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Abstract. Given an arbitrary data set, to which no particular paramet-
rical, statistical or geometrical structure can be assumed, different clus-
tering algorithms will in general produce different data partitions. In fact,
several partitions can also be obtained by using a single clustering algo-
rithm due to dependencies on initialization or the selection of the value
of some design parameter. This paper addresses the problem of finding
consistent clusters in data partitions, proposing the analysis of the most
common associations performed in a majority voting scheme. Combina-
tion of clustering results are performed by transforming data partitions
into a co-association sample matrix, which maps coherent associations.
This matrix is then used to extract the underlying consistent clusters.
The proposed methodology is evaluated in the context of k-means clus-
tering, a new clustering algorithm - voting-k-means, being presented.
Examples, using both simulated and real data, show how this major-
ity voting combination scheme simultaneously handles the problems of
selecting the number of clusters, and dependency on initialization. Fur-
thermore, resulting clusters are not constrained to be hyper-spherically
shaped.

1 Introduction

Clustering algorithms are valuable tools in exploratory data analysis, data min-
ing and pattern recognition. They provide a means to explore and ascertain
structure within the data, by organizing it into groups or clusters. Many clus-
tering algorithms exist in the literature [6, 8], from model-based [5, 13, 16], non-
parametric density estimation based methods [15], central clustering [2] and
square-error clustering [14], graph theoretical based [4, 18], to empirical and
hybrid approaches. They all underly some concept about data organization and
cluster characteristics. Best fit to some criteria, no single algorithm can ade-
quately handle all sorts of cluster shapes and structures; when considering hy-
brid structure data sets, different and possibly inconsistent data partitions are
produced by different clustering algorithms. In fact, many partitions can also be
obtained by using a single clustering algorithm. This phenomena arises due, for
instance, to dependency on initialization, such as the k-means algorithm, or by
particular selection of some design parameter (such as the number of clusters,
or the value of some threshold responsible for cluster separation). Model order
selection is sometimes left as a design parameter; in other instances, the selection



of the optimal number of clusters is incorporated in the clustering procedure [1,
17], either using local or global cluster validity criteria.

Theoretical and practical developments over the last decade have shown that
combining classifiers is a valuable approach in supervised learning, in order to
produce accurate recognition results. The idea of combining the decisions of clus-
tering algorithms for obtaining better data partitions is thus worth investigating.

In supervised learning, a diversity of techniques for combining classifiers has
been developed [7, 9, 10]. Some make use of the same representation for patterns
while others explore different feature sets, resulting from different processing and
analysis or by simple split of the feature space for dimensionality reasons. A first
aspect in combining classifiers is the production of an ensemble of classifiers.
Methods for constructing ensembles include [3]: manipulation of the training
samples, such as bootstrapping (Bagging), reweighing the data (boosting) or us-
ing random subspaces; manipulation of the labelling of data, an example of which
is error-correcting output coding; injection of randomness into the learning algo-
rithm - providing random initialization into a learning algorithm, for instance, a
neural network; applying different classification techniques on the same training
data set, for instance under a Bayesian framework. Another aspect concerns how
the output of the individual classifiers are to be combined. Once again, various
combination methods have been proposed [10, 11], adopting parallel, sequential
or hybrid topologies. The simplest combination method is majority voting. The
theoretical foundations and behavior of this technique have been studied [11,
12], proving its validity and providing useful guidelines for designing classifiers;
furthermore, this basic combination rule requires no prior training, which makes
it well suited for extrapolation to unsupervised classification tasks.

In this paper we address the problem of finding consistent clusters within
a set of data partitions. The rational of the approach is to weight associations
between sample pairs by the number of times they co-occur in a cluster from the
set of data partitions produced by independent runs of clustering algorithms,
and propose this co-occurrence matrix as the support for consistent clusters
development using a minimum spanning tree like algorithm. The validity of this
majority voting scheme (section 2) is tested in the context of k-means based
clustering, a new algorithm being presented (section 4). Evaluation of results
on application examples (section 5) makes use of a consistency index between
a reference data partition (taken as ideal) and the partitions produced by the
methods; a procedure for determining matching clusters is hence described in
section 3.

