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Abstract

We address the problem of robust clustering by combin-
ing data partitions (forming a clustering ensemble) pro-
duced by multiple clusterings. We formulate robust clus-
tering under an information-theoretical framework; mutual
information is the underlying concept used in the definition
of quantitative measures of agreement or consistency be-
tween data partitions. Robustness is assessed by variance
of the cluster membership, based on bootstrapping. We pro-
pose and analyze a voting mechanism on pairwise associ-
ations of patterns for combining data partitions. We show
that the proposed technique attempts to optimize the mu-
tual information based criteria, although the optimality is
not ensured in all situations. This evidence accumulation
method is demonstrated by combining the well-known K-
means algorithm to produce clustering ensembles. Experi-
mental results show the ability of the technique to identify
clusters with arbitrary shapes and sizes.

1. Introduction

Let X = {x1, x2, . . . , xn} be a set of n objects or
patterns. The problem of clustering consists of produc-
ing a partition of X into k “natural” groups or clusters,
P = {C1, C2, . . . , Ck}, k being in general unknown. Hun-
dreds of clustering algorithms exist [16, 6, 19, 9, 11, 14, 3,
18, 1, 12], yet it is difficult to find a single clustering algo-
rithm that can handle all types of cluster shapes and sizes.
Instead of choosing a particular clustering algorithm for a
given data set, the idea of combining the results of multiple
clusterings in order to obtain robust data partitions has re-
cently been proposed [13, 21]. Given N different partitions
of the data X , which we define as a clustering ensemble
P = {P 1, P 2, . . . , PN}, where P i =

{
Ci

1, C
i
2, . . . , C

i
ki

}
has ki clusters, the problem consists of producing a partition
P ∗, which is the result of a combination of the N partitions
in P. Ideally, P ∗ should satisfy the following properties:

(a) Consistency with the clustering ensemble P. This
means that the combined data partition P ∗ should

somehow agree with the individual partitions, P i, i =
1, . . . , N .

(b) Robustness to small variations in P. The number of
clusters and the cluster membership in P ∗, should not
change significantly with small perturbation of the par-
titions in P.

(c) Goodness of fit with the ground truth information, if
available. P ∗ should be consistent with external clus-
ter labels, or with perceptual evaluation of the data.

Fred and Jain [13] introduce the concept of evidence ac-
cumulation clustering, that maps the individual data parti-
tions in a clustering ensemble into a new similarity mea-
sure between patterns, summarizing inter-pattern structure
perceived from these clusterings; a final data partition is
obtained by applying the single-link method to the new
similarity matrix. Strehl and Ghosh [21] explore the con-
cept of consensus between data partitions, using graph-
theoretical approaches for consensus decisions, based on a
cluster matching paradigm.

In this paper we propose an information-theoretic ap-
proach, based on the concept of mutual information and
on variance analysis using bootstrapping to (i) measure the
consistency between data partitions; (ii) define objective
functions for criteria mentioned in (a) and (b) above; and
(iii) define figures of merit concerning the agreement with
ground truth information, as stated in (c). Optimality of
the evidence accumulation strategy is analyzed in light of
these objective functions. Experimental results are based
on applying a combination of K-means clusterings to an-
alyze both synthetic data and real data sets from the UCI
repository.

2. Consistency of Data Partitions Using Mutual
Information

A partition P a describes a labelling of the n patterns
in the data set X , into ka clusters. Taking frequency
counts as approximations for probabilities, the entropy



[4] of the data partition P a is expressed by H(P a) =
−∑ka

i=1
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n log
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)
, where na

i represents the number of

patterns in cluster Ca
i ∈ P a. The agreement between

two partitions P a and P b is measured by the mutual infor-
mation I(P a, P b), as proposed by Strehl and Ghosh [21]
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, with nab

ij de-

noting the number of shared patterns between clusters Ca
i

and Cb
j , Ca

i ∈ P a and Cb
j ∈ P b. From the definition

of mutual information [4], it is easy to demonstrate that
I(P a, P b) ≤ (

H(P a) + H(P b)
)
/2. We define normal-

ized mutual information (NMI) between two partitions P a

and P b as NMI(P a, P b) = 2·I(P a,P b)
H(P a)+H(P b)

, which, after
simplification, leads to the equation
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−2
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(1)
Note that 0 ≤ NMI(., .) ≤ 1.

