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Abstract

We explore the idea of evidence accumulation for com-
bining the results of multiple clusterings. Initially,n
d−dimensional data is decomposed into a large number
of compact clusters; the K-means algorithm performs this
decomposition, with several clusterings obtained byN
random initializations of the K-means. Taking the co-
occurrences of pairs of patterns in the same cluster as votes
for their association, the data partitions are mapped into a
co-association matrix of patterns. Thisn × n matrix rep-
resents a new similarity measure between patterns. The fi-
nal clusters are obtained by applying a MST-based cluster-
ing algorithm on this matrix. Results on both synthetic and
real data show the ability of the method to identify arbitrary
shaped clusters in multidimensional data.

1. Introduction

Data clustering is an important but an extremely difficult
problem. Clustering techniques require the definition of a
similarity measure between patterns, which is not easy to
specify in the absence of any prior knowledge about cluster
shapes. A large number of clustering algorithms exist [7],
yet no single algorithm can adequately handle all sorts of
cluster shapes and structures. Each algorithm has its own
approach for handling cluster validity [1, 6, 12, 5], num-
ber of clusters [8, 10], and structure imposed on the data
[2, 13, 11]. The K-means algorithm is one of the simplest
clustering algorithms: it is computationally efficient and
does not require the user to specify many parameters. Its
major limitation is the inability to identify clusters with ar-
bitrary shapes, ultimately imposing hyper-spherical clusters
on the data.

We explore the idea of evidence accumulation for com-
bining the results of multiple clusterings. The idea of com-
bining multiple sources has been addressed in areas like
sensor fusion and supervised learning techniques in pattern
recognition - known as classifier combination [9]. A recent
work on the combination of multiple clusterings is reported
in [4].

There are several possible ways to accumulate evidence
in the context of unsupervised learning: (1) combine re-
sults of different clustering algorithms; (2) produce differ-
ent results by resampling the data, such as in bootstrapping
techniques (like bagging) and boosting; (3) running a given
algorithm many times with different parameters or initial-
izations. In this paper we take the last approach, using the
well known K-means algorithm as the underlying cluster-
ing algorithm to produce clustering ensembles. First, the
data is split into a large number of compact and small clus-
ters; different decompositions are obtained by random ini-
tializations of the K-means algorithm. The data organiza-
tion present in the multiple clusterings is mapped into a co-
association matrix which provides a measure of similarity
between patterns. The final data partition is obtained by
clustering this new similarity matrix, corresponding to the
merging of clusters.

2. Evidence Accumulation

The idea of evidence accumulation-based clustering is
to combine the results of multiple clusterings into a single
data partition, by viewing each clustering result as an inde-
pendent evidence of data organization.

Givenn d−dimensional patterns, the proposed strategy
follows a split-and-merge approach:

Split Decompose multidimensional data into a large num-
ber of small, spherical clusters. The K-means algo-
rithm performs this decomposition, with various clus-
tering results obtained by random initializations of the
algorithm.

Combine In order to cope with partitions with different
numbers of clusters, we propose a voting mechanism
to combine the clustering results, leading to a new
measure of similarity between patterns. The under-
lying assumption is that patterns belonging to a “nat-
ural ”cluster are very likely to be co-located in the
same cluster in different clusterings. Taking the co-
occurrences of pairs of patterns in the same cluster as



votes for their association, the data partitions produced
by multiple runs of K-means are mapped into an × n
co-association matrix:

co assoc(i, j) =
votesij

N
,

whereN is the number of clusterings andvotesij is
the number of times the pattern pair(i, j) is assigned
to the same cluster among theN clusterings.

Merge In order to recover natural clusters, we emphasize
neighborhood relationship and apply a minimum span-
ning tree (MST) algorithm, cutting weak links at a
threshold oft; this is equivalent to cutting the dendro-
gram produced by the single link (SL) method over
this similarity matrix at the thresholdt, thus merging
clusters produced in the splitting phase.

