
Scalar and Vector Quantization

Mário A. T. Figueiredo,
Departamento de Engenharia Electrotécnica e de Computadores,

Instituto Superior Técnico, Lisboa, Portugal

mario.figueiredo@ist.utl.pt

November 2008

Quantization is the process of mapping a continuous or discrete scalar or vector, produced
by a source, into a set of digital symbols that can be transmitted or stored using a finite number
of bits. In the case of continuous sources (with values in R or Rn) quantization must necessarily
be used if the output of the source is to be communicated over a digital channel. In this case,
it is, in general, impossible to exactly reproduce the original source output, so we’re in the
context of lossy coding/compression.

In this lecture notes, we will review the main concepts and results of scalar and vector
quantization. For more details, see the book by Gersho and Gray [2], the accessible tutorial by
Gray [3], or the comprehensive review by Gray and Neuhoff [4]

1 Scalar Quantization

1.1 Introduction and Definitions

Let us begin by considering the case of a real-valued (scalar) memoryless source. Such a source
is modeled as a real-valued random variable, thus fully characterized by a probability density
function (pdf) fX . Recall that a pdf fX satisfies the following properties: fX(x) ≥ 0, for any
x ∈ R, ∫ ∞

−∞
fX(x) dx = 1,

and ∫ b

a
fX(x) dx = P [X ∈ [a, b]],

where P [X ∈ [a, b]] denotes the probability that the random variable X takes values in the
interval [a, b]. To avoid technical issues, in this text we only consider continuous pdfs.

1

Consider the objective of transmitting a sample x of the source X over a binary channel
that can only carry R bits, each time it is used. That is, we can only use R bits to encode each
sample of X. Naturally, this restriction implies that we are forced to encoding any outcome of
X into one of N = 2R different symbols (binary words). Of course, this can be easily generalized
for D-ary channels (instead of binary), for which the number of different words is DR; however,
to keep the notation simple, and without loss of generality, we will only consider the case of
binary channels. Having received one of the N = 2R possible words, the receiver/decoder has
to do its best to recover/approximate the original sample x, and it does so by outputting one
of a set of N values.

The procedure described in the previous paragraph can be formalized as follows. The
encoder is a function E : R→ I, where I = {0, 1, ..., N − 1} is the set of possible binary words
that can be sent through the channel to represent the original sample x. Since the set I is
much smaller than R, this function is non-injective and there are many different values of the
argument that produce the same value of the function; each of this sets is called a quantization
region, and is defined as

Ri = {x ∈ R : E(x) = i}.

Since E is a function defined over all R, this definition implies that the collection of quantization
regions (also called cells) R = {R0, ..., RN−1} defines a partition of R, that is,

(i 6= j)⇒ Ri ∩Rj = ∅ and
N−1⋃
i=0

Ri = R. (1)

The decoder is a real-valued function D : I → R; notice that since the argument of D only
takes N different values, and D is a deterministic function, it can also only take N different
values, thus its range is a finite set C = {y0, ..., yN−1} ⊂ R. The set C is usually called the
codebook. The i-th element of the codebook, yi, is sometimes called the representative of the
region/cell Ri.

Considering that there are no errors in the channel, the sample x is reproduced by the
decoder as D (E(x)), that is, the result of first encoding and then decoding x. The composition
of the functions E and D defines the so-called quantization function Q : R→ C, where Q(x) =
D (E(x)). The quantization function has the following obvious property

(x ∈ Ri)⇔ Q(x) = yi, (2)

which justifies the term quantization. In other other, any x belonging to region Ri is represented
at the output of the system by the corresponding yi.

A quantizer (equivalently a pair encoder/decoder) is completely defined by the set of regions
R = {R0, ..., RN} and the corresponding representatives C = {y0, ..., yN−1} ⊂ R. If all the
cells are intervals (for example, Ri = [ai, bi[or Ri = [ai, ∞[) that contain the corresponding
representative, that is, such that yi ∈ Ri, the quantizer is called regular. A regular quantizer in
which all the regions have the same length (except two of them, which may be unbounded on
the left and the right) is called a uniform quantizer. For example, the following set of regions

2

and codebook define a 2-bit (R = 2, thus N = 4) regular (but not uniform) quantizer:

R = {]−∞,−0.3],]− 0.3, 1.5],]1.5, 4[, [4,∞[} and C = {−1, 0, 2, 5}.

As another example, the following set of regions/cells and codebook define a 3-bit (R = 3, thus
N = 8) uniform quantizer:

R = {]−∞, 0.3],]0.3, 1.3],]1.3, 2.3],]2.3, 3.3],]3.3, 4.3],]4.3, 5.3],]5.3, 6.3],]6.3,∞[}
C = {0, 1, 2, 3, 4, 5, 6, 7}.

1.2 Optimal Quantizers, Lloyd’s Algorithm, and the Linde-Buzo-Gray

Algorithm

1.2.1 Expected Distortion

Finding an optimal scalar quantizer consists in finding the set of regions, R, and the codebook,
C, minimizing a given objective function, which measures quantizer performance. Although
there are other possibilities, the standard quantity used to assess the performance of a quantizer
is the expected distortion

E [d(X,Q(X))] =
∫ ∞
−∞

fX(x) d (x,Q(x)) dx,

where d : R×R→ R is a so-called distortion measure. Among the several reasonable choices for
d, such as d(x, z) = |x− z|, the one which is, by far, most commonly used, is the squared error,
d(x, z) = (x − z)2. With the squared error, the expected distortion becomes the well-known
mean squared error (MSE),

MSE = E
[
(X −Q(X))2

]
=
∫ ∞
−∞

fX(x) (x−Q(x))2 dx.

