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ABSTRACT

Counterfeit pharmaceutical products pose a serious public health
problem. It is thus important not only to detect them, but also to
identify their composition and assess the risk for the patient. Iden-
tifying the spectral signatures of the pure compounds present in a
(maybe counterfeit) tablet of unknown origin is clearly a hyperspec-
tral unmixing problem. In fact, under a linear mixing model, the hy-
perspectral vectors belong to a simplex whose vertices are the spec-
tra of the pure compounds in the mixture. Minimum volume simplex
analysis (MVSA) and minimum-volume enclosing simplex (MVES)
are recently proposed algorithms, exploiting the idea of finding a
simplex of minimum volume fitting the observed data. This work
gives evidence of the usefulness of MVES and MVSA for unmix-
ing near infrared (NIR) hyperspectral data of tablets of unknown
composition. Experiments reported in this paper show that MVES
and MVSA strongly outperform the state-of-the-art method in ana-
lytical chemistry for spectral unmixing: multivariate curve resolu-
tion - alternating least squares (MCR-ALS). These experiments are
based on synthetic data (studying the effect of noise and of the pres-
ence/absence of pure pixels) and on a real dataset composed of NIR
hyperspectral images of counterfeit tablets.

Index Terms— Hyperspectral unmixing, source separation,
minimum volume simplex, alternating least squares, counterfeit
tablets, near infrared imaging.

1. INTRODUCTION

The pharmaceutical industry has been devoting considerable atten-
tion to the problem of detecting counterfeit drugs and determining
their composition, given the recent spread of counterfeiting opera-
tions. The absence of the active ingredient and/or the introduction
of other, non-genuine, materials may reveal very harmful to the pa-
tients. Thus, the determination and quantification of the compounds
present in these drugs is of the utmost importance for determining
their negative impact. Moreover, the identification of compounds
with a known narrow geographical distribution may help authori-
ties find and shut down counterfeiting operations. Developing fast,
non destructive, and effective methods for the identification of the
composition of counterfeit drugs constitutes thus an active research
front.

Near infrared (NIR) hyperspectral imaging has been recently
used for the chemical study of counterfeit drugs [1, 2, 3]. NIR re-
flectance hyperspectral images of genuine and counterfeit tablets re-
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veal clear spatial and spectral differences. However, when it comes
to identifying the composition, with no prior knowledge about the
samples, difficulties arise and spectral unmixing holds the promise
of playing an important role. This promise is justified by the fact that
a spectral unmixing method allows estimating the number of refer-
ence materials present, their spectral signatures, and the correspond-
ing abundance fractions, as formally stated in the next paragraph.

Let M = [m1, ..., mp] be an l × p matrix, where each column
mi ∈ R l

+, for i = 1, ...p, represents the spectral signature (with l
bands) of each of the p pure materials (the so-called endmembers).
Under a noiseless linear mixing hypothesis, each observed spectrum
y ∈ R l

+ is modeled as y = M α, where α = [α1, ..., αp]T is the
vector of abundance fractions of each material, which necessarily
belongs to the canonical simplex ∆p = {x ∈ Rp

+ : 1T
p x = 1}

(where 1p = [1, 1, .., 1]T denotes a vector of p ones, thus 1T
p x =∑p

i=1 xi). Given a set of n observed spectra (hyperspectral image
pixels), collected in an l × n matrix Y , the noiseless linear mixing
model for this data is thus

Y = MA, (1)

where A is a p × n matrix containing the N abundance fraction
vectors, thus satisfying

A ≥ 0, and AT 1p = 1n; (2)

in (2), A ≥ 0 means that all elements of A are non-negative [4].
Notice that, under this noiseless linear model, each column of Y
(i.e., the spectrum in each pixel) belongs to the simplex SM = {y ∈
Rl

+ : y = Mα, α ∈ ∆p}, the vertices of which correspond to the
pure reference materials in the mixture. Spectral unmixing aims at
estimating the number of pure materials p, their spectra M , and the
corresponding abundance fractions A, from the observed data Y .

Multivariate curve resolution - alternating least squares (MCR-
ALS) has been widely used for spectral unmixing in chemical appli-
cations [5]. The method works by alternatingly minimizing a least
squares error criterion with respect to M and A, under the above
explained positivity additivity constraints. The main disadvantage
of MCR-ALS is the so-called rotational ambiguity problem, i.e., a
set of simplices with different orientations, all comprising the data
points, are minimizers of the least squares criterion.

When there are pure pixels present in the data, i.e., pixels con-
taining only one of the pure materials in the mixture, the data con-
tains the vertices of the simplex SM . Many algorithms have been
designed to exploit this scenario, aiming at finding the spectra of the
vertices of the simplex: the pixel purity index [6], N-FINDR [7],
vertex component analysis [4], simplex growing algorithm [8] and
automated morphological endmember extraction [9].



