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Abstract—Finding sparse approximate solutions to large under-
determined linear systems of equations is a common problem in
signal/image processing and statistics. Basis pursuit, the least ab-
solute shrinkage and selection operator (LASSO), wavelet-based
deconvolution and reconstruction, and compressed sensing (CS)
are a few well-known areas in which problems of this type appear.
One standard approach is to minimize an objective function that
includes a quadratic � �� error term added to a sparsity-inducing
(usually �) regularizater. We present an algorithmic framework
for the more general problem of minimizing the sum of a smooth
convex function and a nonsmooth, possibly nonconvex regularizer.
We propose iterative methods in which each step is obtained by
solving an optimization subproblem involving a quadratic term
with diagonal Hessian (i.e., separable in the unknowns) plus the
original sparsity-inducing regularizer; our approach is suitable for
cases in which this subproblem can be solved much more rapidly
than the original problem. Under mild conditions (namely con-
vexity of the regularizer), we prove convergence of the proposed
iterative algorithm to a minimum of the objective function. In ad-
dition to solving the standard � � case, our framework yields
efficient solution techniques for other regularizers, such as an
norm and group-separable regularizers. It also generalizes imme-
diately to the case in which the data is complex rather than real.
Experiments with CS problems show that our approach is com-
petitive with the fastest known methods for the standard � �

problem, as well as being efficient on problems with other sepa-
rable regularization terms.

Index Terms—Compressed sensing, optimization, reconstruc-
tion, sparse approximation.

I. INTRODUCTION

A. Problem Formulation

I N this paper, we propose an approach for solving uncon-
strained optimization problems of the form

(1)

where is a smooth function, and , usu-
ally called the regularizer or regularization function, is finite for
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all , but usually nonsmooth and possibly also nonconvex.
Problem (1) generalizes the now famous problem (called
basis pursuit denoising (BPDN) in [15])

(2)

where , (usually ), ,
denotes the standard Euclidean norm, and stands for the

norm (for ), defined as . Problem
(2) is closely related to the following two formulations:

(3)

frequently referred to as the least absolute shrinkage and selec-
tion operator (LASSO) [70] and

subject to (4)

where and are nonnegative real parameters. These formula-
tions can all be used to identify sparse approximate solutions
to the underdetermined system , and have become
familiar in the past few decades, particularly in statistics and
signal/image processing contexts. A large amount of research
has been aimed at finding fast algorithms for solving these for-
mulations; early references include [16], [55], [66], [69]. For
brief historical accounts on the use of the penalty in statistics
and signal processing, see [59] and [71]. The precise relation-
ship between (2), (3), and (4) is discussed in [39] and [75], for
example.

Problems with form (1) arise in wavelet-based image/signal
reconstruction and restoration (namely deconvolution) [34],
[36], [37]. In these problems, [as in
(2)], with matrix having the form , where
is (the matrix representing) the observation operator (e.g., a
convolution with a blur kernel or a tomographic projection);

contains a wavelet basis or redundant dictionary (i.e., mul-
tiplying by corresponds to performing an inverse wavelet
transform); and is the vector of representation coefficients of
the unknown image/signal. In wavelet-based image restoration,
the regularizer is often the th power of an norm, resulting
from adopting generalized Gaussian priors for the wavelet
coefficients of natural images [60], although other regularizers
have been considered (e.g., [35], [43], and [44]).

A popular new application for the optimization problems
above is compressive sensing1 (CS) [9], [10], [27]. Recent re-
sults show that a relatively small number of random projections
of a sparse signal can contain most of its salient information. In
the noiseless setting, accurate approximations can be obtained
by finding a sparse signal that matches the random projections
of the original signal, a problem which can be cast as (4).

1A comprehensive, and frequently updated repository of CS literature and
software can be found in www.dsp.ece.rice.edu/cs/.
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Problem (2) is a robust version of this reconstruction process,
which is resilient to errors and noisy data; this and similar
criteria have been proposed and analyzed in [11], [52], [81].