The overall method for evidence accumulation-based
clustering is summarized below.

Data clustering using Evidence Accumulation:
Input: n d−dimensional patterns;

k - initial number of clusters;
N - number of clusterings.
t - threshold.

Output: Data partitioning.
Initialization: Setco assoc to a nulln × n matrix.

1. Do N times:
1.1. Randomly selectk cluster centers.
1.2. Run the K-means algorithm with the above

initialization and produce a partitionP .
1.3. Update the co-association matrix:

for each pattern pair,(i, j), in the same cluster inP ,
setco assoc(i, j) = co assoc(i, j) + 1

N .
2. Detect consistent clusters in the co-association

matrix using a SL technique:
2.1. Find majority voting associations: For each

pattern pair,(i, j), such thatco assoc(i, j) > t, merge
the patterns in the same cluster; if the patterns were in
distinct previously formed clusters, join the clusters;

2.2. For each remaining pattern not included in a
cluster, form a single element cluster;

The proposed technique has two design parameters:k-
the number of clusters for the K-means algorithm; andt,
the threshold on the MST.

The K-means algorithm can be seen as performing a de-
composition of the data into a mixture of spherical Gaus-
sians. Low values ofk are not adequate to identify dis-
tinct components while large values may produce an over-
fragmentation of the data (in the limit, each sample form-
ing a cluster). Intuitively,k should be greater than the true
number of clusters; the minimum value ofk, however, is
not directly related to the true number of clusters, as a clus-
ter may itself be a combination of several components. The

value ofk may be specified by identifying the number of
components in the mixture of gaussians model [3]; alterna-
tively, a rule of thumb,k =

√
n may be used, withn being

the number of input patterns, or several values fork may be
evaluated.

Concerning the threshold parameter, typically the value
t = 0.5 is selected, meaning that patterns to be placed in a
cluster in the final partition must have been co-located in a
cluster at least 50% of the times over theN clustering en-
sembles. In exploratory data analysis, we recommend that
clusterings obtained for several values fort should be ana-
lyzed.

3. Experimental Results
We illustrate the characteristics of the proposed tech-

nique with several artificial and real data sets. In particular,
we show that the proposed method can identify complex
cluster shapes (spiral data set), even in the presence of un-
even data sparseness (half-rings data set); treatment of ran-
dom data (section 3.3); gaussian data with varying cluster
separability (section 3.4); and the Iris data set. Results pre-
sented here are based on the combination of 200 K-means
clusterings (N = 200), a value high enough to ensure that
convergence of the method is achieved.

3.1 Half-Rings Data Set
The half-rings data set, as shown in figure 1(a) consists

of two clusters with uneven sparseness (upper cluster - 100
patterns; lower cluster - 300 patterns). The K-means algo-
rithm by itself is unable to identify the two natural clus-
ters here, imposing a spherical structure on the data. The
single-link method does not perform much better, as shown
in figure 1(c). In order to apply the evidence accumula-
tion technique, the initial value ofk must be specified. The
mixture decomposition method reported in [3] identifies
10 gaussian components; the rule of thumbk =

√
n gives

k = 20. Figure 1(b) plots the evolution of the number of
clusters identified by the proposed method withk = 10,
as a function of the number of clusterings,N (error bars
were calculated over 25 experiments); convergence to a 2-
cluster solution is obtained forN ≈ 90. As the K-means is
a very fast algorithm, we shall useN = 200 hereafter. Table
1 shows the number of clusters identified by the proposed
method for several values ofk and t. Results with vary-
ing t are consistent; highert values reduce the range ofk
that identify the natural clusters. The single cluster obtained
with k = 5 is justified by the use of an insufficient number
of components; atk = 20 we begin to observe excessive
granularity of the initial partitions; these results agree with
the number of gaussian components given by [3] for this
data set.

Figure 1(d) shows the dendrogram produced by the
single-link method applied to the co-association matrix ob-



−1 −0.5 0 0.5 1 1.5 2
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(a) Half-rings shaped clusters.
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(b) Convergence curve,k = 10, t = 0.5.