The agreement between a given partition, P , and the
clustering ensemble, P, designated by the average normal-
ized mutual information [21], is defined by

NMI(P, P) =
1
N

N∑
i=1

NMI(P, P i). (2)

We further define the average agreement between par-
titions in a clustering ensemble P by NMI(P, P) =∑N−1

i=1

∑N
j=i+1 NMI(P i, P j)/

(
N
2

)
.

3. Objective Functions and Optimality Criteria

Let P̌
k

= P̌ 1k

, . . . , P̌mk

, m = 1
k!

∑k
l=1

(
k
l

)
(−1)k−lln,

represent the set of all possible partitions of the n patterns in
X into k clusters. We define k-cluster consensus partition,
P ∗k

, as the k-cluster partition that best fits the clustering en-
semble P, maximizing the objective function NMI(P̌

k

, P),
that is, satisfying the optimality criterion

P ∗k

= arg max
i

{
NMI(P̌ ik

, P)
}

. (3)

For each value of k, the criterion in equation (3) ensures the
satisfaction of the property (a) in section 1.

In order to address the robustness property (b) in section
1, we perturb the clustering ensemble P, using a bootstrap
technique, and compute the variance of the resulting NMI
values. Let P

B =
{
P

b1 , . . . , PbB
}

denote the B bootstrap
clustering ensembles produced by sampling with replace-
ment from P, and let P

∗B = {P ∗b1 , . . . , P ∗bB } be the cor-
responding set of combined data partitions. The mean value

of the average normalized mutual information between k-
cluster combined partitions and the bootstrap clustering en-
sembles is given by

NMI(P ∗k
b , Pb) =

1
B

B∑
i=1

NMI(P ∗k
bi , Pbi), (4)

and the corresponding variance is defined as follows

var{NMI(P ∗k
b , Pb)}

=
1

B − 1

B∑
i=1

(
NMI(P ∗k

bi , Pbi) − NMI(P ∗k
b , Pb)

)2

.

(5)

It is expected that a robust data partition combination tech-
nique will be stable with respect to minor clustering ensem-
ble variations; we model this robustness property through
the minimum variance criterion

P ∗ : min
k

{
var{NMI(P ∗k

b , Pb)
}

is achieved. (6)

Let us define the variance of NMI between bootstrap clus-
tering ensembles as

var{NMI(Pb, Pb)}

=
1

B − 1

B∑
i=1

(
NMI(Pbi , Pbi) − NMI(Pb, Pb)

)2

,
(7)

with NMI(Pb, Pb) = 1
B

∑B
i=1 NMI(Pbi , Pbi). Mini-

mization of the variance criterion in equation (6) implies
the following inequality:

var{NMI(P ∗k
b , Pb)} ≤ var{NMI(Pb, Pb)}. (8)

The variability of the partition configurations is mea-
sured by var{NMI(P ∗b , P ∗b)}; stable solutions have
smaller variance, ideally equal to 0. In the following, stan-
dard deviation (std) will be used instead of variance.

The objective function in equation (3) is essential to
guarantee that a partition combination technique provides
the k-cluster partition that is consistent with the underly-
ing clustering ensemble. It does not, however, serve as a
criterion for deciding the correct number of clusters, k, in
the final partition. The minimum variance criterion in equa-
tion (6), on the other hand, is able to decide the “optimal”
number of clusters among various combination strategies.
This is illustrated through a simple example in figure 1, con-
sisting of 10 2D-patterns distributed along 2 straight lines
(fig. 1(a)); figures 1(b) to 1(e) present 4 different parti-
tions, P 1, . . . P 4, of this data set into 4 clusters, forming
the clustering ensemble P. It is easy to see that any of these
4 partitions can be chosen as a 4-cluster consensus parti-
tion. In fact, NMI(P i, P) = 0.8602, i = 1, . . . , 4, and
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Figure 1. Illustration of clustering ensemble
and combined data partition.

