Two Probabilistic Approaches to Deformable Contours

Mário A. T. Figueiredo "Instituto Superior Técnico" Lisboa PORTUGAL

Invited talk, *WDM2000 - Summer School and Workshop on Deformable Models*, Gullmarstrand, Sweden, August 2000.

•PART I - Snakes

- A brief review of standard snakes
- A very brief review of Bayesian inference
- The Bayesian interpretation of standard snakes
- A Bayesian approach to (region-based) snakes

•PART II – Parametrically Deformable Contours

- Introduction
- A review of splines and B-splines
- The model selection issue
- A brief review of the MDL principle
- An MDL-based approach and its implementation

Obvious problem: this field may be "noisy", thus a curve with low $E_{ext}(v,I)$ is a "noisy" curve.

Goal: deform snake (v) under the "image forces", to "find the contour".

Potential energy field $E_{ext}(v,I)$

For example, to attract v towards high-gradient regions (boundaries)

A configuration with low $E_{ext}(v,I)$

An elastically deformable line, v, on the image plane, ...

 $E_{int}(\mathbf{v}) \longrightarrow$ elastic potential (internal) energy, under deformation

shape at rest (low $E(\mathbf{v})$)

deformed shape (higher E(v))

The "snake" approach: combine the two energies

Most image analysis problems can/should be formulated as

inference

Given observed data g, infer f

This is a trivial statement. The message: "start by formalizing **f** and **g**"

- Example:

g, an observed image

f, a contour, e.g., represented by a sequence of points

The Bayesian approach is explicitly model-based

- Observation model / likelihood function:

 $p(\mathbf{g} | \mathbf{f}, \boldsymbol{\phi})$

- **f** is the unknown
- g is the observed data
- ϕ are parameters
- Prior knowledge:

f is the unknown Ψ are parameters

- *A posteriori* knowledge, i.e., knowledge about **f** after observing **g** Bayes law:

$$p(\mathbf{f} | \mathbf{g}, \boldsymbol{\phi}, \boldsymbol{\psi}) = \frac{p(\mathbf{g} | \mathbf{f}, \boldsymbol{\phi}) p(\mathbf{f} | \boldsymbol{\psi})}{p(\mathbf{g} | \boldsymbol{\phi}, \boldsymbol{\psi})}$$

Given $p(\mathbf{f} | \mathbf{g}, \boldsymbol{\phi}, \boldsymbol{\psi})$ and a loss function $L(\mathbf{f}, \hat{\mathbf{f}})$

Optimal Bayes rule: minimizer of the *a posteriori* expected loss:

$$\hat{\mathbf{f}} = \arg\min_{\mathbf{f}} \int L(\mathbf{f}, \hat{\mathbf{f}}) p(\mathbf{f} | \mathbf{g}, \boldsymbol{\phi}, \boldsymbol{\psi}) d\mathbf{f}$$

Particular case: the *maximum a posteriori* rule (0/1 loss)

Particular case of MAP: the maximum likelihood (ML) criterion

$$p(\mathbf{f} | \mathbf{\psi}) \propto \text{const.} \longrightarrow$$

$$\hat{\mathbf{f}}_{_{\mathrm{ML}}} = \arg \max_{\mathbf{f}} \log p(\mathbf{g} \mid \mathbf{f}, \mathbf{\phi})$$

MAP rule:
$$\hat{\mathbf{f}}_{MAP} = \arg\min_{\mathbf{v}} \left\{ -\log p(\mathbf{g} | \mathbf{f}, \boldsymbol{\phi}) - \log p(\mathbf{f} | \boldsymbol{\psi}) \right\}$$
Snake "rule":
$$\hat{\mathbf{v}} = \arg\min_{\mathbf{v}} \left\{ E_{ext}(\mathbf{v}, \mathbf{I}) + \alpha E_{int}(\mathbf{v}) \right\}$$
The similarity suggests:
$$p(\mathbf{v}) = \frac{1}{Z_{int}} \exp\{-\alpha E_{int}(\mathbf{v})\}$$

$$p(\mathbf{I} | \mathbf{v}) = \frac{1}{Z_{ext}(\mathbf{v})} \exp\{-E_{ext}(\mathbf{v}, \mathbf{I})\}$$
Then,
$$\hat{\mathbf{v}}_{MAP} = \arg\min_{\mathbf{v}} \left\{ E_{ext}(\mathbf{v}, \mathbf{I}) + \alpha E_{int}(\mathbf{v}) \right\}$$
if and only if
$$Z_{ext}(\mathbf{v}) = Z_{ext}$$
...often not true.

