increments between patterns is easily extended to the con-
text of clusters. We definegapbetween two clusters as the
dissimilarity increment between nearest neighbor patterns
in opposite clusters. This leads to a context-dependent def-
inition of gap. Let Ci, Cj be two clusters candidate for
merging and letdt(Ci) anddt(Cj)) represent the value of
the dissimilarity on the latest pattern association in cluster
Ci andCj , respectively. Letd(Ci, Cj) be the dissimilarity
between the two clusters. We definedissimilarity increment
or gapbetween clusteri and clusterj as the asymmetric in-
crease in the dissimilarity value, needed in order to allow
the data association into a single cluster, as seen fromCi

context:
gapi = d(Ci, Cj) − dt(Ci). (1)

Graphically, these gaps correspond to intervals between
successive cluster associations in the dendrogram, seen
from each cluster point of view (see figure 2).
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Figure 2 - Dendrogram and the definition of gap.

The cluster isolation criterion can be stated as follows:

• Let Ci, Cj be two clusters which are candidates for
merging, and letµi, µj be the respective mean values
of the dissimilarity increments in each cluster. Com-
pute the increments for each cluster,gapi andgapj , as
defined in equation ( 1). Ifgapi ≥ αµi (gapj ≥ αµj),
isolate clusterCi (Cj) and proceed the clustering
strategy with the remaining patterns. If neither clus-
ter exceeds the gap limit, merge them.

Notice that the above criterion can be regarded as a
context-dependent cluster isolation rule where the context
is modelled by the parametric distribution of dissimilarity
increments. The isolation rule consists of comparing the
value of the dissimilarity increment, seen from the context
of each cluster, with a dynamic threshold,αµi, computed
from this context; inconsistency ofgap values in a given
context (cluster) determines the isolation of that cluster.
The design parameter,α, constrains the degree of isola-

tion; values in the range 3–5 provide reasonable choices,
corresponding to the rejection of atypical patterns [16].

A. Hierarchical Clustering Algorithm

The schematic description in table I incorporates the clus-
ter isolation criterion described in the previous section into
a hierarchical agglomerative type clustering algorithm.

B. Illustrative Example

Figure 3 illustrates the clustering algorithm on three con-
centric 2D clusters (figure 3(a)). The k-means algorithm,
imposing spherical clusters on the data, is unable to cor-
rectly identify the natural clusters. The single link method
doesn’t perform better (see the dendrogram in figure 3(b)):
setting a threshold on the dendrogram will either lead to the
merging of the inner clusters or to the splitting of the outer
cluster.
According to the proposed method, dissimilarity incre-

ments are compared with a dynamic, cluster dependent
threshold. For instance, the gaps,g1 andg2, are compared



Table I

HIERARCHICAL CLUSTERING ALGORITHM BASED ON DISSIMILARITY

INCREMENTS.

Input: N samples;α (default value is 3).
Output: Data partitioning.
Steps:

1. Set:Final clusters = φ; n = N ;
Put theith sample in clusterCi, i = 1, . . . , n;
Clusters =

⋃
i
Ci, i = 1, . . . , n;

dt[i] = µ[i] = jumps[i] = 0, i = 1, . . . , n;
2. If (Clusters == φ) or (n == 1)

thenstop, returningFinal clusters
⋃

Clusters;
elsecontinue.

3. Choose the most similar pair of clusters(Ci, Cj) from Clusters. Let
gapi = d(Ci, Cj) − dt[i]
gapj = d(Ci, Cj) − dt[j]

4. If ((µ[i] == 0) or (gapi < αµ[i])) and
((µ[j] == 0) or (gapj < αµ[j]))

then
join the clustersCi, Cj into clusterCi,j : Ci,j = Ci

⋃
Cj

Let I be the index for the merged cluster;
ReplaceCi, Cj by Ci,j in Clusters;
dt[I] = d(Ci, Cj);
jumps[I] = jumps[i] + jumps[j] + 2;

µ[I] = µ[i]
jumps[i]
jumps[I] + µ[j]

jumps[j]
jumps[I] +

gapi+gapj
jumps[I] ;

Go to step 2.
else continue.

