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Abstract. A hierarchical agglomerative clustering algorithm based on
the analysis of dissimilarity increments between neighboring patterns is
presented. The first derivative of dissimilarity between neighboring pat-
terns inside a natural cluster is modelled by an exponential distribution,
this statistic characterizing the cluster. A cluster isolation criterion is
defined based on estimates of each cluster dissimilarity increments mean
value, continuously updated along the clusters formation process, under
a hierarchical agglomerative framework. Unreliable estimates, mainly oc-
curring when cluster cardinality is low, can lead to over-fragmentation
of the data into spurious, small sized clusters. In order to prevent this
situation, a regularizing function is proposed to widen the estimates of
the exponential distribution mean, when the number of samples is small.
Analysis of the method is performed in a comparative study with the well
known single-link and k-means algorithms. Application examples using
both syntectic and real data show the ability of the method to identify
arbitrary shaped clusters.

1 Introduction

Clustering - the partitioning of a set of objects into groups or clusters - is very
important in exploratory pattern analysis and data mining. Various cluster-
ing algorithms and techniques have been reported in the literature [1, 2], from
model-based [3–5], non-parametric density estimation based methods [6], central
clustering [7] and square-error clustering [8], graph theoretical based [9, 10], to
empirical and hybrid approaches.

Two main strategies are used for clustering: hierarchical and partitional
methods [11, 1]. Hierarchical methods, mostly inspired by graph theory, consist
of a sequence of nested data partitions in a hierarchical structure, graphically
represented as a dendrogram; a partition may be obtained by setting a threshold
on the dendrogram. The most popular and well known algorithm in this class
is the single-link method [1, 2]. Partitional methods organize patterns into a
small number of clusters, either as a result of an optimization process over some
cost function, or based on some heuristic criterion. The k-means is probably the
best known and widely used algorithm in this category, being a computationally
efficient clustering technique based on the square-error criterion.



Underlying each clustering algorithm is a concept about data similarity.
Clustering techniques based on intra-cluster compactness criteria, such as the
k-means, tend to organize the data into hyper-spherical clusters. Graph-based
approaches supported on the minimum spanning tree concept, such as the single-
link method, are able to handle elongated clusters, but have difficulties in ad-
dressing situations of uneven density clusters. Another undesirable characteristic
is the ”chaining effect”, meaning the gathering of distinct clusters whenever there
is a chain of data points bridging the gap.

Recently, a new clustering algorithm based on the analysis of dissimilarity
increments between neighboring patterns was proposed [3]. Its ability to identify
clusters that have arbitrary shape and size, intrinsically finding the number of
clusters, was illustrated in a set of application examples. Assuming a parametri-
cal model for cluster representation – an exponential distribution summarizing
dissimilarity increments statistics, it is essentially an agglomerative type hierar-
chical method supported on a new cluster isolation criterion. Estimates of the
mean value of dissimilarity increments between neighboring patterns within a
cluster are produced and updated along the clustering process, being crucial
to the cluster isolation step. It has been pointed out that unreliable estimates
of distribution means, particularly occurring when cluster sizes are very small,
may lead to over-fragmentation of data, due to premature isolation of clusters.
The procedure adopted in [3] to prevent this situation consisted in inhibition
of cluster isolation when clusters candidate for merging had both a very small
cardinality. In this paper we address the problem of unreliable estimates of distri-
bution means proposing a smooth widening function of the isolation parameter,
thus overcoming the difficulties reported above.

Section 2 introduces the cluster isolation criterion and outlines the algo-
rithm’s steps. The regularizing function for estimates of the distribution mean
of dissimilarity increments, based on a small number of samples, is presented in
section 3. Evaluation of the clustering algorithm in comparison with the single
link method and the k-means algorithm is performed in section 4 through a set
of examples.

2 The Clustering Algorithm

The algorithm described in [3] is a pair-wise clustering method based on the anal-
ysis of the statistics of dissimilarity increments between neighboring patterns. It
proposes an iterative cluster merging procedure, starting with one sample per
cluster, a dendrogram type graph being built along the process. Figure 1(a),
plotting a dendrogram, illustrates the basic concepts. Most similar patterns are
joined first in a cluster, corresponding to leftmost links on the graph. Vertical
lines represent dissimilarity values between samples (when joining single element
clusters) or between clusters, in the later case dissimilarity being computed be-
tween the most resembling patterns from each cluster (nearest-neighbor rule
for computing the distance between clusters). Dissimilarity increments between
neighboring patterns are represented on the graph as gaps.
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(a) Dedrogram and definition of gap.
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(b) Exponential disttribution.

Fig. 1. Dendrogram and gap statistics. The patterns are linked according to the nearest
neighbor rule.

The underlying assumption is that dissimilarity increments, or gaps, statistics
are characteristic of each cluster, an exponential distribution being used to model
cluster structure. Taking the one sided view of a cluster Ci, the gap to the
other cluster (candidate for merging), gapi, is computed and compared with
the statistic of the first cluster – exponential distribution mean, µi. If it is not
consistent with this statistic (gap values located far on the tail of the exponential
distribution - see fig. 1(b)), the first cluster is isolated in the dendrogram, the
algorithm proceeding with the remaining data.