- •Standard snakes (Witkin, Kass, Terzopoulos, 1987):
 - Internal energy: squared first and second derivatives (Sobolev norm)
 - External energy: $-|\nabla I|^2$
 - Iterative energy minimization
- •Drawbacks of standard snakes:
 - myopia (only see data close to current position)
- unable to re-parameterize or change topology
- non-adaptive: parameters (e.g. α) have to be set *a priori*
- •Many descendants of snakes have addressed some drawbacks:

Chakaraborty, Staib, & Duncan, 1994; Cohen & Cohen, 1993; McInerney & Terzopoulos, 1995; Radeva, Serra, & Marti, 1995; Ronfard, 1994; Xu & Prince, 1998; Zhu & Yuille, 1996, many others....

Under inside/outside independence assumption:

 $p(\mathbf{I} | \mathbf{v}, \phi_{in}, \phi_{out}) = p(\mathbf{I}_{inside(\mathbf{v})} | \phi_{in}) p(\mathbf{I}_{outside(\mathbf{v})} | \phi_{out})$

Examples: - Gaussian of different mean and/or variance;

- Rayleigh of different variance (ultrasound images);
- Different textures, ...

This type of region model also considered by: Ronfard, 1994; Chakaraborty, Staib, & Duncan, 1994; Zhu & Yuille, 1996, Dias & Leitão, 1996; Figueiredo, Leitão & Jain, 1997,...

Likelihood function:

 $p(\mathbf{I} | \mathbf{v}, \phi_{\text{in}}, \phi_{\text{out}}) = p(\mathbf{I}_{\text{inside}(\mathbf{v})} | \phi_{\text{in}}) \ p(\mathbf{I}_{\text{outside}(\mathbf{v})} | \phi_{\text{out}})$

Example: assuming i.i.d. Gaussian pixels values:

$$\phi_{\text{in}} = (\mu_{\text{in}}, \sigma_{\text{in}}^2) \qquad \phi_{\text{out}} = (\mu_{\text{out}}, \sigma_{\text{out}}^2)$$
$$p(\mathbf{I} | \mathbf{v}, \phi_{\text{in}}, \phi_{\text{out}}) = \prod_{i \in \text{inside}(\mathbf{v})} N(\mathbf{I}_i | \mu_{\text{in}}, \sigma_{\text{in}}^2) \prod_{i \in \text{outside}(\mathbf{v})} N(\mathbf{I}_i | \mu_{\text{out}}, \sigma_{\text{out}}^2)$$

Note: $Z_{ext}(\mathbf{v})$ is not constant: $Z_{ext}(\mathbf{v}) \propto \left(\sigma_{in}^2\right)^{-N_{in}(\mathbf{v})} \left(\sigma_{out}^2\right)^{-N_{out}(\mathbf{v})}$ number of pixels inside/outside v Likelihood function:

$$p(\mathbf{I} | \mathbf{v}, \phi_{in}, \phi_{out}) = \prod_{i \in inside(\mathbf{v})} p(\mathbf{I}_i | \phi_{in}) \prod_{i \in outside(\mathbf{v})} N(\mathbf{I}_i | \phi_{out})$$

Prior:

$$p(\mathbf{v} | \mathbf{\psi}) = \frac{1}{Z} \exp\left\{-\frac{1}{\Psi} \sum_{i} (x_{i-1} - 2x_i + x_{i+1})^2 + (y_{i-1} - 2y_i + y_{i+1})^2\right\}$$

$$\hat{\mathbf{v}}_{\text{MAP}} = \arg\min_{\mathbf{v}} \{-\log p(\mathbf{v} | \boldsymbol{\psi}) - \log p(\mathbf{I} | \mathbf{v}, \boldsymbol{\phi}_{\text{in}}, \boldsymbol{\phi}_{\text{out}})\}$$

Questions: - How to find the maximum?