B. Overview of the Proposed Approach

Our approach to solving problems of the form (1) works by
generating a sequence of iterates and is
tailored to problems in which the following subproblem can be
set up and solved efficiently at each iteration:

(5)

for some . More precisely, we mean that it is much less
expensive to compute the gradient and to solve (5) than it is
to solve the original problem (1) by other means. An equivalent
form of subproblem (5) is

(6)

where

(7)

This form is considered frequently in the literature, often under
the name of iterative shrinkage/thresholding (IST) algorithms,
discussed below. The proximity operator in Combettes and Wajs
[17, eq. (2.13)] has the form of (6), and is central to the algo-
rithms studied in that paper, which are also suitable for situa-
tions in which (5) can be solved efficiently.

Many choices of objective function and regularizer in (1)
satisfy the assumptions in the previous paragraph. A particularly
important case is the one in which is separable into the sum of
functions of the individual components of its argument, that is

(8)

The regularizer in (2) obviously has this form (with
), as does the regularization function

. Also of interest are group separable (GS) regularizers,
which have the form

(9)

where are disjoint subvectors of . Such
regularizers are suitable when there is a natural group structure
in , which is the case, e.g., in the following applications.

• In brain imaging, the voxels associated with different
functional regions (for example, motor or visual cortices)
may be grouped together in order to identify a sparse set
of regional events. In [5]–[7] a novel IST algorithm2 was
proposed for solving GS- (i.e., where )

2The authors refer to this as an EM algorithm, which, in this case, is an IST
algorithm; see [37].

and GS- (i.e., where )
problems.

• A GS- penalty was proposed for source localization in
sensor arrays [57]; second-order cone programming was
used to solve the optimization problem.

• In gene expression analysis, some genes are organized in
functional groups. This has motivated an approach called
composite absolute penalty [79], which has the form (9),
and uses a greedy optimization scheme [80].

• GS regularizers have also been proposed for ANOVA re-
gression [54], [58], [78], and Newton-type optimization
methods have been proposed in that context. An interior-
point method for the GS- case was described in [74].

Another interesting type of regularizer is the total-variation
(TV) norm [64], which is of particular interest for image restora-
tion problems [13]. This function is not separable in the sense
of (8) or (9), though it is the sum of terms that each involve only
a few components of . The subproblem (5) has the form of
an image denoising problem, for which efficient algorithms are
known (see, for example, [12], [20], [38], and [45]).

In the special case of , the solution of (5) is simply

so the method reduces to steepest descent on with adjustment
of the step length (line search) parameter.

For the first term in (1), we are especially interested in the
sum-of-squares function , as in (2).
If the matrix is too large (and too dense) to be handled ex-
plicitly, it may still be possible to compute matrix-vector prod-
ucts involving or its transpose efficiently. If so, computation
of and implementation of the approach described here may
be carried out efficiently. We emphasize, however, that the ap-
proach we describe in this paper can be applied to any smooth
function .

Observe that the first two terms in the objective function in
(5), that is, , can be viewed
as a quadratic separable approximation to about (up to
a constant), that interpolates the first-derivative information
and uses a simple diagonal Hessian approximation to the
second-order term. For this reason, we refer to the approach
presented in this paper as SpaRSA (for Sparse Reconstruction
by Separable Approximation). SpaRSA has the following
desirable properties:

a) when applied to the problem (2), it is computa-
tionally competitive with the state-of-the-art algorithms
designed specifically for that problem;

b) it is versatile enough to handle a broad class of general-
izations of (2), in which the term is replaced with other
regularization terms such as those described above;

c) it is applicable immediately to problems (2) in which
and (and, hence, ) contain complex data, as happens
in many signal/image processing problems involving co-
herent observations, such as radar imaging or magnetic
resonance imaging (MRI).