The cluster isolation criterion can be stated as follows:

– Let Ci, Cj be two clusters which are candidates for merging, and let µi, µj

be the respective mean values of the dissimilarity increments in each cluster.
Compute the increments for each cluster, gapi and gapj. If gapi ≥ αµi

(gapj ≥ αµj), isolate cluster Ci (Cj) and proceed the clustering strategy
with the remaining patterns. If neither cluster exceeds the gap limit, merge
them.

The term αµi corresponds to a threshold to which gap values are compared,
with α being typically set to 3 when dealing with well separated clusters (for a
discussion on the selection of this parameter see [3]), and µi being replaced by
the current mean value estimate based on data present in the cluster.

In this paper we propose to replace the threshold αµi by a more adequate
dynamic threshold, thdyn Ci

, compensating the effect of under-estimation of gaps
statistics in the early stages of the clustering algorithm, when a small number
of samples is present in each cluster. The revised algorithm with the enhanced
dynamic threshold is outlined in table 1.



Table 1: Enhanced clustering algorithm based on dissimilarity in-
crements between neighboring patterns.

Input: N samples; α (default value is 3).
Output: Data partitioning.
Steps:

1. Set: Final clusters = φ; n = N ;
Put the ith sample in cluster Ci, i = 1, . . . , n;
Clusters =

⋃
i Ci, i = 1, . . . , n;

dt[i] = µ[i] = jumps[i] = 0, i = 1, . . . , n;
2. If (Clusters == φ) or (n == 1)

then stop, returning the clusters found in Final clusters
⋃

Clusters;
else continue.

3. Choose the most similar pair of clusters (Ci, Cj) from Clusters. Let
gapi = d(Ci, Cj) − dt[i] ni=jumps[i]
gapj = d(Ci, Cj) − dt[j] nj=jumps[j]

4. If ((gapi < thdyn Ci
(µ[i], ni, nj)) and (gapj < thdyn Cj

(µ[j], nj, ni)))
then

join the clusters Ci, Cj into cluster Ci,j : Ci,j = Ci

⋃
Cj

Let I be the index for the merged cluster;
Replace Ci, Cj by Ci,j in Clusters;
dt[I] = d(Ci, Cj);
jumps[I] = jumps[i] + jumps[j] + 2;
µ[I] = µ[i] jumps[i]

jumps[I] + µ[j] jumps[j]
jumps[I] + gapi+gapj

jumps[I] ;
Go to step 2.

else continue.
5. If (gapi ≥ αµ[i])

then set Final clusters = Final clusters
⋃

Ci;
Remove Ci from Clusters;
n = n − 1.

end if
If (gapj ≥ αµ[j])
then set Final clusters = Final clusters

⋃
Cj ;

Remove Cj from Clusters;
n = n − 1.

end if
Go to step 2.

3 Adaptive Threshold for Reduced Number of Samples

When a reduced number of samples are gathered in a cluster, estimates of dissim-
ilarity increments statistics are not reliable. It is important to prevent premature
cluster isolation in these situations due to low estimates of the distribution mean,
µ̂. In order to overcome this difficulty we propose to increase the value of the
estimate µ̂ by multiplying it by a term widenfact(ni, nj) greater or equal to 1.
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(a) Amplification factor as a func-
tion of the number of terms used in
the computation of the gaps distri-
bution mean for cluster Ci (β = 1).
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(b) Reinforcement of the amplifying
term as a function of the number of
elements in cluster Cj (β = 1).

Fig. 2. Amplification term widenfact associated with the estimate µ̂ for cluster Ci.

We define the amplifying term widenfact(ni, nj) as a monotonous decreasing
function of ni, nj - the number of elements available for the computation of the
distribution means for cluster Ci and Cj respectively:

widenfact(ni, nj) =

1+β ×
(

1 − 1
1 + e−.4(ni−10)

)
︸ ︷︷ ︸

f1(ni)

×
(

2 − 1
1 + e−.4(nj−10)

)
︸ ︷︷ ︸

f2(nj)

(1)

The reasoning underlying expression 1 is the following (see figure 2). If clus-
ter Ci has few samples, the estimate µ̂(Ci) should be enlarged to compensate
for possible underestimation of the true distribution mean; this widening ef-
fect smoothly vanishes as the number of terms ni used in the computation of
the estimate µ̂(Ci) increases (fig. 2(a)), which is modelled by the term f1(ni), a
sigmoid-like function. The term f2(nj) expresses the reinforcement of the widen-
ing effect when the number of elements in the competing cluster Cj is also low
(fig. 2(b)), taking values greater or equal to 1. When both clusters have low car-
dinality the combined action of f1 and f2 favors clusters merging. When cluster
Ci has already a sufficiently large number of elements, the estimate of µ̂(Ci) is
considered to be reliable and term f1(ni) tends to zero, thus annihilating the



influence of term f2 (the size of cluster Cj becomes irrelevant – see fig. 2(a),
ni ≥ 25). In expression 1, β is a scaling parameter (default value: 3).