For datasets without pure pixels, recent algorithms have been
proposed which follow the approach proposed in [10]. The unmix-
ing problem is formulated as finding the vertices of the simplex of
minimum volume containing the data. In order to yield good results,
these algorithms require, however, that at least p − 1 spectral vec-
tors stay in each of the facets of the simplex. The minimum volume
simplex analysis (MVSA) method [11] works by fitting a minimum
volume simplex to the data, while constraining the abundance frac-
tions to be non-negative and sum to one. The resulting optimization
problem is solved as a sequence of quadratically constrained sub-
problems. In a final step, the hard constraint on the abundance frac-
tions is replaced with a hinge type loss function to account for out-
liers and/or noise. The minimum-volume enclosing simplex (MVES)
method [12] adopts a similar optimization problem, and addresses it
by solving a sequence of linear programs.

In this work, we bring these recent hyperspectral unmixing ap-
proaches based on minimizing the simplex volume into chemical and
pharmaceutical problems. In particular, we consider two simulated
datasets and one real dataset composed of NIR hyperspectral images
of five counterfeit tablets found in a market survey. The performance
of the MVSA and MVES techniques is assessed in comparison with
the MCR-ALS method (considered the state-of-the-art in analytical
chemistry for source separation), showing that, for these datasets, the
minimum-simplex-based methods clearly outperform MCR-ALS.

2. METHODS

2.1. Dimensionality Reduction

A standard first step used in hyperspectral unmixing consists in iden-
tifying the p-dimensional subspace spanned by the columns of ma-
trices Y and M and project the data onto this subspace. Notice that
if Y is indeed generated according to (1), the rank of Y is at most
p. Assuming that this preprocessing step is always done, one may
assume without loss of generality that that l = p, thus Y is now an
p × n matrix and M is a square p × p matrix. Of course, in many
practical problems, p is unknown and subspace identification meth-
ods have to be used [13]; in this paper, we assume that p is known.

2.2. MVSA

The implementation of the minimum volume concept is based on
the fact that the volume of the simplex SM (defined in Section 1) is
a proportional to | det M |. Assuming that M does have rank p (the
pure spectral signatures are linearly independent), let Q = M−1,
and recall that det Q = 1/ det M . Using Q, the constraints in (2)
are written as QY ≥ 0 and Y T QT 1p = 1n. A minimum simplex
volume criterion can then be written as the following constrained
optimization problem:

max
Q

|det Q|, subject to: QY ≥ 0 and Y T QT 1p = 1n, (3)

where, as above, QY ≥ 0 denotes an element-wise inequality. It was
shown in [11] that the constraint Y T QT 1p = 1n can be simplified
to QT 1p = q, where q is a suitably defined vector which can be
computed from the data Y . Finally, the strict constraint QY ≥ 0
is relaxed into a soft constraint, to accommodate for noise and/or
outliers, leading to

max
Q

log | det Q| − λ1T
p hinge(QY )1n, subject to: QT 1p = q,

(4)

where λ is a regularization parameter and hinge(·) denotes the
element-wise application of hinge(x) = max{−x, 0}. The opti-
mization problem (4) is solved via a sequential quadratic program-
ming method, after being initialized by the VCA algorithm [4]; for
more details, see [11].

2.3. MVES

The MVES approach is also based on the criterion (3), but does not
consider the simplification of the constraint Y T QT 1p = 1n into
QT 1p = q, and uses a different optimization strategy. Notice that
the constraint simplification is important, since Y T QT 1p = 1n is in
fact a set of n scalar constraints, while QT 1p = q is a set of p scalar
constraints, and usually n À p (e.g., in the experiments reported
below, p = 4 and n = 104). Finally, the optimization problem is
addressed using a cyclic method based on the cofactor expansion of
the determinant, with each intermediate optimization problem being
equivalent to a pair of linear programs; for more details, see [12].

2.4. MCR-ALS

MCR-ALS formulates the problem of estimating M and A as that of
finding a bilinear factorization of Y (as expressed by (1)) in a mean
squared error sense, under the constraints in (2) and also positivity
constraints on the elements of M . As for MVSA and MVES, the
preprocessing step explained in Subsection 2.1 is applied to the data.

The method is initialized with either an estimate of M or an es-
timate of A and then cyclically updates these estimates using a min-
imum mean squared error criterion under the constraints explained
in the previous paragraph, until a convergence criterion is satisfied.
Specifically, this convergence criterion stops the algorithm when the
change in the relative root mean squared error falls below some
threshold, i.e., when

1

‖Y ‖F

∣∣∣‖Y − M̂ (t) Â(t)‖F − ‖Y − M̂ (t−1) Â(t−1)‖F

∣∣∣ < δ,

where ‖B‖F = (
∑

i,j B2
ij)

1/2 denotes the Frobenius matrix norm,

and M̂ (t) and Â(t) are the estimates of M and A at iteration t of the
algorithm. In the experiments reported below, we use the MCR-ALS
implementation available at http://www.ub.edu/mcr/.