As mentioned above, our approach requires solution of (5) at
each iteration. When the regularizer is separable or group-sep-
arable, the solution of (5) can be obtained from a number of
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scalar (or otherwise low-dimensional) minimizations, whose so-
lutions are often available in closed form. We discuss this issue
further in Sections II-B and II-D.

The solution of (5) and (6) also solves the trust-region
problem obtained by forming the obvious linear model of
around and using an -norm constraint on the step, that is

subject to (10)

for some appropriate value of the trust-region radius .
Different variants of the SpaRSA approach are distinguished

by different choices of . We are particularly interested in vari-
ants based on the formula proposed by Barzilai and Borwein
(BB) [1] in the context of smooth nonlinear minimization; see
also [19], [50]. Many variants of Barzilai and Borwein’s ap-
proach, also known as spectral methods, have been proposed.
They have also been applied to constrained problems [3], es-
pecially bound-constrained quadratic programs [18], [39], [68].
Pure spectral methods are nonmonotone; i.e., the objective func-
tion is not guaranteed to decrease at every iteration; this fact
makes convergence analysis a nontrivial task. We consider a
so-called “safeguarded” version of SpaRSA, in which the objec-
tive is required to be slightly smaller than the largest objective
in some recent past of iterations, and provide a proof of conver-
gence for the resulting algorithm.

C. Related Work

Approaches related to SpaRSA have been investigated
in numerous recent works. The recent paper of Figueiredo,
Nowak, and Wright [39] describes the GPSR (gradient pro-
jection for sparse reconstruction) approach, which works with
a bound-constrained reformulation of (2). Gradient-projection
algorithms are applied to this formulation, including variants
with spectral choices of the steplength parameters, and mono-
tone and nonmonotone variants. When applied to
problems, the SpaRSA approach of this paper is closely related
to GPSR, but not identical to it. The steplength parameter in
GPSR plays a similar role to the Hessian approximation term

in this paper. While matching the efficiency of GPSR on the
case, SpaRSA can be generalized to a much wider class

of problems, as described above.
SpaRSA is also closely related to iterative shrinkage/thresh-

olding (IST) methods, which are also known in the literature
by different names, such as iterative denoising, thresholded
Landweber, forward-backward splitting, and fixed-point iter-
ation algorithms (see Combettes and Wajs [17], Daubechies,
Defriese, and De Mol [21], Elad [32], Figueiredo and Nowak
[36], and Hale, Yin, and Zhang [51]). The form of the sub-
problem (5) is the same in these methods as in SpaRSA, but
IST methods use a more conservative choice of , related to
the Lipschitz constant of . In fact, SpaRSA can be viewed as
a kind of accelerated IST, with improved practical performance
resulting from variation of . Other ways to accelerate IST al-
gorithms include two-step variants, as in the recently proposed
two-step IST (TwIST) algorithm [2], continuation schemes (as
suggested in the above mentioned [39] and [51], and explained
in the next paragraph), and a semi-smooth Newton method

[48]. Finally, we mention iterative coordinate descent (ICD)
algorithms [8], [40], and block coordinate descent (BCD)
algorithms [73]; those methods work by successively mini-
mizing the objective with respect each component (or group
of components) of , so are close in spirit to the well-known
Gauss–Seidel (or block Gauss–Seidel) algorithms for linear
systems.

The approaches discussed above, namely IST, SpaRSA, and
GPSR, benefit from the use of a good approximate solution as a
starting point. Hence, solutions to (2) and (1) can be obtained for
a number of different values of the regularization parameter
by using the solution calculated for one such value as a starting
point for the algorithm to solve for a nearby value. It has been
observed that the practical performance of GPSR, SpaRSA, IST,
and other approaches degrades for small values of . Hale, Yin,
and Zhang [51] recognized this fact and integrated a “continua-
tion” procedure into their fixed-point iteration scheme, in which
(2) is solved for a decreasing sequence of values of , using the
computed solution for each value of as the starting point for the
next smaller value. Using this approach, solutions are obtained
for small values at much lower cost than if the algorithm was
applied directly to (2) from a “cold” starting point. Similar con-
tinuation schemes have been implemented into GPSR (see [39,
Section IV-D]) and have largely overcome the computational
difficulties associated with small regularization parameters. In
this paper, we contribute further to the development of continu-
ation strategies by proposing an adaptive scheme (suited to the

case) which dispenses the user from having to define the
sequence of values of to be used.