When the number of elements available for the estimation of the dissimilarity
increments statistic, ni, is extremely low (such as when the number of cluster’s
samples is less than 10) the estimate for the µ parameter is very poor. Applying
a multiplicative factor to the threshold term may not solve the under-estimation
problem in this situation, in particular when µ̂ is near zero. To cope with this
situation the proposed dynamic threshold takes a new additive term with a high
value and short domain (vanishes for ni = 10)

deltafact(ni) = bigval ×
(

1 − 1
1 + e−10(ni−5)

)
, (2)

where bigval is a large positive number. The final expression of the dynamic
threshold to which gaps, seen from cluster Ci perspective, are to be compared
is given by:

thdyn Ci
(µ̂i, ni, nj) = deltafact(ni) + αµ̂i × widenfact(ni, nj) (3)

4 Examples

In this section results of application of the proposed method are discussed in
comparison with two well known clustering algorithms: a hierarchical agglomer-
ative technique – the single-link method; a partitional algorithm – k-means.

4.1 Spiral Data

The two spiral arms with uneven data sparseness plotted in figure 3(a) constitute
an example of a challenging cluster structure for most clustering algorithms
reported in the literature.

Clustering results are plotted in figure 3. As shown (figures 3(a) and 3(c), the
proposed algorithm correctly identifies the clusters for 2 ≤ α < 100 (β was set
to 3). The single-link method and the k-means algorithm, however, are unable
to handle this type of data structure. The focus on data compactness provided
by the k-means algorithm fails to capture essential properties of the data, the
clustering results being represented in fig. 3(e). The single-link method produces
the dendrogram depicted in figure 3(d). Thresholding on this graph is equivalent
to cutting weak edges in the minimum spanning tree (fig. 3(f)), resulting in
a large cluster gathering points from both spiral arms, and additional single
element clusters (fig 3(b)). The ability of the proposed method to distinguish
between different gaps statistics leads to isolation of the cluster with a higher
number of points (denser data), the corresponding sub-graph on the dendrogram
being frozen, thus enabling correct formation of the second cluster, as shown in
fig. 3(c).
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(a) Proposed Method, α = 3; β = 3.
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(b) Single-Link, dendrogram split-
ting at level 1.6.

(c) Dendrogram with the proposed
Method.

(d) Dendrogram with the Single-
Link.
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(e) K-means, k = 2.
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(f) Thresholding on the minimum
spanning tree, th=1.3

Fig. 3. Spiral data (133 samples.)



Fig. 4. Dendrogram produced by the single-link method for the breast cancer data.

4.2 Breast-Cancer Data

The Wisconsin Breast Cancer Data set (available at the UCI Machine Learning
Repository [12]) consists of two classes (benign and malignant, 444 and 239
samples, respectively), represented by 9 features. Class labels are ignored for
clustering.

References [13] and [14] present clustering results using cluster center based
methods, according to which performances obtained on this data were 94.28%
and 95.5% correct classifications, respectively. Using the k-means algorithm, with
k=2, results are dependent on the initial cluster centers. After several experi-
ments, the best accuracy achieved was 96.49% (24 samples misclassified).

Figure 4 represents the dendrogram produced by the single-link method, by
ordering data according to their class labels: benign patterns are on the right
side of the graph. As shown, this method is not able to differentiate between the
two types of data: simple thresholding on this graph leads to a cluster with most
of the samples, and spurious single pattern clusters being formed. Analysis of
this graph shows that the two classes are not well separated but exhibit different
structures of inter-pattern distances.

With the proposed method a single cluster is obtained for α = 3 (which
assumes good cluster separation). By setting this threshold to 1 two clusters are
identified (with β in expression 1 taking an arbitrary value) corresponding to a
recognition rate of 96.63% (23 samples were misclassified). This result compares
favorably to the results reported above.

Table 2. Clustering results obtained with the proposed method on the breast cancer
data.

α = 1 #Clusters Recognition rate

th = αµ̂i 3 96.49 %
thdyn Ci 2 96.63 %



Table 2 presents the clustering results when using the dynamic threshold as
defined in expression 3 or the threshold th = αµ̂i. As shown, samples in the
spurious cluster produced in the later situation are distributed to the correct
clusters by using the dynamic threshold, thus improving the overall performance.

5 Conclusions

This paper presented and enhanced version of a clustering algorithm [3] based
on dissimilarity increments between neighboring patterns. The novelty of this
contribution consisted of addressing the problem of unreliable estimates of distri-
bution means by proposing a smooth widening function to replace the threshold
parameter given in the cluster isolation criterion underlying the work in [3].

The ability of the enhanced clustering algorithm to produce correct data
partitioning has been demonstrated on an artificially created data set as well
for a real world application. Examples included clusters with arbitrary shapes
and sizes, the method correctly identifying the intrinsic data structure. For the
breast-cancer data set, the influence of the new dynamic threshold function
was crucial to increase the percentage of correct classifications, the final result
outperforming both the single-link and k-means algorithms, as well as other
clustering results reported in the literature.
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