- What about the parameters?

$$(\psi, \phi_{in}, \phi_{out})$$

Advantage of a probabilistic approach: the parameters have meanings and can be estimated

•A (hyper)prior for
$$\psi$$
: $p(\psi) \propto \exp\{-a\psi\}, \quad \psi \ge 0$

...expressing preference for "smoother" contours

•A flat prior for the likelihood parameters $p(\phi_{in}, \phi_{out}) \propto \text{const.}$

$$\hat{\mathbf{v}}, \hat{\boldsymbol{\psi}}, \hat{\boldsymbol{\phi}}_{\text{in}}, \hat{\boldsymbol{\phi}}_{\text{out}}) = \arg \min_{\mathbf{v}, \psi, \phi_{\text{in}}, \phi_{\text{out}}} \left\{ -\log p(\mathbf{v} | \psi) - \log p(\psi) - \log p(\psi) - \log p(\psi) - \log p(\psi) \right\}$$

p(ψ)

V

Adaptive ICM, or component-wise iterative optimization Iterated conditional modes (Besag, 1986) Step 0 \longrightarrow Initialization: get initial contour $\hat{\mathbf{v}}^{(0)}$ set t = 0Step 1 \longrightarrow Given $\hat{\mathbf{v}}^{(t)}$, update the parameter estimates: $\hat{\psi}^{(t+1)} = \arg\min\left\{-\log p(\psi) - \log p(\hat{\mathbf{v}}^{(t)} | \psi)\right\}$ (MAP estimate) $(\hat{\boldsymbol{\phi}}_{\text{in}}, \hat{\boldsymbol{\phi}}_{\text{out}})^{(t+1)} = \arg\min_{\boldsymbol{\varphi}} \left\{ -\log p(\mathbf{I} | \hat{\mathbf{v}}^{(t)}, \boldsymbol{\phi}_{\text{in}}, \boldsymbol{\phi}_{\text{out}}) \right\}$ ϕ_{in}, ϕ_{out} (ML estimates) Step 2 \longrightarrow Update contour by performing 1 ICM step: $\hat{\mathbf{v}}^{(t+1)}$

Convergence? Yes: stop; no: back to Step 1

Step 2 \longrightarrow Update contour by performing 1 ICM step: $\hat{\mathbf{v}}^{(t+1)}$ Given the current parameter estimates $\hat{\boldsymbol{\Phi}}^{(t+1)} \equiv (\hat{\boldsymbol{\Phi}}_{in}, \hat{\boldsymbol{\Phi}}_{out})^{(t+1)}$ and $\hat{\Psi}^{(t+1)}$, $-\log p(\mathbf{v} | \hat{\boldsymbol{\psi}}^{(t+1)}) - \log p(\mathbf{I} | \mathbf{v}, \hat{\boldsymbol{\phi}}^{(t+1)}) \equiv E(\mathbf{v}) \quad \text{is non-convex in } \mathbf{v}$ ICM outside $\mathbf{v}_{i+1}\,\mathbf{v}_{i+2}$ for each $i=1,2,\ldots,n$ inside \mathbf{v}_{i-1} $\hat{\mathbf{v}}_{i}^{(t+1)} = \arg\min E(\mathbf{v} | \{\mathbf{v}_{j\neq i}\} \text{ fixed})$ \mathbf{v}_{i-2} under the constraint $\hat{v}_i^{(t+1)} \in \hat{v}_i^{(t+1)}$ Alternatives: dynamic programming, simulated annealing,...