The MSE is also called the quantization noise power.

1.2.2 Optimal Quantizer

Adopting the MSE to measure the quantizer performance, the problem of finding the optimal
set of regions and corresponding representatives becomes(

Ropt, Copt
)

= arg min
R,C

∫ ∞
−∞

fX(x) (x−Q(x))2 dx, (3)

under the constraint that the regions that constitute R have to satisfy the condition in (1).
Because the set of regions constitutes a partition of R (see (1)), and because of (2), the

integral defining the MSE can be written as

MSE(R0, ..., RN−1, y0, ..., yN−1) =
N−1∑
i=0

∫
Ri

fX(x) (x− yi)2 dx, (4)

where the notation MSE(R0, ..., RN−1, y0, ..., yN−1) is used to emphasize that the mean squared
error depends on the quantization regions, R0, ..., RN−1 and their representatives y0, ..., yN−1.

3

1.2.3 Partial Solutions

It is, in general, extremely hard to find the global minimizer of MSE(R0, ..., RN−1, y0, ..., yN−1),
simultaneously with respect to all the regions and representatives. However, it’s possible to
solve two partial problems:

• Given the quantization regions regions R = {R0, ..., RN−1}, find the corresponding opti-
mal codebook,

{y∗0, ..., y∗N−1} = arg min
y∗0 ,...,yN−1

N−1∑
i=0

∫
Ri

fX(x) (x− yi)2 dx. (5)

• Given a codebook C = {y0, ..., yN−1}, find the optimal regions,

{R∗0, ..., R∗N−1} = arg min
R∗0 ,...,RN−1

∫ ∞
−∞

fX(x) (x−Q(x))2 dx (6)

subject to (i 6= j)⇒ Ri ∩Rj (7)
N−1⋃
i=0

Ri = R. (8)

Let us start by examining (5); observe that the function being minimized is the sum of
N non-negative functions, and each of these functions only depends on one element of C.
Consequently, the problem can be solved independently with respect to each yi, that is,

y∗i = arg min
y

∫
Ri

fX(x) (x− y)2 dx.

Expanding the square in the integrand leads to

y∗i = arg min
y

[∫
Ri

fX(x)x2 dx+ y2

∫
Ri

fX(x) dx− 2 y
∫
Ri

fX(x)x dx
]

(9)

= arg min
y

[
y2

∫
Ri

fX(x) dx− 2 y
∫
Ri

fX(x)x dx
]
, (10)

where the second equality is due to the fact that the first term in the right hand side of (9)
does not depend on y, thus it is irrelevant for the minimization. The minimum is found by
computing the derivative with respect to y, which is

d

d y

[
y2

∫
Ri

fX(x) dx− 2 y
∫
Ri

fX(x)x dx
]

= 2 y
∫
Ri

fX(x) dx− 2
∫
Ri

fX(x)x dx

and equating it to zero, which leads to the following equation

y

∫
Ri

fX(x) dx =
∫
Ri

fX(x)x dx,

4

the solution of which is

y∗i =

∫
Ri

fX(x)x dx∫
Ri

fX(x) dx
. (11)

This expression for the optimal representative of region Ri has a clear probabilistic meaning.
Observe that the conditional density of X, conditioned by the event Ai = (X ∈ Ri) is, according
to Bayes law,

fX|Ai
(x|Ai) =

fX,Ai(x,Ai)
P [Ai]

=
P [Ai|x]fX(x)

P [Ai]
=

1Ri(x)fX(x)
P [X ∈ Ri]

,

where 1Ri(x) = 1, if x ∈ Ri, and 1Ri(x) = 0, if x 6∈ Ri, is called the indicator function of region
Ri. Computing the expected value of X, conditioned by the event that Ai = (X ∈ Ri),

E[X|X ∈ Ri] =
∫ ∞
−∞

x fX|Ai
(x|Ai) dx

=
1

P [X ∈ Ri]

∫ ∞
−∞

x fX(x) 1Ri(x) dx

=

∫
Ri

x fX(x) dx∫
Ri

fX(x) dx
, (12)

which is exactly expression (11). This shows that the optimal representative of the cell Ri
is the conditional expected value of the random variable X, given that X is in Ri. A more
physical interpretation of (11) is that it is the center of (probabilistic) mass of region Ri.

Let us now examine problem (6)–(8), where we seek the optimal regions, given a codebook
C = {y0, ..., yN−1}. Notice that the fact that there is no restriction on the form of the regions
Ri (apart from those in (7) and (8)) means that choosing the regions is the same as selecting,
for each x, what is its “best” representative among the given {y0, ..., yN−1}. In mathematical
terms, this can be written as the following inequality∫ ∞

−∞
fX(x) (x−Q(x))2 dx ≥

∫ ∞
−∞

fX(x) min
i

(x− yi)2 dx;

that is, since the codebook {y0, ..., yN−1} is fixed, the best possible encoder is one that chooses,
for each x, the closest representative. In conclusion, the optimal regions are given by

Ri = {x : (x− yi)2 ≤ (x− yj)2, j 6= i}, for i = 0, ..., N − 1, (13)

that is, Ri is the set of points that are closer to yi than to any other element of the codebook.

1.2.4 The Lloyd Algorithm

The Lloyd algorithm for quantizer design works by iterating between the two partial solutions
described above.