any other partition has a lower NMI value. The 2-cluster
consensus partition, represented in figure 1(f) as P e, how-
ever, is unique, with NMI(P e, P) = 0.6732. Although
this has a lower NMI value than the 4-cluster solutions, it
represents better the true structure of the patterns. Ana-
lyzing the partitions in P, it is obvious that any partition
that mixes patterns from the two sets containing patterns
(1 to 5) and (6 to 10) is unacceptable. On the other hand,
the evidence on pattern associations accumulated over the
clusters in P reveals that the pattern pairings (1, 2), (4,
5), (6, 7), (9, 10) should always be maintained (they cor-
respond to unanimous pattern associations), and that asso-
ciations (2, 3), (3, 4), (7, 8) and (8,9) are present 50% of
the time; therefore, either these associations are broken,
leading to a 6-cluster partition, or are not broken, result-
ing in the 2-cluster partition P e. Variance analysis cor-
roborates the later decision: by bootstrapping on the clus-
tering ensemble P (B = 100), different 4-cluster consen-
sus partitions are obtained, with std{NMI(P ∗4

b , Pb)} =
0.04, and std{NMI(P ∗4

b , P ∗4
b} = 0.07 (higher than

std{NMI(Pb, Pb)} = 0.05); partition P e shown in fig
1(f), however, continues to be the only stable 2-cluster con-
sensus partition, with std{NMI(P ∗2

b , Pb)} = 0.00.

4. Combining Data Partitions

4.1. Evidence Accumulation using a Voting Mecha-
nism

The idea of evidence accumulation clustering is to com-
bine the results of multiple clusterings into a single data

partition, by viewing each clustering result as an indepen-
dent evidence of data organization. A clustering algorithm,
l, by organizing the n patterns into clusters according to
the partition P l, expresses relationships between objects in
the same cluster; these are mapped into a binary n × n co-
association matrix, Cl(i, j), where non-null pairwise rela-
tions, Cl(i, j) = 1, express co-existence of patterns i and
j in the same cluster of P l. Assuming that patterns be-
longing to a “natural”cluster are very likely to be co-located
in the same cluster in different clusterings, we take the co-
occurrences of pairs of patterns in the same cluster as votes
for their association; the clustering ensemble P is mapped
into a n × n co-association matrix, as follows:

C(i, j) =
nij

N
=
∑N

l=1 Cl(i, j)
N

, (9)

where nij is the number of times the pattern pair (i, j) is
assigned to the same cluster among the N clusterings. Ev-
idence accumulated over the N clusterings, according to
equation (9), induces a new similarity measure between pat-
terns, which is then used to recluster the patterns, yielding
the combined clustering P ∗. We use the single-link (SL)
method to extract the final partition from the co-association
matrix C. We define the lifetime of a k-cluster partition as
the absolute difference between its birth and merge thresh-
olds in the dendrogram produced by the SL method; the
final data partition is chosen as the one with the highest life-
time.

Figure 2 gives a schematic description of the proposed
method. In order to reduce the computational complexity,
the algorithm focuses on computing the associations be-
tween neighboring patterns. This results in a n × p co-
association matrix, C; C(i, j) represents the percentage of
times pattern i and its jth nearest neighbor are assigned to
the same cluster, among the N clusterings, j = 1, . . . , p.
This requires the pre-computation of a n × p matrix, which
stores the indices of the p nearest neighbors for each of the
n patterns [17]. The SL algorithm is applied to the corre-
sponding n × p similarity matrix [7].

4.2. On the Optimality of the Proposed Technique

According to the information theoretical objective func-
tion in equation (3), the mutual information between parti-
tions, as given by (1) and (2), is maximized based on the
number of patterns shared between clusters in these par-
titions. The proposed voting mechanism maps the set of
individual partitions into a new similarity measure, where
the strength of the links between patterns is proportional to
the percentage of times these patterns are shared by clusters
in these partitions. By cutting weak links in the associated
minimum spanning tree (MST), which is formally equiva-
lent to cutting the dendrogram produced by the SL method



Input: n - number of patterns;
n × p nearest neighbor matrix
N - number of clusterings.
P =

{
P 1, . . . PN

}
- clustering ensemble

Output: P ∗ - Combined data partition.

Initialization: Set the n×p co-association matrix, C(., .), to
a null matrix.

1. For each partition P l ∈ P do:

1.1. Update the co-association matrix: for each pattern
pair (i, j) in the pth neighbor list, that belongs to
the same cluster in P l, set
C(i, j) = C(i, j) + 1

N .

2. Detect consistent clusters in the co-association matrix us-
ing the SL technique: compute the SL dendrogram; the
final partition, P ∗, is chosen as the one with the highest
lifetime.