5. If (gapi ≥ αµ[i])
thensetFinal clusters = Final clusters

⋃
Ci;

RemoveCi from Clusters;
n = n − 1.

end if
If (gapj ≥ αµ[j])
thensetFinal clusters = Final clusters

⋃
Cj ;

RemoveCj from Clusters;
n = n − 1.

end if
Go to step 2.

with the corresponding cluster threshold (3/β1 = 0.053
and 3/β2 = 0.035, respectively). As a result, two clus-
ters are isolated and frozen in the dendrogram; merging
steps continue with the remaining data, thus leading to a
third cluster, as gaps are smaller than the cluster threshold,
3/β3 = 0.21, the true clusters being identified.

III. SAMPLING TECHNIQUES INCLUSTERING

A major difficulty with the hierarchical approaches con-
cerns its computational complexity, both in terms of time
and space. Hierarchical methods operate onn(n − 1)/2
entries of a symmetricn × n proximity matrix, withn be-
ing the number of patterns. This limits the usage of this
technique to relatively small data sets.
In this section we propose the combination of sampling

techniques with the previous clustering method in order to
extend the range of applicability to larger data sets. The
idea is to map the high dimensional data set into a rea-
sonable small number of prototypes, easily handled by the
hierarchical clustering method. Simple random selection
among the training patterns does not provide a good solu-
tion, as total randomness may lead to a distortion of inter-
and intra-cluster relationships. We therefore partition the
data sets into a large number of small and compact clus-
ters, representing each cluster by its centroid; centroids are
then clustered using the hierarchical clustering technique;
the corresponding data partition is obtained by joining all
the patterns represented by the prototypes gathered in the
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(a) Three concentric ring-shaped clusters.
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(b) Dendrogram produced by the sin-
gle link method. d1 and d2 represent
distances between clusters;g1 and g2
represent gaps seen from each cluster.
These gaps are compared with a dynamic
threshold, which is context dependent
(α = 3 is shown). The proposed method
isolates the inner clusters, thus recovering
the true cluster structure in (a).

Figure 3 - Clustering of concentric patterns.

same cluster. The K-means algorithm is elected to perform
this mixture decomposition of data, due to its simplicity
and computational efficiency. It may happen that small nat-
ural clusters are merged in this sampling+clustering step.
Each formed cluster should therefore go through a more de-
tailed analysis, either by subsequent application of the sam-
pling technique or by direct clustering using the hierarchi-
cal method (depending on the number of patterns present),
for detection of finer grained clusters.
The overall method can be described schematically as fol-

lows:

• Step1. If the data set is small, use each sample as a
centroid and go to step 2. Otherwise, decompose the
data into a large number of small hyper-spherical clus-
ters using the K-means algorithm.



• Step2. Apply the hierarchical method to the centroids
representing the clusters in the previous mixture de-
composition and obtain a partition.

• Step3. Get a data partition by assigning each sample to
the cluster where its representative (centroid) belongs.
If a single cluster was obtained, stop the procedure;
otherwise, repeat steps 1 to 3 with each cluster in the
partition.

IV. EXPERIMENTAL RESULTS

The hierarchical clustering method and its extension are
tested in a set of examples.

A. Uni-Modal Random Data

It is known that most of the clustering algorithms impose
structure on data. We here evaluate the performance of
the proposed method on random data drawn from a uni-
form distribution. Figure 4(a) shows a 2D projection of
2000 patterns uniformly distributed in a 5-dimensional hy-
percube. Applying the hierarchical clustering algorithm to
this data set, using the Euclidean distance andα = 3 (de-
fault value), a single cluster is obtained. The combined K-
means+hierarchical clustering of centroids technique was
tested withk = 50, 100 and 200. Figure 4(b) shows the
centroids given by the K-means algorithm, withk = 100.
The extended algorithm led to the identification of a single
cluster with a considerable increase in efficiency.
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(a) 2-D projection of random
data.
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(b) Sampling at 100 points.