3. DATASETS

3.1. Simulated Dataset I

The first simulated dataset has size n = 10000 spectra/pixels and
p = 4 pure spectra. The data is generated according to (1). The
abundance fractions are Dirichlet distributed with unit parameter
(i.e., uniformly distributed over the canonical simplex). The spectral
signatures (with l = 126 spectral bands) of the endmembers are NIR
spectra of four pure pharmaceutical substances: lamivudine, micro-
crystalline cellulose (MCC), rice starch, and talc; for more details
about acquisition of the spectral signatures see [1, 14].

3.2. Simulated Dataset II

This second dataset aims at assessing the performance of the meth-
ods with noisy data and the absence of pure pixels. This dataset was
generated from Dataset I as follows. First, all pixels with any abun-
dance fractions above 0.7 were discarded; let Y denote the resulting
data matrix. Second, a zero-mean Gaussian noise was added to the
spectral vectors, such that SNR ≡ 20 log ‖Y ‖F /‖N‖F = 20 dB
(where N denotes the noise matrix).
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Fig. 1: Estimated endmembers of simulated datasets (a) Simulated
Dataset I (noise free, pure pixels present); (b) Simulated Dataset II
(noisy and with pixels close to pure excluded).

3.3. Real Dataset

This datase contains hyperspectral NIR images of five counterfeit
HeptodinTM tablets. The data matrix Y contains n = 5 × 105 pix-
els/spectra, with l = 126 bands. Given previous knowledge about
composition of these tablets [1, 14], the above set of pure tablets was
used to assess the accuracy of the estimates of the spectral signature.

4. RESULTS AND DISCUSSION

The three datasets were preprocessed as described in Subsection 2.1,
taking p = 4. The regularization parameter λ was set to 100/n.
The endmembers estimated by MVSA, MVES and MCR-ALS from
the Simulated Dataset I are represented Fig. 1(a) (the 2D repre-
sentation uses the first two components of the 4D space obtained
by the preprocessing step). Notice the very accurate MVSA and
MVES estimates, closely followed by VCA; given the presence of
pure pixels/spectra in the data, VCA performs well. For the Sim-
ulated Dataset II (which is noisy and has no pure spectra), MVSA
still yields very accurate estimates, as shown in Fig. 1(b); in this
case, MVES shows its higher sensitivity to noise, although it still

Table 1: Quantitative results for the three methods with the three
datasets, as described in the text.

‖M̂ −M‖F

Method Simulated data I Simulated data II Real data
MVSA 0.00 0.15 3.96
MVES 0.02 2.41 4.10
MCR-ALS 5.22 5.24 5.74

leads to reasonable estimates, while MCR-ALS provided again the
worst estimates.

After an estimate M̂ of M is obtained, if we are in posses-
sion of the true M and wish to compute some error measure (e.g.,
‖M̂ − M‖F ), it is necessary to establish the best correspondence
between the columns of M and those of M̂ . This is done simply
by trying all p! permutations of the columns of M̂ and choosing the
one yielding the lowest values of the adopted error measure. Table 1
reports quantitative results, in terms of ‖M̂ − M‖F . These results
show a dramatic superiority of MVSA and MVES over MCR-ALS,
for the noiseless data, and a clear superiority of MVSA over both
MVES and MCR-ALS, in the synthetic noisy data case. For the real
dataset, again MVSA and MVES clearly outperform MCR-ALS.

Fig. 2 depicts the estimates of the four endmembers of the real
dataset produced by the three methods, alongside with the true pure
spectra (for the best correspondence, as explained in the previous
paragraph). The closeness between MVSA and MVES spectra is due
to the very low noise in the real dataset. The MCR-ALS estimates
are clearly worse, particularly for the pure spectra of lamivudine,
MCC and starch.

Finally, regarding computational time, while MVSA and MVES
run in just a few seconds, MCR-ALS took several minutes until con-
vergence was achieved.

5. CONCLUSIONS

We have shown the advantages of using minimum-volume-based un-
mixing techniques (MVSA and MVES), over the traditional alter-
nating least squares (MCR-ALS) approach, for the analysis of hy-
perspectral NIR data of counterfeit tablets. Both MVSA and MVES
produced very good pure spectra estimates, from both simulated and
real datasets, with MVSA proving to be the best method for noisy
data with no pure pixels. Moreover, MVSA and MVES are compu-
tationally much faster, when compared to MCR-ALS approach.

Finding new, faster, and effective methodologies for spectral un-
mixing is crucial, particularly in applications with a high impact
in public health. Combined with NIR imaging, a fast and non-
destructive technique, spectral unmixing allows, in a few seconds,
to obtain estimates of the compounds spectral signatures. Whenever
a counterfeit drug appears, it is urgent not only to detect it and re-
move it from the market, but also to identify its composition, thus
assessing the level of risk associated to it. The methods described
in this paper may be contributing to the computational arsenal in the
war against counterfeit drugs.
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Fig. 2: Estimated signatures of real dataset (counterfeit tablets) by MVSA, MVES and MCR-ALS.
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