Figure 2. Data clustering using Evidence Ac-
cumulation.

[15], we are trying to maximize the number of shared pat-
terns, based on a chain of high frequency pairwise associa-
tions, and therefore to maximize (3). The global optimum
is, however, not ensured in all situations.

Having satisfied the consistency property with the clus-
tering ensemble, we now address the robustness issue. By
bootstrapping on the clustering ensemble P, the correspond-
ing dendrograms, produced by the SL method over the co-
association matrix C, will change. When cutting these den-
drograms at the highest lifetime partition level, we are mini-
mizing the effect of these changes on the final data partition,
and therefore we are minimizing the variance of the aver-
age normalized mutual information, as given by equation
(5); while the optimal global solution according to criterion
(6) is not ensured, the companion necessary condition in (8)
should be satisfied.

5. Experimental Results

We have tested the evidence accumulation combination
method described above by combining K-means cluster-
ings. The algorithm follows a split and merge technique:
first the data is decomposed into a large number of small
spherical clusters using the K-means algorithm; using N
random initializations of the K-means, a clustering ensem-
ble with N partitions is obtained; initial clusters are merged
through the partition combination technique described ear-
lier, leading to the combined data partition P ∗. The value

of k, in the K-means algorithm, can be either fixed to a con-
stant value, or randomly selected in the range [kmin, kmax].
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Figure 3. Robust Clustering: results on four
artificial data sets.

Figures 3(a)-3(d) show the results of the evidence ac-
cumulation algorithm (each cluster has a distinct color),
with N = 50, on four synthetic data sets: (a) 4-cluster
data set (referred to as “cigar” data), k = 15; (b) rings
data set, k = 50; (c) random data set (300 patterns uni-
formly distributed in a 5-D hypercube), k = 15; and
(d) spiral data set, k = 30. Similar results are obtained
when the value of k is randomly selected in the interval
[kmin, kmax]. For all the four data sets, the evidence accu-
mulation approach identifies the true clustering structure.
Note that for the random data set of figure 3(c), our algo-
rithm identifies a single cluster. The typical evolution of

NMI(P ∗k
b , Pb) and of std{NMI(P ∗k

b , Pb)} is illustrated
in figure 4 (curve and error bars in black - thin line, referred
to as NMI(P ∗, P )) for the cigar data set; statistics were
computed over B = 100 bootstrap experiments, and P ∗k

b

partitions were obtained by forcing k−cluster solutions us-
ing the SL method on the co-association matrices. While



the average normalized mutual information grows with in-
creasing k (with a maximum at the number of clusters in
the clustering ensemble, k = 15), the variance is a good
indicator of the “natural” number of clusters, having a min-
imum value at k = 4; the partition lifetime criterion for
extracting the combined partition from the dendrogram pro-
duced by the SL method, leads precisely to this number of
clusters, as shown in figure 3(a). This also corresponds to
the perceptual organization of the data, which we repre-
sent as P o. The thick curve and corresponding error bars

represent NMI(P ∗k
b , P o) and std{NMI(P ∗k

b , P o)}, re-
spectively. Now, the zero variance is achieved for the 2-
cluster and the 4-cluster solutions, meaning that a unique
partition is produced as the corresponding k−cluster con-
sensus partition; the maximum agreement with percep-
tual evaluation of the data is obtained for k = 4, which
coincides with the minimum variance of NMI(P ∗k

b , Pb).
Figure 5 shows plots of std{NMI(P ∗k

b , Pb)} (solid line
curves) and of std{NMI(Pb, Pb)} (dashed lines) for sev-
eral data sets. It is interesting to note that, in the ab-
sence of a clustering structure, the std{NMI(P ∗k

b , Pb)}
curve for the random data set (upper curve) has high val-
ues, for k ≥ 2, compared to std{NMI(P ∗k

b , Pb)}, and
does not obey the inequality in equation (8); the evidence
accumulation algorithm identifies a single cluster in this
situation (figure 3(c)). With the remaining data sets, the
evidence accumulation clustering decision corresponds to
the minimum of std{NMI(P ∗k

b , Pb)}, which falls below
std{NMI(P ∗k

b , Pb)}, thus obeying the inequality (8).
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Figure 4. Variance analysis on the “cigar”
data set.