For more details, see:

M. Figueiredo and J. Leitão, "Bayesian estimation of ventricular contours", in IEEE Trans. on Medical Imaging., vol. 11, pp. 416-429, 1992

PART II – Parametrically Deformable Contours

•Standard snakes: "explicit" contour description $\mathbf{v} = (\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n)$ (nonparametric)

- •Parametrically deformable contours:
 - parametric, usually "short" description

$$\mathbf{v} = \mathbf{M}(\mathbf{\theta})$$

- Examples: Fourier descriptors (Staib & Duncan, 1992; Jain, Zhong, & Lakshmanan, 1996; Figueiredo, Leitão, & Jain, 1997)

Splines (Menet, Saint-Marc, & Medioni, 1990; Rueckert & Burger, 1995; Amini, Curwen, and Gore, 1996; Dias, 1999; Cham & Cipolla, 1999)

Wavelets (Chuang and Kuo, 1996)

Polygons (Jolly, Lakshmanan, & Jain, 1996)

Sinc functions (Dias, 1999).

Application-specific models (many authors...)

Parametric description $\mathbf{v} = \mathbf{M}(\mathbf{\theta})$

Usually: Parameterization order \longleftarrow smoothness/simplicity of v

Examples

- Fourier descriptors with few (low frequency) terms: smooth curves
- Polygon with few vertices: simple shapes
- Spline descriptors with few control points: smooth curves
- Small sinc-basis: low bandwidth (smooth) curves

$$\begin{bmatrix} \mathbf{v}_{1} \\ \vdots \\ \mathbf{v}_{n} \end{bmatrix} = \mathbf{B} \begin{bmatrix} \boldsymbol{\theta}_{1} \\ \vdots \\ \boldsymbol{\theta}_{k} \end{bmatrix} = \mathbf{B} \begin{bmatrix} \boldsymbol{\theta}_{x,1} & \boldsymbol{\theta}_{y,1} \\ \vdots & \vdots \\ \boldsymbol{\theta}_{x,k} & \boldsymbol{\theta}_{y,k} \end{bmatrix}$$
$$= \begin{bmatrix} \mathbf{x} \quad \mathbf{y} \end{bmatrix} = \mathbf{B} \begin{bmatrix} \boldsymbol{\theta}_{x} & \boldsymbol{\theta}_{y} \end{bmatrix} \Leftrightarrow \begin{cases} \mathbf{x} = \mathbf{B} \boldsymbol{\theta}_{x} \\ \mathbf{y} = \mathbf{B} \boldsymbol{\theta}_{y} \end{cases}$$

Number of control points: curve complexity

Given a set of points $\begin{bmatrix} \mathbf{v}_1 \\ \vdots \\ \mathbf{v}_n \end{bmatrix} = \begin{bmatrix} x_1 & y_1 \\ \vdots & \vdots \\ x_n & y_n \end{bmatrix} = [\mathbf{x} \quad \mathbf{y}]$

...and a B-spline matrix **B**, find the "best" control points.

> in mean square sense

$$\hat{\boldsymbol{\theta}}_{x} = \arg\min_{\boldsymbol{\theta}_{x}} \|\mathbf{x} - \mathbf{B}\boldsymbol{\theta}_{x}\|^{2} \qquad \hat{\boldsymbol{\theta}}_{y} = \arg\min_{\boldsymbol{\theta}_{x}} \|\mathbf{y} - \mathbf{B}\boldsymbol{\theta}_{y}\|^{2}$$
Solution:
$$\hat{\boldsymbol{\theta}}_{x} = (\mathbf{B}^{T}\mathbf{B})^{-1}\mathbf{B}^{T}\mathbf{x} = \mathbf{B}^{\#}\mathbf{x} \qquad \hat{\boldsymbol{\theta}}_{y} = (\mathbf{B}^{T}\mathbf{B})^{-1}\mathbf{B}^{T}\mathbf{y} = \mathbf{B}^{\#}\mathbf{y}$$