(c) Single-link method
on the half-ring
data. Thresholding
this graph splits the
upper ring cluster into
several small clusters.

(d) Single-link
method on the
co-association
matrix (k = 15).
Distance between
patterns (i, j) is
1 − co assoc(i, j).

Figure 1. Half-rings data set (a) and clusterings.

t\k 5 10 15 20

0.4 1 2 2 2
0.5 1 2 2 5
0.6 1 2 2 6

Table 1. Number of clusters identified as a function ofk
andt for the half-rings data set (N = 200).

tained by the combination of 200 clusterings generated us-
ing the K-means withk = 15. The new similarity measure
helps in identifying the true structure of the clusters: sim-
ilarity between patterns within a natural cluster is ampli-
fied in comparison with similarity values between patterns
in distinct clusters. Using the default value,t = 0.5, on the
SL clustering over the similarity matrix recovers the natural
clusters in figure 1(a).

3.2 Spiral Data

The two spiral patterns, as shown in figure 2(a), demon-
strate another example of complex cluster shapes. While
the simple K-means algorithm cannot correctly cluster this
data, the proposed algorithm easily recovers the true clus-
ters by merging nearby clusters in the decomposition per-
formed in the cluster ensembles, using a sufficiently large
value ofk.
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(a) Spiral data (200 samples)
with two clusters.
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(b) Decomposition of (a) into
a mixture of gaussians using
the method in [3].

(c) SL dendrogram with
evidence accumulation,
k = 30.

(d) SL dendrogram with
evidence accumulation,
k = 80.

Figure 2. Spiral data (a) and its decomposition using mix-
ture of gaussians (b). (c)-(d): The effect ofk on evidence
accumulation.

t\k 5 10 15 20 25 30 40 50 60 70 80

0.5 1 1 1 1 1 2 2 2 2 2 3
0.6 1 1 1 1 2 2 2 2 3 21 102

Table 2. Number of clusters identified as a function ofk
and oft for the spiral data.



Table 2 shows the number of clusters identified with the
evidence accumulation strategy as a function ofk for two
values oft: 0.5 and 0.6. It shows that low values ofk lead to
a single cluster being identified; this is to be expected since,
when the number of initial components is very small, neigh-
boring patterns in the two spirals are put in the same cluster.
The method reported in [3] decomposes this data into 24
gaussian components (fig. 2(b)); since the K-means im-
poses spherical clusters (as in a unit-covariance gaussian),
the value ofk should be higher than24. As shown in Ta-
ble 2, the true number of clusters is identified fork ≥ 30,
with t = .5 (for k ≥ 25, with t = .6). A large value ofk
scales the dendrogram (see figs. 2(c) and 2(d)), as simi-
larity values decrease due to higher granularity of the parti-
tions produced. This scaling will exceed the fixed threshold,
t, after a certain number of components (80, witht = .5),
and thus the method will give a larger (than true) number
of clusters for values ofk above this limit. A procedure
to identify the true number of clusters, without requiring
an external method for determining the number of compo-
nents,k, may be as follows: run the evidence accumulation
method for various values ofk and select the ”stable” solu-
tion found in the plot of the number of clusters as a function
of k, just before the curve starts to increase exponentially.

3.3 Random Data

How does the proposed algorithm perform when pre-
sented with “random”data that does not contain any natural
clusters?
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Figure 3. Scatter plots of 5-dimensional random data:
rows and columns correspond to features; plots in diagonal
positions correspond to histograms of individual features.