2 Majority Voting Combination of Clustering Algorithms

In exploratory data analysis, different clustering algorithms will in general pro-
duce different results, no general optimal procedure being available. Given a
data set, and without any a priori information, how can one decide which
clustering algorithm will perform better? Instead of choosing one particular
method/algorithm, in this paper we put forward the idea of combining their



classification results: since each of them may have different strengths and weak-
nesses, it is expected that their joint contributions will have a compensatory
effect. Having in mind a general framework, not conditioned by any particular
clustering technique, a majority voting rule is adopted.

The idea behind majority voting is that the judgment of a group is superior
to those of individuals. This concept has been extensively explored in combin-
ing classifiers in order to produce accurate recognition results. In this section
we extend this concept to the combination of data partitions produced by en-
sembles of clustering algorithms. The underlying assumption is that neighboring
samples within a ”natural” cluster are very likely to be co-located in the same
group by a clustering algorithm. By considering the partitions of the data pro-
duced by different clusterings, pairs of samples are voted for association in each
independent run. The results of the clustering methods are thus mapped into
an intermediate space: a co-association matrix, where each (i, j) cell represents
the number of times the given sample pair has co-occurred in a cluster. Each
co-occurrence is therefore a vote towards their gathering in a cluster. Dividing
this matrix values by the number of clustering experiments gives a normalized
voting. The underlying data partition is devised by majority voting, comparing
normalized votes with the fixed threshold 0.5, and joining in the same cluster
all the data linked in this way. Table 1 outlines the proposed methodology.

Table 1. Devising consistent data partitions using a majority voting scheme.

Input: N samples; E clustering ensembles of dimension R
Output: Data partitioning.
Initialization: Set the co-association matrix, co assoc, to a null N ×N matrix.
Steps:

1. Produce data partitions and update the co-association matrix:
For i = 1 to R do
1.1. Run the ith clustering method in the ensemble E and produce a data

partition P ;
1.2. Update the co-association matrix accordingly:

For each sample pair, (i, j), in the same cluster in P set
co assoc(i, j) = co assoc(i, j) + 1

R
2. Obtain the consistent clusters by thresholding on co assoc
2.1. Find majority voting associations:

For each sample pair, (i, j), such that co assoc(i, j) > 0.5 join the samples in
the same cluster; if the samples where in distinct previously formed clusters,
join the clusters;

2.2. For each remaining sample not included in a cluster, form a single element
cluster;

3. Return the clusters thus formed.

Without requiring prior training, this technique can easily cope with a diver-
sity of scenarios: classifiers using the same representation for patterns or making
use of different representations (such as different feature sets); combination of



classifications produced by a single method or architecture with different param-
eters or fusion of multiple types of classifiers.

Section 4 integrates this methodology into a k-means based clustering tech-
nique. Evaluation of the results makes use of a partitions consistency index,
described next.

3 Matching Clusters in Distinct Partitions

Let P1, P2 be two data partitions. In what follows, it is assumed that the num-
ber of clusters in each partition is arbitrary and samples are enumerated and
referenced using the same labels in every partition, si, i = 1, . . . , n. Each cluster
has an equivalent binary valued vector representation, each position indicating
the truth value of the proposition: sample i belongs to the cluster. The following
notation is used:

Pi ≡ partition i : (nci, Ci
1 . . . Ci

nci
)

nci ≡ number of clusters in partition i
Ci

j = {sl : sl ∈ clusterj of partition i}
≡ list of samples in the jth cluster of partition i

Xi
j : Xi

j(k) =
{

1 if sk ∈ Ci
j

0 otherwise
, k = 1, . . . , n

≡ binary valued vector representation of cluster Ci
j

We define pc idx, the partitions consistency index, as the fraction of shared
samples in matching clusters in two data partitions, over the total number of
samples:

pc idx =
1
n

min{nc1,nc2}
∑

i=1

n sharedi

where it is assumed that clusters occupy the same position in the ordered clusters
lists of the partitions, and n sharedi is the number of samples shared for the ith
clusters.