$$\mathbf{B}^{\#}, \text{ pseudo-inverse of } \mathbf{B}$$

Projects v onto the span of the columns of B

Consider an i.i.d. Gaussian noise model:

$$p(\mathbf{x}, \mathbf{y} | \boldsymbol{\theta}_{x}, \sigma_{x}^{2}, \boldsymbol{\theta}_{y}, \sigma_{y}^{2}) = p(\mathbf{y} | \boldsymbol{\theta}_{y}, \sigma_{y}^{2}) p(\mathbf{x} | \boldsymbol{\theta}_{x}, \sigma_{x}^{2})$$

$$p(\mathbf{x} | \boldsymbol{\theta}_{x}) \propto \exp\left\{-\frac{\|\mathbf{x} - \mathbf{B}\boldsymbol{\theta}_{x}\|^{2}}{2 \sigma_{x}^{2}}\right\} \qquad p(\mathbf{y} | \boldsymbol{\theta}_{y}) \propto \exp\left\{-\frac{\|\mathbf{y} - \mathbf{B}\boldsymbol{\theta}_{y}\|^{2}}{2 \sigma_{y}^{2}}\right\}$$

Then, the ML estimate is the minimum mean square error estimate:

$$\hat{\boldsymbol{\theta}}_{x} = \arg\min_{\boldsymbol{\theta}_{x}} \|\mathbf{x} - \mathbf{B}\boldsymbol{\theta}_{x}\|^{2}$$
 $\hat{\boldsymbol{\theta}}_{y} = \arg\min_{\boldsymbol{\theta}_{x}} \|\mathbf{y} - \mathbf{B}\boldsymbol{\theta}_{y}\|^{2}$

regardless of the values of σ_x^2 and σ_y^2

What about the dimension of θ ? (number of control points)

Proposed approach: MDL

Introduction to MDL

Scenario: A set of models (likelihoods) for the data model m is characterized by (unknown) "parameters" $f_{(m)}$ {p($\mathbf{g} | \mathbf{f}_{(m)}, m$), $m = m_1, m_2, ..., m_K$ } no prior information about $\mathbf{f}_{(m)}$ Goal: given data g, build the shortest possible code for g With $f_{(m)}$ known, the shortest code-length for g is (Shannon's) $L(\mathbf{g} | \mathbf{f}_{(m)}) = -\log p(\mathbf{g} | \mathbf{f}_{(m)}, m)$

However, $\mathbf{f}_{(m)}$ is, a priori, unknown; it has to be estimated.

Assumption: given $\mathbf{f}_{(m)}$, both encoder and decoder know how to build the same code

MDL principle: choose m and $\hat{\mathbf{f}}_{(m)}$ so that length(coded data) is shortest

coded data = code(m) + code(
$$\hat{\mathbf{f}}_{(m)}$$
) + code(g | $\hat{\mathbf{f}}_{(m)}$)

$$L(\mathbf{m}, \mathbf{f}_{(m)}, \mathbf{g}) = L(\mathbf{m}) + L(\mathbf{f}_{(m)} | \mathbf{m}) + L(\mathbf{g} | \mathbf{f}_{(m)})$$

Usually constant

MDL criterion

$$(\hat{\mathbf{m}}, \hat{\mathbf{f}}_{(\hat{\mathbf{m}})})_{\text{MDL}} = \arg\min_{\mathbf{m}, \mathbf{f}_{(\mathbf{m})}} \{ L(\mathbf{f}_{(\mathbf{m})}) + L(\mathbf{g} \mid \mathbf{f}_{(\mathbf{m})}) \}$$

$$= \arg\min_{\mathbf{m},\mathbf{f}_{(m)}} \{ L(\mathbf{f}_{(m)}) - \log p(\mathbf{g} | \mathbf{f}_{(m)}) \}$$

$$(\hat{\mathbf{m}}, \hat{\mathbf{f}}_{(\hat{\mathbf{m}})})_{\text{MDL}} = \arg \min_{\mathbf{m}, \mathbf{f}_{(\mathbf{m})}} \{ L(\mathbf{f}_{(\mathbf{m})}) - \log p(\mathbf{g} | \mathbf{f}_{(\mathbf{m})}) \}$$