5

Step 1: Given the current codebook C(t) =
{
y

(t)
0 , ..., y

(t)
N−1

}
, obtain the optimal regions

R
(t)
i = {x : (x− y(t)

i)2 ≤ (x− y(t)
j)2, j 6= i}, for i = 0, ..., N − 1;

Step 2: Given the current regions R(t) =
{
R

(t)
0 , ..., R

(t)
N−1

}
, update the representatives

y
(t+1)
i =

∫
R

(t)
i

fX(x)x dx∫
R

(t)
i

fX(x) dx
, for i = 0, ..., N − 1;

Step 3: Check some stopping criterion; if it is satisfied, stop; if not, set t← t+ 1, and go back
to Step 1.

A typical stopping criterion would be to check if the maximum difference between two consec-
utive values of codebook elements is less than some threshold; that is, the algorithm would be
stopped if the following condition is satisfied

max
i

(y(t)
i − y

(t+1)
i)2 ≤ ε. (14)

Under certain conditions, Lloyd’s algorithm converges to the global solution of the opti-
mization problem (3); however, these conditions are not trivial and way beyond the scope of
these lecture notes. In fact, the convergence properties of the Lloyd algorithm are a topic of
current active research; the interested reader may look at the recent paper by Du, Emelianenko,
and Ju [1].

1.2.5 Zero Mean Quantization Error of Lloyd Quantizers

Algorithms obtained by the Lloyd algorithm satisfy simultaneously the partial optimality con-
ditions (11) and (13) and are called Lloyd quantizers. These quantizers have the important
property that the expected value of the quantization error is zero, that is, E [Q(X)−X] = 0,
or, equivalently, E[Q(X)] = E[X]. To show this, we write

E [Q(X)] =
∫ ∞
−∞

fx(x)Q(x) dx (15)

=
N−1∑
i=0

yi

∫
Ri

fx(x) dx (16)

=
N−1∑
i=0

∫
Ri

x fx(x) dx∫
Ri

fx(x) dx

∫
Ri

fx(x) dx (17)

=
N−1∑
i=0

∫
Ri

xfx(x) dx (18)

=
∫ ∞
−∞

xfx(x) dx (19)

= E[X]. (20)

6

1.2.6 The Linde-Buzo-Gray Algorithm

Very frequently, instead of knowledge of the pdf of the source, fX(x), what we have available
is a set of samples X = {x1, ..., xn}, where n is usually (desirably) a large number. In this
scenario, the optimal quantizer will have to be obtained (learned) from these samples. This is
what is achieved by the Linde-Buzo-Gray (LBG) algorithm, which is a sample version of the
Lloyd algorithm. The algorithm is defined as follows.

Step 1: Given the current codebook C(t) =
{
y

(t)
0 , ..., y

(t)
N−1

}
, obtain the optimal regions

R
(t)
j = {x : (x− y(t)

j)2 ≤ (x− y(t)
k)2, k 6= j}, for j = 0, ..., N − 1;

Step 2: Given the current regions R(t) =
{
R

(t)
0 , ..., R

(t)
N−1

}
, update the representatives

y
(t+1)
j =

∑
i: xi∈R

(t)
j

xi

n
(t)
j

, for j = 0, ..., N − 1,

where n(t)
j = |X ∩R(t)

j | is the number of samples in R
(t)
j .

Step 3: Check some stopping criterion; if it is satisfied, stop; if not, set t← t+ 1, and go back
to Step 1.

As in the Lloyd algorithm, a typical stopping criterion has the form (36).
Notice that we don’t need to explicitly define the regions, but simply to assign each point

to one of the current regions
{
R

(t)
0 , ..., R

(t)
N−1

}
. That is, the Step 1 of the LBG algorithm can

be written with the help of indicator variables wij , for i = 1, ..., n, and j = 0, ..., N − 1, defined
as follows:

wij = 1⇔ j = arg min
k

{(
xi − y(t)

k

)2
, k = 1, ..., N

}
,

that is wij equals one if and only if xi is closer to yj than to any other other element of the
current codebook; otherwise, it is zero. With these indicator variables, the Step 2 of the LBG
algorithm can be written as

y
(t+1)
j =

n∑
i=1

xiwij

n∑
i=1

wij

, for i = 0, ..., N − 1,

that is, the updated j-th element of the codebook is simply the mean of all the samples that
currently are in region R

(t)
i .

7

1.3 High-Resolution Approximation

Although there is an algorithm to design scalar quantizers, given the probability density func-
tion of the source (Lloyd’s algorithm), or a set of samples (LBG algorithms), the most commonly
used quantizers are uniform and of high resolution (large N). It is thus important to be able
to have a good estimate of the performance of such quantizers, which is possible using the
so-called “high-resolution approximation”.

1.3.1 Uniform Quantizers

In uniform quantizers, all the regions Ri are intervals with the same width, denoted ∆. Of
course, if X is unbounded (for example, X ∈ R and Gaussian) it is not possible to cover R
with a finite number of cells of finite width ∆. However, we assume that we have enough
cells to cover the region of of R where fX(x) is not arbitrarily close to zero. For example, if
X ∈ R and fX(x) is a Gaussian density of zero mean and variance σ2, we may consider that
X is essentially always in the interval [−4σ, 4σ], since the probability that X belongs to this
interval is 0.9999.