The clusters matching algorithm is an iterative procedure that, in each step,
determines the pair of clusters having the highest matching score, given by the
fraction of shared samples. It can be described schematically:

Input: Partitions P1, P2; n, the total number of samples.
Output: P

′

2, partition P2 reordered according to the matching clusters in P1;
pc idx, the partitions consistency index.

Steps:
1. Convert clusters Ci

j into the binary valued vector description Xi
j :

Ci
j → Xi

j , i = 1, 2 j = 1, . . . , nci

2. Set:P2new indexes(i) = 0, i = 1, . . . nc2 (clusters new indexes)
n shared = 0.

3. Do min {nc1, nc2} times:



– Determine the best matching pair of clusters, (k, l), between P1 and P2

according to the match coefficient:

(k, l) =
arg max

i, j

{

X1T
i X2

j

X1T
i X1

i + X2T
j X2

j −X1T
i X2

j

}

,

– n shared = n shared + X1T
i X2

j .
– Rename C2

l as C2
k : P2new indexes(l) = k.

– Remove C1
k and C2

l from P1 and P2, respectively.
4. If nc1 ≥ nc2 go to step 5; otherwise fill in empty locations in P2new indexes

(clusters with no correspondence in P1) with arbitrary labels in the set
{nc1 + 1, . . . , nc2}.

5. Reorder P2 according to the new clusters labels in P2new indexes and put in
P
′

2; set pc idx = n shared
n

6. Return P
′

2 and pc idx.

4 K-Means Based Clustering

In this section we incorporate the previous methodology in the context of k-
means clustering. The resulting clustering algorithm is summarized in table 2,
and will be hereafter referred to as voting-k-means. It basically proposes to gener-
ate clustering partitions ensembles by random initialization of the cluster centers
and random pattern presentation.

Table 2. Assessing the underlying number of clusters and structure based on a k-means
voting scheme.

Voting-K-Means algorithm.
Input: N samples; k - initial number of clusters (by default: k =

√
N);

R - number of iterations.
Output: Data partitioning.
Initialization: Set the co-association matrix to a null N ×N matrix.
Steps:

1. Do R times:
1.1. Ramdomly select k cluster centers among the N data samples.
1.2. Organize the N samples in random order, keeping track of the initial

data indexes.
1.3. Run the k-means algorithm with the reordered data and cluster centers

and update the co-association matrix according to the partition thus
obtained over the initial data indexes

2. Detect the consistent clusters though the co-association matrix, using the
technique defined previously.



4.1 Known Number of Clusters

One of the difficulties with the k-means algorithm is the dependency of the
partitions produced on the initialization. This is illustrated in figure 1 which
represents two partitions produced by the k-means algorithm (corresponding
to different cluster initializations) on a data set of 1000 samples drawn from
a mixture of two Gaussian distributions with unit covariance and Mahalanobis
distance between the means equal to 7. Inadequate data partitions, such as
the one plotted in figure 1(a), can be obtained even when the correct number
of clusters is known a priori. These misclassifications of patterns are however
overcome by using a majority voting scheme, as outlined in table 2, setting k to
the known number of clusters: taking the votes produced by several runs of the
k-means algorithm, using randomized cluster center initializations and samples
reordering, leads to the correct data partitioning depicted in figure 1(b).
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(a) k-means, k=2.
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(b) Voting-k-means

Fig. 1. Compensating the dependency of the k-means algorithm on cluster center ini-
tialization, k=2. (a)- Data partition obtained with a single run of the k-means algo-
rithm. (b)- Result obtained using another cluster centers initialization and also with
the proposed method with 10 iterations.

4.2 Unknown Number of Clusters

Most of the times, the true number of clusters is not known in advance and
must be ascertained from the training data set. Based on the k-means algo-
rithm, several heuristic and optimization techniques have both been proposed
to select the number of underlying classes [1, 17]. Also, it is well known that
the k-means algorithm, based on a minimum square error criterium, identifies
hyper-spherical clusters, spread around prototype vectors representing cluster
centers. Techniques for selecting the number of clusters according to this opti-
mality criterium basically identify an ”optimal” number of cluster centers on the



data that splits it into the same number of hyper-spherical clusters. When the
data exhibits clusters with arbitrary shape, this type of decomposition is not
always satisfactory. In this section we propose to use a voting scheme associated
with the k-means algorithm to address both issues: selection of the number of
clusters; detecting arbitrary shaped clusters.