$$L(\mathbf{f}_{(\mathbf{m})}) ? \quad \text{Finite } L(\mathbf{f}_{(\mathbf{m})}) \Rightarrow \text{truncate to finite precision: } \mathbf{\tilde{f}}_{(\mathbf{m})}$$

$$\text{High precision} \quad -\log f(\mathbf{g} | \mathbf{\tilde{f}}_{(\mathbf{m})}) \approx -\log f(\mathbf{g} | \mathbf{\hat{f}}_{(\mathbf{m})}^{\text{ML}}) \quad \text{but } L(\mathbf{\tilde{f}}_{(\mathbf{m})}) \not$$

$$\text{Low precision} \quad L(\mathbf{\tilde{f}}_{(\mathbf{m})}) \searrow \text{ but} \quad -\log f(\mathbf{g} | \mathbf{\tilde{f}}_{(\mathbf{m})}) \text{ may be } \gg -\log p(\mathbf{g} | \mathbf{\hat{f}}_{(\mathbf{m})}^{\text{ML}})$$

Optimal compromise (under regularity conditions, and asymptotic)

L(each component of $\mathbf{f}_{(m)}$) = $\frac{1}{2}\log(n)$

n, the sample size from which the parameter is estimated (growth rate of Fisher info.) In our problem, $\mathbf{v} = [\mathbf{x} \ \mathbf{y}] = \mathbf{B} \boldsymbol{\theta}$ is a "digital" curve coordinates are quantized to pixel accuracy

What precision is required for θ , to guarantee pixel precision for v?

Let
$$\Delta \boldsymbol{\theta}_{x} = \widetilde{\boldsymbol{\theta}}_{x} - \boldsymbol{\theta}_{x}$$
 and $\Delta \boldsymbol{\theta}_{y} = \widetilde{\boldsymbol{\theta}}_{y} - \boldsymbol{\theta}_{y}$
Finite precision versions
Goal: $\|\Delta \mathbf{x}\|_{\infty} \equiv \max_{i} |\Delta x_{i}| < 1$ and $\|\Delta \mathbf{y}\|_{\infty} \equiv \max_{i} |\Delta y_{i}| < 1$
By linearity, $\Delta \mathbf{x} = \mathbf{B} \Delta \boldsymbol{\theta}_{x}$ and $\Delta \mathbf{y} = \mathbf{B} \Delta \boldsymbol{\theta}_{y}$

Key fact:

$$\|\mathbf{B}\|_{\infty} \equiv \max_{i} \sum_{j} |\mathbf{B}_{ij}| = \max_{i} \sum_{j} \mathbf{B}_{ij} = 1$$

$$\lim_{i \to j} |\mathbf{B}_{ij}| = \max_{i} \sum_{j} |\mathbf{B}_{ij}| = 1$$

$$\lim_{i \to j} |\mathbf{B}_{ij}| = \max_{i} \sum_{j} |\mathbf{B}_{ij}| = 1$$

$$\lim_{i \to j} |\mathbf{B}_{ij}| = 1$$

Recall our goal: $\|\Delta \mathbf{x}\|_{\infty} < 1$, $\|\Delta \mathbf{y}\|_{\infty} < 1$

and
$$\Delta \mathbf{x} = \mathbf{B} \Delta \mathbf{\theta}_{x}, \ \Delta \mathbf{y} = \mathbf{B} \Delta \mathbf{\theta}_{y}$$

then,

$$\left\| \Delta \mathbf{\theta}_{\mathbf{y}} \right\|_{\infty} < 1 \implies \left\| \Delta \mathbf{y} \right\|_{\infty} < 1 \qquad \left\| \Delta \mathbf{\theta}_{\mathbf{x}} \right\|_{\infty} < 1 \implies \left\| \Delta \mathbf{x} \right\|_{\infty} < 1$$

0.2

0

0

20

40

60

80

i.e., pixel precision is enough for the control points.