Figure 3 shows 300 patterns uniformly distributed in a
5-dimensional hypercube. The clustering results are shown
in Table 3. Notice the consistency of the results obtained
for various values ofk andt, a single cluster being identi-
fied (the 3-cluster solution corresponds to 298 patterns in a

t\k 2 3 4 5 6 7 8 9 10 15 20
0.4 1 1 1 1 1 1 1 1 1 1 2∗

0.5 1 1 1 1 1 1 1 1 1 3∗ 5
0.6 1 1 1 1 3∗ 3∗ 3∗ 3∗ 3∗ 11 23

Table 3. Number of clusters as a function ofk andt. El-
ements with the∗ symbol mean that a cluster is found with
all but 1 or two patterns, each of these forming single ele-
ment clusters.

single cluster, with two outlier clusters). Similar results are
obtained with gaussian distributions.

3.4 2D Gaussian Data

We test the sensitivity of the proposed method on clus-
ter separability with 2-component 2D gaussian data sets
(100 patterns per cluster), by varying the Mahalanobis dis-
tance (MD) between the two cluster centers. The results
are shown in figure 4(c). The method is unable to discern
two clusters in the data for Mahalanobis distances below 5,
with t = .5; by setting a more restrictive threshold, such as
t = .7, two clusters are identified for MD = 4 (see fig. 4(b).
The case of MD = 3 (fig. 4(a)), with the two clusters clearly
overlapping, is always identified as a single cluster.

(a) MD = 3. (b) MD = 4.

(c) Number of clusters found.

Figure 4. 2D Gaussian data with varying Mahalanobis
distance (MD) and the number of clusters found by the pro-
posed method for2 ≤ k ≤ 5.



3.5 Iris Data Set

The Iris data set, often used as a benchmark in supervised
learning techniques, consists of three types of Iris plants
(50 instances per class), represented by 4 features, with one
class well separated from the other two, which are intermin-
gled. Table 4 shows the number of clusters found for var-
ious values ofk andt. The two-cluster solution is the one
consistently appearing in most situations, corresponding to
the identification of the well separated Setosa class and the
merging of the other two in a single cluster. The other fre-
quent solution (for higher values oft) corresponds to the
partition of the data into three clusters. Table 5 presents the
consistency index [4] which measures the percentage of
patterns correctly assigned in the data partitioning, taking
as reference the true class labels of the samples. This table
reveals the presence of a relatively stable data partition with
three clusters (consistency index = .84); the highest consis-
tency index is obtained withk = 3, the true number of clus-
ters. It is interesting to note that a direct application of the
single-link method to the Iris data set leads to a consistency
index of 0.68.

t\k 3 4 5 6 7 8 9 10
0.5 2 2 2 2 2 2 2 2
0.6 2 2 2 2 2 3 3 3
0.7 2 2 3 3 5 5 7 9
0.75 3 3 3 3 7 7 10 13

Table 4. Number of clusters as a function ofk andt for
the Iris data set.

t\k 3 4 5 6 7 8 9 10
0.5 .67 .667 .67 .67 .67 .67 .67 .67
0.6 .67 .67 .67 .67 .67 .84 .75 .75
0.7 .67 .67 .84 .84 .75 .67 .63 .53
0.75 .89 .84 .84 .84 .67 .67 .53 .47

Table 5. Consistency index as a function ofk andt for the
Iris data set.

4. Conclusions

A robust clustering technique based on a combination
of multiple clusterings, has been presented. Following a
split-and-merge strategy, and based on the idea that smaller
clusters are easier to combine, the first step is to decompose
complex data into small, compact clusters. The K-means
algorithm serves this purpose; an ensemble of clusterings
is produced by random initializations of cluster centroids.
Data partitions present in these clusterings are mapped into
a new similarity matrix between patterns, based on a vot-
ing mechanism. This matrix, which is independent of data
sparseness, is then used to extract the natural clusters us-
ing the single link algorithm. The proposed method has two
important parameters; guidelines for setting these param-
eters are given. The proposed method is able to identify

well separated, arbitrarily shaped clusters, as corroborated
by experimental results. The method performs poorly, how-
ever, in situations of touching clusters, as illustrated by the
2-component gaussian data set example in Figure 4 (a). We
are studying ways to overcome this difficulty, namely by
combining different clustering algorithms.
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