The high-resolution approximation assumes that ∆ is small enough so that fX(x) is ap-
proximately constant inside each quantization region. Under this assumption, the optimal
representative for each region is its central point, thus Ri = [yi−∆/2, yi + ∆/2[, and the MSE
is given by

MSE =
N−1∑
i=0

∫ yi+∆/2

yi−∆/2
fX(x) (x− yi)2 dx

'
N−1∑
i=0

fX(yi)
∫ yi+∆/2

yi−∆/2
(x− yi)2 dx

=
N−1∑
i=0

fX(yi)∆
∫ yi+∆/2

yi−∆/2

1
∆

(x− yi)2 dx. (21)

Making the change of variables zi = x− yi in each of the integrals, they all become equal to∫ yi+∆/2

yi−∆/2

1
∆

(x− yi)2 dx =
∫ ∆/2

−∆/2

z2

∆
dz =

∆2

12
;

inserting this result in (21), and observing that fX(yi)∆ ' P [X ∈ Ri] ≡ pi we obtain

MSE ' ∆2

12

N−1∑
i=0

pi =
∆2

12
, (22)

since
∑

i pi = 1.
If the width of the (effective) support of fX(x) is, say A, the number of cells N is given by

N = A/∆. Recalling that N = 2R, we have

MSE =
A2 2−2R

12
, (23)

8

showing that each additional bit in the rate R produces an MSE reduction by a factor of 4. In
terms of signal to (quantization) noise ratio (SNR), we have

SNR = 10 log10

σ2

MSE
dB

where σ2 denotes the source variance. Using the expression above for the MSE, we have

SNR = 10 log10

σ2 12
A2︸ ︷︷ ︸

K

+ R 20 log10 2︸ ︷︷ ︸
'6.0

' (K + 6R) dB,

showing that each extra bit in the quantizer achieves an improvement of approximately 6 dB
in the quantization SNR.

Notice that all the results in this subsection are independent of the particular features (such
as the shape) of the pdf fX(x).

1.3.2 Non-uniform Quantizers

In non-uniform high-resolution quantizers, the width of each cell Ri is ∆i, but it is still assumed
that ∆i is small enough so that fX(x) is essentially constant inside the cell Ri. Under this
assumption, the optimal representative for region Ri is its central point, thus we can write
Ri = [yi −∆i/2, yi + ∆i/2[, and the MSE is given by

MSE =
N−1∑
i=0

∫ yi+∆i/2

yi−∆i/2
fX(x) (x− yi)2 dx

'
N−1∑
i=0

fX(yi)
∫ yi+∆i/2

yi−∆i/2
(x− yi)2 dx

=
N−1∑
i=0

fX(yi)∆i

∫ yi+∆i/2

yi−∆i/2

1
∆i

(x− yi)2 dx. (24)

Making the change of variables zi = x− yi in each integral leads to∫ yi+∆i/2

yi−∆i/2

1
∆i

(x− yi)2 dx =
∫ ∆i/2

−∆i/2

z2

∆i
dz =

∆2
i

12
;

inserting this result in (24), and observing that fX(yi)∆i ' P [X ∈ Ri] ≡ pi we obtain

MSE '
N−1∑
i=0

pi
∆2
i

12
.

naturally, (22) is a particular case of the previous expression, for ∆i = ∆.

9

1.4 Entropy of the Output of a Scalar Encoder

The output of the encoder, I = E(X), can be seen as a discrete memoryless source, producing
symbols from the alphabet I = {0, 1, ..., N − 1}, with probabilities

pi = P [X ∈ Ri] =
∫
Ri

fX(x) dx, for i = 0, 1, ..., N − 1.

The entropy of E(X) provides a good estimate of the minimum number of bits required to
encode the output of the encoder, and (as will be seen below) will provide a coding theoretical
interpretation to the differential entropy of the source X.

The entropy of I is given by

H(I) = −
N−1∑
i=0

pi log pi = −
N−1∑
i=0

(∫
Ri

fX(x) dx
)

log
(∫

Ri

fX(x) dx
)

;

if nothing else is know about the pdf fX(x), it’s not possible to obtain any simpler exact
expression for H(I). However, we can make some progress and obtain some insight by focusing
on uniform quantizers and adopting (as in Section 1.3) the high-resolution approximation

In the high-resolution regime of uniform quantizers (very large N , thus very small ∆), the
probability of each cell pi = P [X ∈ Ri] can be approximated as

pi ' fX(yi)∆,

because ∆ is small enough to have fX(x) approximately constant inside Ri, and yi is (approx-
imately) the central point of Ri. In these conditions,

H(I) ' −
N−1∑
i=0

∆ fX(yi) log (∆fX(yi)) ,

with the approximation being more accurate as ∆ becomes smaller. The expression above can
be written as

H(I) ' −
N−1∑
i=0

∆ fX(yi) log (fX(yi))︸ ︷︷ ︸
' h(X)

− log ∆
N−1∑
i=0

∆ fx(yi)︸ ︷︷ ︸
'pi︸ ︷︷ ︸

'1

' h(X)− log ∆,

where the first sum is approximately equal to h(X) because as ∆ approaches zero, the sum
approaches the Riemmen integral of fX(x) log fX(x). In conclusion, the entropy of the output of
a high-resolution uniform quantization encoder (in the high-resolution regime) is approximately
equal to the differential entropy of the source, plus a term which depends on the precision
(resolution) with which the samples of X are represented (quantized). Notice that as ∆ becomes
small, the term − log ∆ increases. If the output of the encoder is followed by an optimal entropic
encoder (for example, using a Huffman code), the average number of bits, L̄, used to encode
each sample will be close to H(I), that is L̄ ' H(I).

10

The average rate L̄ and the MSE are related through the pair of equalities

L̄ ' h(X)− log ∆ and MSE =
∆2

12
;

these can be rewritten as

L̄ ' h(X)− log
√

12− 1
2

log MSE and MSE =
1
12

2(2h(X)−2 L̄),

showing that the average bit rate decreases logarithmically with the increase of the MSE and,
conversely, the MSE decreases exponentially with the increase of the average bit rate.