The basic idea consists of the following: if a large number, k, of clusters is
selected, by randomly choosing the initial clusters centers and order of pattern
presentation, the k-means algorithm will split the training data into k subsets
which reflect high density regions; if k is large in comparison to the number of
true clusters, each intrinsic cluster will be split into arbitrary smaller clusters,
neighboring patterns having a high probability of being co-located in the same
cluster; by averaging over all associations of pattern pairs thus produced over R
runs of the k-means algorithm, it is expected to obtain high rates of votes on these
pairs of patterns, the true clusters structure being recovered by thresholding the
co-association matrix, as proposed before. The method therefore proposed is to
apply the algorithm described in table 2 by setting K to a large value, say

√
N ,

N being the number of patterns in the training set.
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(a) K-means - iter. 1.

−5 0 5
−4

−2

0

2

4

6

8

10

12

14

(b) Voting-K-means
- iteration 4.
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(c) Voting-K-means -
iteration 10.

Fig. 2. Partitions produced by the k-means (k=14) and the voting-k-means algorithms.

The method is illustrated in figure 2 concerning the clustering of 200 2-
dimensional patterns, randomly generated from a mixture of two Gaussian dis-
tributions: unit covariance; Mahalanobis distance between the means – 10. Fig-
ure 2(a) shows a data partition produced by the k-means algorithm (k=14);
distinct initializations produce different data partitioning. Accounting for per-
sistent pattern associations along the individual runs of the k-means algorithm,



the voting-k-means algorithm evolves to a stable partition of the data with two
clusters (see figures 2(b) and (c)).

5 Application Examples

5.1 Simulated Data

The proposed method is tested in the classification of data forming two well
separated clusters shaped as half rings. The total number of samples is 400,
distributed evenly between the two clusters; the voting-k-means is run setting k
to 20.
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(a) K-means - k=2.
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(b) Voting-K-means.
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(d) Consistency index.

Fig. 3. Half ring data set. (a)-(b) Partitions produced by the k-means and the voting-
k-means algorithms. (c)-(d) Convergence of the voting-k-means algorithm.

Figure 3(a) plots a typical result with the standard k-means algorithm when
using k = 2, showing its inability to handle this type of clusters. By taking the
majority voting scheme, however, clusters are correctly identified (figure 3(b)).
The convergence of the algorithm to the correct data partitioning is depicted in



figures 3(c) and 3(d), according to which a stable solution is obtained after 25
iterations.

5.2 Iris Data Set

The Iris data set consists of three types of Iris plants (Setosa, Versicolor and
Virginica), with 50 instances per class, represented by 4 features.
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Fig. 4. Iris data set: convergence of the voting-k-means algorithm; k = 8.

As shown in figure 4, the proposed algorithm initially alternates between 2
and 3 clusters, with consistency indexes ranging from 0.67 (2 clusters – Setosa
vs Versicolor + Virginica) and 0.75 (3 clusters). It stabilizes at the two clusters
solution, which, although not corresponding to the known number of classes, con-
stitutes a reasonable and intuitive solution as the Setosa class is well separated
from the remaining classes, which are intermingled.

6 Conclusions

This paper proposed a general methodology for combining classification results
produced by clustering algorithms. Taking an ensemble of clustering algorithms,
their individual decisions/partitions are combined by a majority voting rule to
derive a consistent data partition.

We have shown how the integration of the proposed methodology in a k-
means like algorithm, denoted voting-k-means, can simultaneously handle the
problem of initialization dependency and selection of the number of clusters.
Furthermore, as illustrated in examples, with this algorithm cluster shapes other
than hyper-spherical can be identified.

While explored in this paper under the framework of k-means clustering, the
proposed technique does not entail any specificity towards a particular cluster-
ing strategy. Ongoing work includes the adoption of the voting type clustering
scheme with other clustering algorithms and the extrapolation of this method-
ology to the combination of multiple classes of clustering algorithms.
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