Van den Berg and Friedlander [75] have proposed a method
for solving (4) for some , by searching for the value of

for which the solution of (3) has .
A rootfinding procedure is used to find the desired , and the
ability to solve (3) cheaply is needed. Yin et al. [77] have de-
scribed a method for solving the basis pursuit problem, i.e., (4)
with , where the main computational cost is the solution of
a small number of problems of the form (2), for different values
of and possibly also . The technique is based on Bregman
iterations and is equivalent to an augmented Lagrangian tech-
nique. SpaRSA can be used to efficiently solve each of the sub-
problems, since it is able to use the solution of one subproblem
as a “warm start” for the next subproblem.

In a recent paper [61], Nesterov has presented three ap-
proaches, which solve the formulation (1) and make use of
subproblems of the form (5). Nesterov’s PG (primal gradient)
approach follows the SpaRSA framework of Section II-A (and
was in fact inspired by it), choosing the initial value of at
iteration by modifying the final accepted value at iteration

, and using a “sufficient decrease” condition to test for
acceptability of a step. Nesterov’s other approaches, DG (a
dual gradient method), and AC (an accelerated dual gradient
approach), are less simple to describe. At each iteration, these
methods solve a subproblem of the form (5) and a similar
subproblem with a different linear and quadratic term; the
next iteration is derived from both subproblems. Nesterov’s
computational tests on problems of the form (2) indicate that
the most sophisticated variant, AC, is significantly faster than
the other two variants.
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Various other schemes have been proposed for the
problem (2) and its alternative formulations (3) and (4). These
include active-set-based homotopy algorithms [33], [56], [63],
and interior-point methods [9], [10], [15], [53], [67]. Matching
pursuit and orthogonal matching pursuit have also been pro-
posed for finding sparse approximate solutions of [4],
[23], [28], [72]; these methods, previously known in statistics as
forward selection [76], are not based on an explicit optimization
formulation. A more detailed discussion of those alternative ap-
proaches can be found in [39].

D. Outline of the Paper

Section II presents the SpaRSA framework formally, dis-
cussing how the subproblem in each iteration is solved (for
several classes of regularizers) as well as the different alter-
natives for choosing parameter ; Section II also discusses
stopping criteria and the so-called “debiasing” procedure.
Section III presents an adaptive continuation scheme, which
is empirically shown to considerably speed up the algorithm
in problems where the regularization parameter is small. In
Section IV, we report a series of experiments which show
that SpaRSA has state of the art performance for the
problems; other experiments described in that section illustrate
that SpaRSA can handle a more general class of problems.

II. THE PROPOSED APPROACH

A. The SpaRSA Framework

Rather than a specific algorithm, SpaRSA is an algorithmic
framework for problems of the form (1), which can be in-
stantiated by adopting different regularizers, different ways of
choosing , and different criteria to accept a solution to each
subproblem (5). The SpaRSA framework is defined by the
following pseudo-algorithm.

Algorithm: SpaRSA

1.choose factor and constants , (with
);

2.initialize iteration counter, ; choose initial guess ;

3.repeat

4.choose ;

5.repeat

6. solution of sub-problem (6);

7. ;

8.until satisfies an acceptance criterion

9. ;

10.until stopping criterion is satisfied.

As mentioned above, the different instances of SpaRSA are
obtained by making different design choices concerning two key
steps of the algorithm: the setting of (line 4) and the accep-
tance criterion (line 8). It is worth noting here that IST algo-

rithms are instances of the SpaRSA framework. If is convex
(thus the subproblem (6) has a unique minimizer), if the accep-
tance criterion accepts any , and if we use a constant
satisfying certain conditions (see [17], for example), then we
have a convergent IST algorithm.