Let us illustrate the results derived in the previous paragraph with a couple of simple
examples. First, consider a random variable X with a uniform density on the interval [a, b],
that is fX(x) = 1/(b − a), if x ∈ [a, b], and zero otherwise. The differential entropy of X is
h(X) = log(b− a), thus,

L̄ ' H(I) ' log(b− a)− log ∆ = log(b− a)− log
b− a
N

= − log(2−R) = R bits/sample,

where all the logarithms are to base 2. The expression above means that, for a uniform density,
the average number of bits per sample of a uniform high-resolution quantizer equals simply the
quantizer rate R. This is regardless of the support of the density.

Now consider a triangular density on the interval [0, 1], that is, fX(x) = 2−2x, for x ∈ [0, 1].
In this case, it is easy to show that

h(X) = −
∫ 1

0
(2− 2x) log2(2− 2x) dx =

1
2

log2

e

4
' −0.279,

thus

L̄ ' −0.279− log ∆ = −0.279− log
1
N

= −0.279− log(2−R) = R− 0.279 bits/sample.

This example shows that if the density is not uniform on its support, then the average number
of required bits per sample (after optimal entropic coding of the uniform high-resolution quan-
tization encoder output) is less than the quantizer rate. This is a simple consequence of the fact
that if the density is not uniform, then the cell probabilities {p0, ..., pN−1} are not equal and
the corresponding entropy is less than logN . However, notice that we are in a high-resolution
regime, thus N � 1 and the decrease in average bit rate caused by the non-uniformity of the
density is relatively small.

2 Vector Quantization

2.1 Introduction and Definitions

In vector quantization the input to the encoder, that is, the output of the source to be quantized,
is not a scalar quantity but a vector in Rn. Formally, the source is modeled as a vector random

11

variable X ∈ Rn, characterized by a pdf fX(x). Any pdf defined on Rn has to satisfy the
following properties: fX(x) ≥ 0, for any x ∈ Rn,∫

Rn

fX(x) dx = 1,

and ∫
R
fX(x) dx = P [X ∈ R],

where P [X ∈ R] denotes the probability that the random variable X takes values in some set
R ⊆ Rn. To avoid technical issues, we consider only continuous pdfs.

In the vector case, the encoder is a function E : Rn → I, where I = {0, 1, ..., N − 1}.
As in the scalar case, this function is non-injective and there are many different values of the
argument that produce the same value of the function; each of this sets is called a quantization
region (or cell), and is defined as

Ri = {x ∈ Rn : E(x) = i}.

Since E is a function defined over all Rn, this definition implies that the collection of quantization
regions/cells R = {R0, ..., RN−1} defines a partition of Rn, that is,

(i 6= j)⇒ Ri ∩Rj = ∅ and
N−1⋃
i=0

Ri = Rn. (25)

The decoder is a function D : I → Rn; as in the scalar case, since the argument of D only
takes N different values, and D is a deterministic function, it can also only take N different
values, thus its range is a finite set C = {y0, ...,yN−1} ⊂ Rn. The set C is still called the
codebook. The i-th element of the codebook, yi, is the representative of the region/cell Ri.

Considering that there are no errors in the channel, the sample x is reproduced by the
decoder as D (E(x)), that is, the result of first encoding and then decoding x. The composition
of the functions E and D defines the so-called vector quantization function Q : Rn → C, where
Q(x) = D (E(x)). As in the scalar case, the quantization function has the following obvious
property

(x ∈ Ri)⇔ Q(x) = yi. (26)

Similarly to the scalar case, a vector quantizer (VQ) (equivalently a pair encoder/decoder)
is completely defined by the set of regions R = {R0, ..., RN} and the corresponding codebook
C = {y0, ...yN−1} ⊂ Rn. A VQ in which all the cells are convex and contain its representative
is called a regular VQ. Recall that a set S is said to be convex if it satisfies the condition

x, y ∈ S ⇒ λx + (1− λ)y ∈ S, for any λ ∈ [0, 1];

in words, a set is convex when the line segment joining any two of its points also belongs to the
set. Observe that this definition covers the scalar case, since the only type of convex sets in
R are intervals (regardless of being open or close). Figure 1 illustrates the concepts of convex
and non-convex sets.

12

Figure 1: A convex set (left) and a non-convex set (right).

2.2 Optimal VQs, Lloyd’s Algorithm, and the Linde-Buzo-Gray

Algorithm

This subsection is parallel to Section 1.2, essentially repeating all the concepts and derivations,
adapted to the vectorial case.

2.2.1 Expected Distortion and the Optimal VQ

Finding an optimal VQ consists in finding the set of regions, R, and the codebook, C, that
minimizes a given objective function. Although there are other options, the standard choice is
the MSE

MSE = E
[
‖X−Q(X)‖2

]
=
∫

Rn

fX(x) ‖x−Q(x)‖2 dx,

where ‖v‖2 =
∑n

i v
2
i denotes the usual squared Euclidean norm of some vector v ∈ Rn. Some

authors define the MSE of a VQ in Rn with a 1/n factor, that is, MSE = (1/n)E
[
‖X−Q(X)‖22

]
,

which in this case becomes a measure of average quadratic error per coordinate. In this text,
we will not adopt that convention.

Adopting the MSE to measure the quantizer performance, the problem of finding the opti-
mal set of regions and corresponding representatives becomes(

Ropt, Copt
)

= arg min
R,C

N−1∑
i=0

∫
Ri

fX(x) ‖x− yi‖2 dx, (27)

which is similar to (3)-(4), but here for the vectorial case.