The evidence accumulation clustering technique was ap-
plied to the Iris data set, with class labels (Setosa, Versi-
color, and Virginica) being removed from the data. With
k = 15 and N = 50, two clusters were identified (see fig.
5), corresponding to a merging of the types Virginica and
Versicolor into a single cluster. These results are compara-
ble with other techniques, such as the single link method, or
the results in [20]. The difficulty in separating the Virginica
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Figure 5. Standard deviations of NMI.

and Versicolor classes using clustering techniques is justi-
fied by the fact that these are touching clusters. Interpret-
ing touching clusters as a particular case of noisy patterns,
we removed the low density patterns, estimated using the
shared nearest neighbor method in [8]. Eliminating about
20% of these atypical patterns, and applying the evidence
accumulation technique, with fixed k or variable k (for in-
stance k ∈ [2, 20]), a 3-cluster partition was obtained, with
a classification error rate of 10.67% by comparing the clus-
tering labels with the true class labels.

The original Wisconsin Breast Cancer data set (683 pat-
terns represented by 9 integer-valued attributes, with class
labels - benign and malignant - removed), available at the
UCI Machine Learning Repository, is another example of
touching clusters. In this case, we started by represent-
ing the original data by 250 centroids obtained by K-means
clustering; applying the noise removal technique mentioned
above to these centroids, 199 prototypes remained. The
evidence accumulation clustering technique was applied to
these prototypes, with N = 100, and k ∈ [2, 10], leading
to a 2-cluster partition with a correct classification rate of
96.93%. This result compares favorably to the cluster center
based methods reported in [20] and [2], with accuracies of
94.28% and 95.5%, respectively. The evidence accumula-
tion technique was also applied to 285 prototypes extracted
from the new diagnostic Breast Cancer database (569 pat-
terns, 30 numeric attributes), by using the same noise re-
moval technique, N = 100, and k ∈ [2, 10]; the combined
data partition contains 2 clusters, with a correct classifica-
tion rate of 88.93%. The spectral kernel method described
in [5] achieves (it is not clear for which of the two data sets)
a 79.65% recognition rate when using a Gaussian kernel,
and 97.29% recognition with a linear kernel.

The evidence accumulation clustering technique was
also applied to the texture data set, that consists of 4000
patterns in a 19-dimensional feature space, representing an



image with 4 distinct textures [10]. This is a difficult data
set due to the overlap between clusters. Using the com-
bined prototype/sampling technique (600 prototypes) with
random selection of k (k ∈ [2, 20], N = 200, a 2-cluster
partition was obtained, corresponding to the merging of nat-
ural clusters (defined based on a priori knowledge of the
classification of the data into 4 texture classes) in groups
of two; matching the 2-cluster partition with the corre-
sponding merged classes gives an overall recognition rate
of 95.5%. When trying to identify the most stable 4-cluster
partition, we applied the K-means based evidence accumu-
lation clustering algorithm with fixed k = 4 on the same
prototypes. The most stable solution consisted of 3 clus-
ters, corresponding to an overall recognition rate of 72.45%
(two of the classes were still merged; matching the partition
with the ideal classes, with these two merged, gives a 96.9%
recognition rate); the next most stable solution corresponds
to a 4-cluster partition, with a 91.95% recognition rate.

6. Conclusions

This paper has addressed the problem of robust cluster-
ing based on the combination of data partitions. Adopt-
ing an information theoretic-based approach, and with the
goal of obtaining consistent and robust combination tech-
niques, we defined objective functions and optimality cri-
teria, based on the concept of mutual information, and on
variance analysis using bootstrapping. The evidence accu-
mulation technique was described, leading to a mapping of
the clustering ensemble into a new similarity measure be-
tween patterns, by a voting mechanism on pairwise pattern
associations. Optimality of this technique was discussed in
light of the proposed criteria.

The proposed approach was tested on the combination of
K-means clusterings; results obtained on both synthetic and
real data sets illustrate the ability of the evidence accumula-
tion technique to identify clusters with arbitrary shapes and
arbitrary sizes, without using a priori information about the
number of clusters, or ad-hoc specification of parameters.
Results produced by our technique, by a simple combina-
tion of K-means clusterings, and without the need of param-
eter tuning, outperformed some of the results reported in the
literature with more sophisticated unsupervised techniques.
It is expected that the application of the evidence accumu-
lation technique using more powerful clustering methods,
than the K-means, can lead to even better clustering results.
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