B. Solving the Subproblems: Separable Regularizers

In this section, we consider the key operation of the SpaRSA
framework—solution of the subproblem (6)—for situations in
which the regularizer is separable. Since the term is
a strictly convex function of , (6) has a unique solution when

is convex. (For nonconvex , there may exist several local
minimizers.)

When has the separable form (8), the subproblem (6) is also
separable and can be written as

(11)

For certain interesting choices of , the minimization in (11)
has a unique closed form solution. When (thus

), we have a unique minimizer given by

soft (12)

where soft is the well-known
soft-threshold function.

Another notable separable regularizer is the so-called norm
, which counts the number of nonzero

components of its argument. Although is not
convex, there is a unique solution

hard (13)

where hard is the hard-threshold function.
When , that is, , the closed form

solution of (11) is known for [14], [17].
For these values of , the function is convex and smooth. For

with , the function is nonconvex,
but the solutions of (11) can still be obtained by applying a
safeguarded Newton method and considering the cases ,

, and separately.

C. Solving the Subproblems: The Complex Case

The extension of (2) to the case in which , , and are
complex is more properly written as

(14)

where denotes the modulus of the complex number . In
this case, (6) is

(15)

which is obviously still separable and leads to

(16)
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with the (complex) soft-threshold function defined for complex
argument by

(17)

D. Solving the Subproblems: Group-Separable Regularizers

For group-separable (GS) regularizers of the form (9), the
minimization (6) decouples into a set of independent min-
imizations of the form

(18)

where is the dimension of , , , and
, with defined in (7).

As in [14], [17], convex analysis can be used to obtain the
solution of (18). If is a norm, it is proper, convex (though
not necessarily strictly convex), and homogenous. Since, in ad-
dition, the quadratic term in (18) is proper and strictly convex,
this problem has a unique solution, which can be written explic-
itly as

(19)

where denotes the orthogonal projector onto set , and
is a unit-radius ball in the dual norm , that is,

. Detailed proofs of (19) can be found in [17]
and references therein.

Taking as the or norm is of particular interest in the
applications mentioned above. For , the dual
norm is also , thus

. Clearly, if , then ,
thus . If , then

. These two cases are written compactly as

(20)

which can be seen as a vectorial soft-threshold. Naturally, if
, (20) reduces to the scalar soft-threshold (12).

For , the dual norm is , thus
. In this case, the solution

of (18) is the residual of the orthogonal projection of onto the
-ball. This projection can be computed with cost,

as recently shown in [5]–[7], [22]; even more recently, an
algorithm was introduced [31].

E. Choosing : Barzilai–Borwein (Spectral) Methods

In the most basic variant of the Barzilai-Borwein (BB) spec-
tral approach, we choose such that mimics the Hessian

over the most recent step. Letting and

we require that in the least-squares sense, i.e.

(21)

When , this expression becomes
. In our implementation of the SpaRSA frame-

work, we use (21) to choose the first in each iteration (line
4 of Algorithm SpaRSA), safeguarded to ensure that remains
in the range .

A similar approach, also suggested by Barzilai and Borwein
[1] is to choose so that mimics the behavior of the inverse
Hessian over the latest step, and then set . By solving

in the least-squares sense, we obtain

Other spectral methods have been proposed that alternate be-
tween these two formulae for . There are also “cyclic” vari-
ants in which is only updated (using the formulae above) at
every th iteration ; see Dai et al. [19]. We will not
consider those variants in this paper, since we have verified ex-
perimentally that their performance is very close to that of the
standard BB method based on (21).