2.2.2 Partial Solutions

As in the scalar case, it is possible to solve the two partial problems:

• Given the quantization regions regions R = {R0, ..., RN−1}, find the corresponding opti-
mal codebook,

{y∗0, ...,y∗N−1} = arg min
y∗0 ,...,yN−1

N−1∑
i=0

∫
Ri

fX(x) ‖x− yi‖2 dx. (28)

13

• Given a codebook C = {y0, ...,yN−1}, find the optimal regions,

{R∗0, ..., R∗N−1} = arg min
R∗0 ,...,RN−1

∫ ∞
−∞

fX(x) ‖x−Q(x)‖2 dx (29)

subject to (i 6= j)⇒ Ri ∩Rj (30)
N−1⋃
i=0

Ri = R. (31)

In (28), the function being minimized is the sum of N non-negative functions, each one of
them only dependent on one of the yi. The problem can be decoupled into N independent
problems

y∗i = arg min
y

∫
Ri

fX(x) ‖x− y‖22 dx.

Expanding the squared Euclidean norm into ‖x− y‖22 = ‖x‖22 + ‖y‖22 − 2〈x,y〉, leads to

y∗i = arg min
y

[∫
Ri

fX(x) ‖x‖22 dx + ‖y‖22
∫
Ri

fX(x) dx− 2
∫
Ri

fX(x) 〈y,x〉 dx
]

(32)

= arg min
y

[
‖y‖22

∫
Ri

fX(x) dx− 2
〈
y,
∫
Ri

fX(x) x dx
〉]

, (33)

where the second equality is due to the fact that the first term in (32) does not depend on
y, thus it is irrelevant for the minimization, and the inner product commutes with integration
(since both are linear operators). The minimum is found by computing the gradient with
respect to y and equating to zero. Recalling that ∇v‖v‖2 = 2v and ∇v〈v,b〉 = b, we have

∇y

[
‖y‖22

∫
Ri

fX(x) dx− 2 y
∫
Ri

fX(x) x dx
]

= 2 y
∫
Ri

fX(x)− 2
∫
Ri

fX(x) x dx

Equating to zero, leads to the following equation

y
∫
Ri

fX(x) =
∫
Ri

fX(x) x dx,

the solution of which is

y∗i =

∫
Ri

fX(x) x dx∫
Ri

fX(x) dx
. (34)

As in the scalar case, (34) has a clear probabilistic meaning: it is the conditional expected
value of the random variable X, given that X is in Ri. A more physical interpretation of (34)
is that it is the center of (probabilistic) mass of region Ri.

The partial problem (29) has similar solution to (6): given a codebook C = {y0, ...,yN−1},
the best possible encoder is one that chooses, for each x, the closest representative. In conclu-
sion, the optimal regions are given by

Ri = {x : ‖x− yi‖2 ≤ ‖x− yj‖2, j 6= i}, for i = 0, ..., N − 1, (35)

14

Figure 2: Example of Voronoi regions for a set of points in R2.

that is, Ri is the set of points that are closer to yi than to any other element of the codebook.
Whereas in the scalar case these regions where simply intervals, in Rn the optimal regions may
have a more complex structure. The N regions that partition Rn according to (35) are called
the Voronoi regions (or Dirichlet tessellation) corresponding to the set of points {y0, ...,yN−1}.
An important property of Voronoi regions (the proof is beyond the scope of this text) is that
they are necessarily convex, thus a Lloyd vector quantizer is necessarily regular. Figure 2
illustrates the concept of Voronoi regions in R2.

2.2.3 The Lloyd Algorithm

The Lloyd algorithm for VQ design works exactly as the scalar counterpart.

Step 1: Given the current codebook C(t) =
{
y(t)

0 , ...,y(t)
N−1

}
, obtain the optimal regions

R
(t)
i = {x : ‖x− y(t)

i ‖
2 ≤ ‖x− y(t)

j ‖
2, j 6= i}, for i = 0, ..., N − 1;

Step 2: Given the current regions R(t) =
{
R

(t)
0 , ..., R

(t)
N−1

}
, update the representatives

y(t+1)
i =

∫
R

(t)
i

fX(x) x dx∫
R

(t)
i

fX(x) dx
, for i = 0, ..., N − 1;

Step 3: Check some stopping criterion; if it is satisfied, stop; if not, set t← t+ 1, and go back
to Step 1.

A typical stopping criterion would be to check if the maximum squared distance between two
consecutive positions of codebook elements is less than some threshold; that is, the algorithm
would be stopped if the following condition is satisfied

max
i
‖y(t)

i − y(t+1)
i ‖2 ≤ ε. (36)

15

2.2.4 Zero Mean Quantization Error of Lloyd Quantizers

The property of scalar Lloyd quantizers shown in Subsection 1.2.5 (that the quantization error
has zero mean) is still valid in the vectorial case. Notice that the derivation carried out in
Subsection 1.2.5 can be directly applied in Rn. Thus, it is still true that for a VQ that satisfies
the conditions (34) and (35), called Lloyd VQs, the mean of the quantization error is zero, that
is, E [Q(X)−X] = 0, or, equivalently, E[Q(X)] = E[X].

2.2.5 The Linde-Buzo-Gray Algorithm

The Linde-Buzo-Gray algorithm for the vector case has exactly the same structure as in the
scalar case, so it will not be described again. The only practical detail which is significantly
different in the vectorial case is an increased sensitivity to initialization; thus, when using this
algorithm to obtain a VQ, care has to be taken in choosing the initialization of the algorithm.
For further details on this and other aspects of the LBG algorithm, the interested reader is
referred to [2].