Figure 4 - Random data and prototypes obtained by the K-means algo-
rithm.

B. Half-Rings Data Set

The half-rings data set, represented in figure 5(a), consti-
tutes an example of well separated clusters easily handled
by the proposed techniques, that are not adequately handled
by the single link (see figure 6) or the k-means algorithm.
Direct application of the hierarchical method based on dis-

similarity increments identifies the two natural clusters in
figure 5(a). The combined K-means+hierarchical clustering
technique led to the consistent identification of two clusters
based on centroids (tests includedk = 20, 30 and 50), as il-
lustrated in figure 5(b). Application of the technique to each
cluster produced on the first phase of the extended tech-

nique led to no further partitioning, the true cluster structure
being once again recovered.
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(a) Half-ring data set (400 points).
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(b) Hierarchical clustering of 30 cen-
troids.

Figure 5 - Half-rings data set and prototypes using the k-means algorithm.

Figure 6 - Single-link method on the half-ring data. Thresholding this
graph splits the upper ring cluster into several small clusters.

C. Complex Image

The final example constitutes a complex structure of clus-
ters (see figure 7(a)). The hierarchical clustering method
based on dissimilarity increments leads to the identification
of 8 clusters, as plotted in figure 7(b).
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(a) Complex cluster shapes.
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(b) Clustering with the hierarchical method
based on dissimilarity increments (α = 3): 8
clusters are identified.
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(c) Centroids obtained withk = 30 and
corresponding clustering.
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(d) First phase data partition: two clusters
are identified.
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(e) Second phase of the clustering proce-
dure: further partitioning of the first sub-
cluster.
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of the second
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(g) Final data partition.

Figure 7 - Clustering of complex clusters based on dissimilarity increments.



The extended version was tested withk = 30, 50 and 70.
The combined strategy now required three phases of anal-
ysis, the clusters identified being consistent with the ones
represented in figure 7(b), except for the outer circle which
was split into a variable number of clusters, depending onk
and on the K-means initialization. It should be noticed that
this is an extremely sparse structure intermingled with the
remaining clusters, which justifies the variability of associ-
ations made.
Figures 7(c) to 7(g) illustrate the process fork = 30. On

the first phase of the combined method, 30 centroids are
defined by the k-means algorithm, and organized into two
clusters by the hierarchical method (fig. 7(c)); this leads
to a first division of the patterns as shown in figure 7(d).
A second round of the procedure is then run on each iso-
lated cluster, leading to the partitions in figures 7(e) and
7(f). Application of the clustering technique to each of the
clusters identified on the second phase does not produce
further partitioning. The resulting clusters are therefore the
ones plotted in figure 7(g).
Fork = 50 andk = 70 comparable results were obtained,

with an initial partition into 3 clusters; the outer circle was
split into tree clusters, and the remaining clusters were cor-
rectly identified.

V. CONCLUSIONS

A hierarchical clustering algorithm, exploring the idea of
context dependent clustering, was presented. According to
the proposed method, inter-pattern relationships are mod-
elled by the statistical distribution of dissimilarity incre-
ments between neighboring patterns. This distribution is
used to characterize each cluster, forming the basis of a
context-based cluster isolation criterion. Introduction of
this criterion into a hierarchical agglomerative technique
leads to the partitioning of the data without requiring ad-
hoc specification of parameters.
The method was further extended by proposing the inte-

gration of sampling techniques into the clustering process
in a combination of the K-means algorithm with the hierar-
chical method.
Experimental results showed the ability of the method to

identify arbitrarily shaped, well separated clusters. The ex-
tended method provided an efficient way to cluster the data,
without or with minor degradation of the clustering results,
thus expanding the range of applicability of the clustering
strategy to larger data sets.
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