F. Acceptance Criterion

In the simplest variant of SpaRSA, the criterion used at each
iteration to decide whether to accept a candidate step is trivial:
accept whatever solves the subproblem (5) as the new iterate

, even if it yields an increase in the objective function .
Barzilai-Borwein schemes are usually implemented in this non-
monotone fashion. The drawback of these totally “free” BB
schemes is that convergence is very hard to study.

Globally convergent Barzilai–Borwein schemes for uncon-
strained smooth minimization have been proposed in which the
objective is required to be slightly smaller than the largest ob-
jective from the last iterations, where is a fixed integer
(see [50]). If is chosen large enough, the occasional large in-
creases in objective (that are characteristic of BB schemes, and
that appear to be essential to their good performance in many
applications) are still allowed. Inspired by this observation, we
propose an acceptance criterion in which the candidate ob-
tained in line 6 of the algorithm (a solution of (6)) is accepted as
the new iterate if its objective value is slightly smaller than the
largest value of the objective over the past iterations.
Specifically, is accepted only if

(22)

where is a constant, usually chosen to be close to
zero. This is the version of the proposed algorithmic framework
which we will simply denote as SpaRSA.

We consider also a monotone version (called SpaRSA-mono-
tone) which is obtained by letting . The existence of a
value of sufficiently large to ensure a decrease in the objec-
tive at each iteration can be inferred from the connection be-
tween (6) and the trust-region subproblem (10). For a small
enough trust-region radius , the difference between the lin-
earized model in (10) and the true function be-
comes insignificant, so the solution of (10) is sure to produce a
decrease in . Monotonicity of IST algorithms [37] also relies



2484 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 57, NO. 7, JULY 2009

on the fact that there is a constant such that descent is
assured whenever .

G. Convergence

We now present a global convergence result for SpaRSA ap-
plied to problems with the form of (1), with a few mild condi-
tions, which are satisfied by essentially all problems of interest.
Specifically, we assume that is Lipschitz continuously differ-
entiable, that is convex and finite valued, and that is bounded
below.

Before stating the theorem, we recall that a point is said to
be critical for (1) if

(23)

where denotes the subdifferential of (see [65] for a defini-
tion). Criticality is a necessary condition for optimality. When

is convex, then is convex also, and condition (23) is suffi-
cient for to be a global solution of (1). Our theorem shows
that all accumulation points of SpaRSA are critical points, and
therefore global solutions of (1) when is convex.

Theorem 1: Suppose that Algorithm SpaRSA, with accep-
tance test (22), is applied to (1), where is Lipschitz contin-
uously differentiable, is convex and finite-valued, and is
bounded below. Then all accumulation points are critical points.

The proof, which can be found in the Appendix, is inspired by
the work of Grippo, Lampariello, and Lucidi [49], who analyzed
a nonmonotone line-search Newton method for optimization of
a smooth function whose acceptance condition is analogous to
(22).

H. Termination Criteria

We described a number of termination criteria for GPSR in
[39]. Most of these continue to apply in SpaRSA, in the case
of . We describe them briefly here, and refer the
reader to [39, Section II-D] for further details.

One termination criterion for (2) can be obtained by refor-
mulating it as a linear complementarity problem (LCP). This is
done by splitting as with and , and
writing the equivalent problem as

(24)

where is the vector of 1s with length , and the minimum
is taken component-wise. The distance to the LCP solution set
from a given vector is bounded by a multiple of the norm
of the left-hand side in (24), so it is reasonable to terminate when
this quantity falls below a given small tolerance , where we
set and .

Another criterion for the problem (2) can be obtained by
finding a feasible point for the dual of this problem, which
can be written as

subject to

and then finding the duality gap corresponding to and the cur-
rent primal iterate . This quantity yields an upper bound on

the difference between and the optimal objective value
, so we terminate when the relative duality gap falls below

a tolerance . Further details can be found in [39, Section
II-D] and [53].

We note too that the criterion based on the relative change
to the set of inactive indices
between iterations, can also be applied. The technique described
in [39, SectionII-D] can be extended by monitoring the change
in inactive set across a range of steps, not just the single previous
step from to . It can also be extended to group-separable
problems by defining the inactive set in terms of groups rather
than individual components.