2.3 High-Resolution Approximation

2.3.1 General Case

As in the scalar case, it is possible to obtain approximate expressions for the MSE of high-
resolution VQs, from which some insight into their performance may be obtained. In the
high-resolution regime, just as in the scalar case, the key assumption is that the regions/cells
are small enough to allow approximating the pdf of X by a constant inside each region. With
this approximation, the MSE can be written as

MSE =
N−1∑
i=0

∫
Ri

fX(x) ‖x− yi‖2 dx

'
N−1∑
i=0

fX(yi)
∫
Ri

‖x− yi‖2 dx

=
N−1∑
i=0

fX(yi)Vi
∫
Ri

1
Vi
‖x− yi‖2 dx. (37)

where Vi = V (Ri) ≡
∫
Ri
dx is the volume (area, in R2, length in R) of region Ri. Noticing that

pi = P [X ∈ Ri] ' fX(yi)Vi, we have

MSE '
N−1∑
i=0

pi

∫
Ri

‖x− yi‖2 dx∫
Ri

dx
=

N−1∑
i=0

pi
1
Vi

∫
Ri

‖x− yi‖2 dx. (38)

Unlike in the scalar case, where the quantity multiplying each pi can be shown to be ∆2
i /12, the

involved integration not always has closed form expressions, or can even be computed exactly.

16

However, if we are in the presence of a Lloyd quantizer, yi is the center of mass of region Ri,
thus the quantity

1
Vi

∫
Ri

‖x− yi‖2 dx (39)

can be recognized as the the moment of inertia of the region Ri about its center of mass, if the
total mass is one and the density is uniform.

2.3.2 Uniform VQ

To make some progress, we now assume that we are in the presence of a uniform VQ, that
is, such that all the regions have a similar shape and size; in other words, the regions R0,

R1, ..., RN−1 only differ from each other by a shift of location. In this condition, it clear
that the value of both the numerator and the denominator of (39) is the same for all cells:
the denominator is simply the volume, which of course does not depend on the location; the
numerator, after the change of variable z = x− yi, can be written, for any i, as∫

Ri

‖x− yi‖2 dx =
∫
R
‖z‖2 dz,

where R denotes a region with the same volume and shape as all the Ri’s, but such that the
center of mass is at the origin. The MSE expression thus simplifies to

MSE ' 1
V (R)

∫
R
‖x‖2 dx

N∑
i=1

pi =
1

V (R)

∫
R
‖x‖2 dx. (40)

The expression (40) shows that the MSE of a high-resolution uniform VQ depends only on
the volume and the shape of the quantization cells. This can be made even more explicit by
re-writing it as

MSE ' V (R)2/n

(1
V (R)

)2/n

∫
R
‖x‖2 dx

V (R)

︸ ︷︷ ︸
depends only on the shape

= V (R)2/n M(R), (41)

where the second factor, denoted M(R), depends only on the shape (not the volume, as we
will prove next) and the first factor, V (R)2/n, depends only on the volume. To prove that
M(R), called the normalized moment of inertia, is independent of the volume, we show that it
is invariant to a change of scale, that is, M(cR) = M(R), for any c ∈ R+:

M(cR) =
(

1
V (cR)

)2/n 1
V (cR)

∫
cR
‖x‖2 dx (42)

=
(

1
cn V (R)

)2/n 1
cn V (R)

∫
R
‖cz‖2 cn dz (43)

17

= c−2 c−n c2+n

(
1

V (R)

)2/n 1
V (R)

∫
R
‖z‖2 dz︸ ︷︷ ︸

M(R)

(44)

= M(R). (45)

The volume of the regions (which is the same for all regions in a uniform quantizer) depends
only on the number of regions and on the volume of the support of fX(x), denoted V (B). Of
course, for a source X with unbounded support (for example, a Gaussian), the support is the
whole space B = Rn, and this reasoning does not apply exactly. However, as in the scalar
case, we can identify some region outside of which the probability of finding X is arbitrarily
small, and consider that as the support B. For a given support, the region volume V (R) will
be simply the total volume of the support, divided by the number of regions, that is,

V (R) =
V (B)
N

= V (B) 2−R. (46)

Inserting this expression in (41) leads to

MSE ' V (B)2/n 2−2R/nM(R), (47)

showing that, as in the scalar case (see (23)), the MSE also decreases exponentially with R. In
the scalar case, we have n = 1 and (46) becomes similar to (23)

MSE ' V (B)2 2−2R M(R),

where we identify the volume of the support as V (B) = A and M(R) = 1/12.
However, for n > 1, the MSE decreases slower as R increases, since the exponent is −2R/n;

for example, in R2, each extra bit only decreases the MSE by a factor of 2 (instead of 4 in
the scalar case); as another example, in R20, we have 21/10 ' 1.0718, thus each extra bit only
reduces the MSE by a factor of approximately 1.0718. In logarithmic units, we can write (as
in Section 1.3.1)

SNR ' (K + (6/n)R) dB

showing that each extra bit in the quantizer resolution, achieves an improvement of approxi-
mately (6/n)dB in the quantization SNR.

Concerning the “shape factor” M(R), there is a crucial difference between the scalar case
(n = 1) and the vector case (n > 1). In the scalar case, the only possible convex set is an
interval, and it’s easy to verify that M(R) = 1/12. However, for n > 1, we have some freedom
in choosing the shape of the quantization cells, under the constraint that this shape allows a
partition (or tesselation) of the support S.

2.3.3 Optimal Tesselations

After decoupling the high-resolution approximation of the MSE into a factor that depends only
on the volume of the regions (thus on the number of regions) and another factor that depends
only on the shape, we can concentrate on studying the effect of the region shapes.