Natural code length for k control points $L(\theta_{(k)}) = k(log(N_r) + log(N_c)) = L(k)$ denotes k control points

MDL criterion:

$$\min_{\substack{k,\theta_{(k)},\sigma_x^2,\sigma_y^2}} \left\{ L(k) - \log p(\mathbf{x} \mid \theta_x, \sigma_x^2) - \log p(\mathbf{y} \mid \theta_y, \sigma_y^2) \right\}$$
some simple manipulation leads to
$$\min_{\substack{\theta_{(k)},\sigma_x^2,\sigma_y^2}} \hat{k} = \arg \min_{k} \left\{ L(k) - n \log \sqrt{\hat{\sigma}_x^2(k)} \ \hat{\sigma}_x^2(k) \right\}$$

$$\hat{\sigma}_x^2(k) = \frac{1}{n} \left\| \mathbf{x} - \mathbf{B}(k)^{\perp} \mathbf{x} \right\|^2 \qquad \hat{\sigma}_y^2(k) = \frac{1}{n} \left\| \mathbf{y} - \mathbf{B}(k)^{\perp} \mathbf{y} \right\|^2 \quad \text{residual error variances}$$

To use the MDL approach, we need the likelihood function:

where $\mathbf{v}(\mathbf{\theta}_{(k)}) = \mathbf{B} \mathbf{\theta}_{(k)}$

 ϕ_{in}, ϕ_{out} are also considered unknown.

MDL criterion:

$$\min_{k,\boldsymbol{\theta}_{(k)},\phi_{in},\phi_{out}}\left\{L(k)-\log p(\mathbf{I} \mid \mathbf{v}(\boldsymbol{\theta}_{(k)}),\phi_{in},\phi_{out})\right\}$$

Now, it is not possible to solve analytically w.r.t. $\boldsymbol{\theta}_{(k)}, \boldsymbol{\phi}_{in}, \boldsymbol{\phi}_{out}$

Proposed approach: an iterative method.

$$\min_{k,\boldsymbol{\theta}_{(k)},\phi_{in},\phi_{out}} \left\{ L(k) - \log p(\mathbf{I} | \mathbf{v}(\boldsymbol{\theta}_{(k)}), \phi_{in}, \phi_{out}) \right\}$$

can be rewritten as

$$\min_{k} \left\{ L(k) - \max_{\boldsymbol{\theta}_{(k)}, \boldsymbol{\phi}_{in}, \boldsymbol{\phi}_{out}} \left\{ \log p(\mathbf{I} \mid \mathbf{v}(\boldsymbol{\theta}_{(k)}), \boldsymbol{\phi}_{in}, \boldsymbol{\phi}_{out}) \right\} \right\}$$
Solved by iterative method
$$\min_{k} \left\{ L(k) - G(\mathbf{I}, k) \right\}$$

Outer minimization: solved by exhaustive search

$$\max_{\boldsymbol{\theta}_{(k)}, \boldsymbol{\phi}_{in}, \boldsymbol{\phi}_{out}} \left\{ \log p(\mathbf{I} \mid \mathbf{v}(\boldsymbol{\theta}_{(k)}), \boldsymbol{\phi}_{in}, \boldsymbol{\phi}_{out}) \right\}$$
Iterative method:

$$\hat{\boldsymbol{\phi}}_{in} \quad \hat{\boldsymbol{\phi}}_{out}$$
Given $\hat{\boldsymbol{\phi}}_{in}, \quad \hat{\boldsymbol{\phi}}_{out}$
maximize w.r.t. $\boldsymbol{\theta}_{(k)}$

$$\hat{\mathbf{v}} = \mathbf{B} \, \hat{\boldsymbol{\theta}}_{(k)}$$

Given
$$\hat{\phi}_{in}$$
, $\hat{\phi}_{out}$
$$\max_{\boldsymbol{\theta}_{(k)}} \{ \log p(\mathbf{I} | \mathbf{v}(\boldsymbol{\theta}_{(k)}), \hat{\phi}_{in}, \hat{\phi}_{out}) \}$$

is equivalent to

$$\max_{\mathbf{v}} \left\{ \log p(\mathbf{I} \mid \mathbf{v}, \hat{\phi}_{in}, \hat{\phi}_{out}) \right\}$$