A less sophisticated criterion makes use of the relative change
in objective value at the last step. We terminate at iteration if

(25)

This criterion has the advantage of generality; it can be used
for any choice of regularization function . However, it is prob-
lematic to use in general as it may be triggered when the step
between the last two iterates was poor, but the current point is
still far from a solution. When used in the context of nonmono-
tone methods it is particularly questionable, as steps that pro-
duce a significant decrease or increase in are deemed accept-
able, while those which produce little change in trigger ter-
mination. Still, we have rarely encountered problems of “false
termination” with this criterion in our computational tests.

A similarly simple and general criterion is the relative size of
the step just taken, that is

(26)

This criterion has some of the same possible pitfalls as (25), but
again we have rarely observed it to produce false termination
provided is chosen sufficiently small.

When a continuation strategy (Section II-C) is used, in which
we do not need the solutions for intermediate values of to high
accuracy, we can use a tight criterion for the final value of
and different (and looser) criteria for the intermediate values. In
our implementation of SpaRSA, we used the criterion (25) with

at the intermediate stages, and switched to the
criterion specified by the user for the target value of .

Finally, we make the general comment that termination at so-
lutions that are “accurate enough” for the application at hand
while not being highly accurate solutions of the optimization
problem is an issue that has been little studied by optimization
specialists. It is usually (and perhaps inevitably) left to the user
to tune the stopping criteria in their codes to the needs of their
application. This issue is perhaps deserving of study at a more
general level, as the choice of stopping criteria can dramati-
cally affect the performance of many optimization algorithms
in practice.

I. Debiasing

In many situations, it is worthwhile to debias the solution as a
postprocessing step, to eliminate the attenuation of signal mag-
nitude due to the presence of the regularization term. In the de-
biasing step, we fix at zero those individual components (in the
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case of regularization) or groups (in the case of group regu-
larization) that are zero at the end of the SpaRSA process, and
minimize the objective over the remaining elements. Specifi-
cally, the case of a sum-of-squares objective ,
the debiasing phase solves the problem

(27)

where is the set of indices corresponding to the components
or groups that were nonzero at termination of the SpaRSA pro-
cedure for minimizing , is the column submatrix of
corresponding to , and is the subvector of unknowns for
this index set. A conjugate gradient procedure is used, and the
debiasing phase is terminated when the squared residual norm
for (27), that is

falls below its value at the SpaRSA solution by a factor of ,
where a typical value is . (The same criterion is
used in GPSR; the criterion shown in [39, (21)] is erroneous.)
When the column submatrix is well conditioned, as hap-
pens when a restricted isometry property is satisfied, the con-
jugate gradient procedure converges quite rapidly, consistently
with the known theory for this method (see, for example, Golub
and Van Loan [46, Sec. 10.2]).

It was shown in [39], for example, that debiasing can im-
prove the quality of the recovered signal considerably. Such is
not always the case, however. Shrinking of signal coefficients
can sometimes have the desirable effect of reducing distor-
tions caused by noise [26], an effect that could be undone by
debiasing.

III. WARM STARTING AND ADAPTIVE CONTINUATION

Just as for the GPSR and IST algorithms, the SpaRSA
approach benefits significantly from a good starting point ,
which suggests that we can use the solution of (1), for a given
value of , to initialize SpaRSA in solving (1) for a nearby
value of . Generally, the “warm-started” second run will re-
quire fewer iterations than the first run, and dramatically fewer
iterations than if it were initialized at zero.

An important application of warm-starting is continuation,
as in the fixed point continuation (FPC) algorithm recently de-
scribed in [51]. It has been observed that IST, SpaRSA, GPSR,
and other approaches become slow when applied to problems
(2) with small values of the regularization parameter . (Solving
(2) with a very small value of is one way of approximately
solving (4) with .) However, if we use SpaRSA to solve
(1) for a larger value of , then decrease in steps toward its de-
sired value, running SpaRSA with warm-start for each succes-
sive value of , we are often able to identify the solution much
more efficiently than if we just ran SpaRSA once for the desired
(small) value of from a cold start. We illustrate this claim ex-
perimentally in Section IV.