18

It is known that the shape with the smallest moment of inertia, for a given mass and volume,
is a sphere (a circle, in R2). Although spherical regions can not be used, because they do not
partition the space, they provide a lower bound on the moment of inertia. Let us thus compute
the factor M(R), when R is a sphere (a circle) in R2; since, as seen above, this quantity does
not depend on the size of the region, we consider unit radius.

The volume of a sphere of unit radius in Rn, denoted Sn, is known to be

V (Sn) =
πn/2

Γ
(
n
2 + 1

) ,
where Γ denote’s Euler’s gamma function. For n = 2, since Γ(2) = 1, we obtain V (S2) = π,
which is the well known area of a unit circle. For n = 3, since Γ(3/2) = 3

√
π/4, we obtain the

also well-known volume of a 4-dimensional sphere, V (S3) = 4π/3.
The other quantity needed to obtain M(S2) (see (44)) is∫

S2

‖z‖2 dz,

which is more convenient to compute in polar coordinates, that is,∫
C2

‖z‖2 dz =
∫ 2π

0

∫ 1

0
ρ2 ρ dρ dθ (48)

= 2π
∫ 1

0
ρ3 dρ (49)

=
π

2
. (50)

Plugging these results into the definition of M(S2) (see (44)), we finally obtain

M(S2) =
1

V (S2)2

∫
S2

‖z‖2 dz =
1

2π
' 0.159155. (51)

Let us now compute M(C2), where Cn denotes the cubic region of unit side in Rn; for
n = 2, this is a square of unit side. Of course, V (Cn) = 1, for any n, since the volume of a
cube of side d in Rn is simply dn. As for the quantity∫

C2

‖z‖2 dz,

the integration can be carried out easily as follows:∫
C2

‖z‖2 dz =
∫ 1

2

− 1
2

∫ 1
2

− 1
2

z2
1 + z2

2 dz1 dz2 (52)

=
∫ 1

2

− 1
2

∫ 1
2

− 1
2

z2
1 dz1 dz2 +

∫ 1
2

− 1
2

∫ 1
2

− 1
2

z2
2 dz1 dz2 (53)

= 2
∫ 1

2

− 1
2

z2
1 dz1 (54)

=
1
6
. (55)

19

Since V (C2) = 1, we have M(C2) = 1/6 ' 0.166667, showing that, as expected, using square
quantization regions leads to a higher quantization noise than what would be obtained if circular
regions could be used (which they can not).

The fundamental questions are: is there any other shape with which it is possible to cover
Rn and which leads to a smaller MSE (that is, has a lower moment of inertia)? is there an
optimal shape? In R2, the answer to these questions is positive: yes, the optimal shape is
a regular hexagon. For general Rn, with n > 2, the answer to these questions is still an
open problem. The proof of optimality of the hexagonal VQ is beyond the scope of this text;
however, we can compute M(H), where H denotes an hexagonal region centered at the origin,
and confirm that it is lower than M(C2) but larger than M(S2).

Since M(H) does not depend on the size of H, we consider an hexagon with unit apothem,
h = 1 (recall that the apothem is the distance from the center to the mid-point of one of the
sides). In this case, using the well-known formula for the area of a regular polygon as a function
of the apothem,

V (H) = h2 6 tan
(π

6

)
=

6√
3
.

Finally, to compute the integral of ‖z‖2 over the hexagon, we notice that this function has
circular symmetry and that the hexagon can be split into 12 similar triangles, one of which is
given by T = {z = (z1, z2) : 0 ≤ z1 ≤ 1 and 0 ≤ z2 ≤ z1/

√
3}. Consequently,∫

H
‖z‖2 dz = 12

∫ 1

0

∫ z1/
√

3

0
z2

1 + z2
2 dz2 dz1 (56)

= 12
∫ 1

0
z2

1

∫ z1/
√

3

0
dz2︸ ︷︷ ︸

z1/
√

3

dz1 + 12
∫ 1

0

∫ z1/
√

3

0
z2

2 dz2︸ ︷︷ ︸
z31/(9

√
3)

dz1 (57)

=
12√

3

∫ 1

0
z3

1 dz1︸ ︷︷ ︸
=1/4

+
12

9
√

3

∫ 1

0
z3

1 dz1︸ ︷︷ ︸
=1/4

(58)

=
10

3
√

3
(59)

Combining this quantity with the volume V (H) = 6/
√

3, we finally have

M(H) =
1

V (H)2

∫
H
‖z‖2 dz =

(√
3

6

)2
10

3
√

3
=

5
18
√

3
' 0.160375.

Comparing this value with the previous ones (M(S2) ' 0.159155 and M(C2) ' 0.166667), we
can conclude that the hexagonal VQ is indeed better than the cubical one, with a normalized
moment of inertia only 0.7% larger than that of a circle (which can’t be used, as explained
above).

20

References

[1] Q. Du, M. Emelianenko, and L. Ju, “Convergence of the Lloyd algorithm for computing
centroidal Voronoi tessellations”, SIAM Journal on Numerical Analysis, vol. 44, no. 1,
pp. 102–119, 2006.

[2] A. Gersho and R. Gray, “Vector Quantization and Signal Compression.” Kluwer Acadmic
Publishers, 1992.

[3] R. Gray, “Vector quantization”, Acoustics, Speech, and Signal Processing Magazine, vol. 1,
no. 2, 1984.

[4] R. Gray and D. Neuhoff, “Quantization”, IEEE Transactions on Information Theory,
vol. 44, no. 6, pp. 2325–2383, 1998.

21