Subject to: $\mathbf{v} \in \mathcal{R}(\mathbf{B}_{(k)})$
The range space of $\mathbf{B}_{(k)}$,
i.e., the span of its columns

r

$$\max_{\mathbf{v}} \left\{ \log p(\mathbf{I} \mid \mathbf{v}, \hat{\boldsymbol{\phi}}_{in}, \hat{\boldsymbol{\phi}}_{out}) \right\} \qquad \text{Subject to: } \mathbf{v} \in \mathcal{R}(\mathbf{B}_{(k)})$$
Grandient projection algorithm. Input: $\hat{\boldsymbol{\phi}}_{in}, \hat{\boldsymbol{\phi}}_{out}, \hat{\mathbf{v}}^{(0)} \in \mathcal{R}(\mathbf{B}_{(k)})$
Step 0: build $\mathbf{B}_{(k)}$ and compute $\mathbf{B}_{(k)}^{\perp} = \mathbf{B}_{(k)} \left(\mathbf{B}_{(k)}^{\mathsf{T}} \mathbf{B}_{(k)} \right)^{-1} \mathbf{B}_{(k)}^{\mathsf{T}}$
Step 1: compute the gradient $\delta \mathbf{v} = \nabla \log p(\mathbf{I} \mid \mathbf{v}) \Big|_{\mathbf{v} = \hat{\mathbf{v}}^{(t)}}$
Step 2: project the gradient onto $\mathcal{R}(\mathbf{B}_{(k)})$: $(\delta \mathbf{v})^{\perp} = \mathbf{B}_{(k)}^{\perp} \delta \mathbf{v}$

Step 3: take a small step in the direction of the projected gradient: $\hat{\mathbf{v}}^{(t+1)} = \hat{\mathbf{v}}^{(t)} + \varepsilon \left(\delta \mathbf{v} \right)^{\perp} = \mathbf{B}_{(k)}^{\perp} \left(\hat{\mathbf{v}}^{(t)} + \varepsilon \, \delta \mathbf{v} \right)$ No convergence: increment t, back to Step 1

Computing the gradient

$$\delta \mathbf{v} = \nabla \log \mathbf{p}(\mathbf{I} \mid \mathbf{v}) \Big|_{\mathbf{v} = \hat{\mathbf{v}}^{(t)}}$$

Gradient is perpendicular to the contour

Coordinate i of the gradient: approximated with a finite difference

Only requires values on a small perpendicular window

$$\min_{k} \left\{ L(k) - \max_{\boldsymbol{\theta}_{(k)}, \boldsymbol{\phi}_{\text{in}}, \boldsymbol{\phi}_{\text{out}}} \left\{ \log p(\mathbf{I} \mid \mathbf{v}(\boldsymbol{\theta}_{(k)}), \boldsymbol{\phi}_{\text{in}}, \boldsymbol{\phi}_{\text{out}}) \right\} \right\}$$

Solved by iterative method
$$\min_{k} \left\{ L(k) - G(\mathbf{I}, k) \right\}$$

Outer minimization: solved by exhaustive search
Sweep range of values $k \in \left\{ k_{\min}, k_{\min} + 1, \cdots, k_{\max} \right\}$
Start with $k = k_{\min}$
Use contour obtained at each k, to initialize the next iterative algorithm

47 Contour estimation examples: synthetic data

Dashed line = initial contour

48 Contour estimation example: real medical image

49 More examples on real medical images

See:

M. Figueiredo, J. Leitão, and A.K.Jain, "Unsupervised contour representation and estimation using B-splines and a minimum description length criterion" in *IEEE Transactions on Image Processing*, vol. 9, no. 6, pp. 1075-1087, 2000.