One of the challenges in using continuation is to choose the
sequence of values that leads to the fastest global running time.
Here we propose a scheme for the case that does not re-
quire the user to specify the sequence of values of . Our adap-
tive scheme is based on the fact that it is possible to give some

meaning to the notions of “large” or “small”, when referring to
the regularization parameter in the context of problem (2). It
can be shown that if

then the unique solution to (2) is the zero vector [41], [53]. Ac-
cordingly, a value of such that can be consid-
ered “large”, while a value such that can be seen
as small. Inspired by this fact, we propose the following scheme
for solving (2):

Algorithm: Adaptive Continuation

1.initialize iteration counter, , and choose initial
estimate ;

2.

2.repeat

4. where ;

5. ;

6.

7.

8.until ;

In line 5 of the algorithm, denotes a
run of the SpaRSA algorithm for problem (2), with replaced by

, and initialized at . The key steps of the algorithm are those
in lines 4, 5, and 6, and the rationale behind these steps is as fol-
lows. After running SpaRSA with the regularization parameter

, the linear combination of the columns of , according to the
latest iterate , is subtracted from the observation , yielding

. The idea is that contains the information about the
unknown which can only be obtained with a smaller value
of the regularization parameter; moreover, the “right” value of
the regularization parameter to extract some more of this infor-
mation is given by the expression in line 4 of the algorithm.
Notice that in step 5, SpaRSA is always run with the original
observed vector (not with ), so our scheme is not a pur-
suit-type method (such as StOMP [30]).

We note that if the invocation of SpaRSA in line 5 produces
an exact solution, we have that , so that line 4
simply reduces the value of by a constant factor of at each it-
eration. Since in practice an exact solution may not be obtained
in line 5, the scheme above produces different computational
behavior which is usually better in practice. Although the de-
scription of the adaptive continuation scheme was made with
reference to the SpaRSA algorithm, this scheme can be used
with any other algorithm that benefits from good initialization
and that is faster for larger values of the regularization param-
eter. For example, by using IST in place of SpaRSA in line 5,
we obtain an adaptive version of the FPC algorithm [51].

IV. COMPUTATIONAL EXPERIMENTS

In this section, we report experiments which demonstrate the
competitive performance of the SpaRSA approach on problems
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TABLE I
CPU TIMES AND MSE VALUES (AVERAGE OVER TEN RUNS) OF

SEVERAL ALGORITHMS ON THE EXPERIMENT DESCRIBED IN THE TEXT;
THE FINAL VALUE OF THE OBJECTIVE FUNCTION

IS THE APPROXIMATELY 3.635 FOR ALL METHODS

of the form (2), including problems with complex data, and its
ability to handle different types of regularizers. All the exper-
iments (except for those in Section IV-E) were carried out on
a personal computer with an Intel Core2Extreme 3 GHz pro-
cessor and 4GB of memory, using a MATLAB implementa-
tion of SpaRSA. The parameters of SpaRSA were set as fol-
lows: , , ; for
SpaRSA-monotone, we set , , and ;
finally, for the adaptive continuation strategy, we set .

A. Speed Comparisons for the Problem

We compare the performance of SpaRSA with that of other
recently proposed algorithms for problems (2). In our
first experiment, in addition to the monotone and nonmono-
tone variants of SpaRSA, we consider the following algorithms:
GPSR [39], FPC [51], TwIST [2], l1_ls [53], and AC [61]. The

test problem that we consider is similar to the one studied
in [53] and [39]. The matrix in (2) is a random matrix,
with and , with Gaussian independent and
identically distributed (i.i.d.) entries of zero mean and variance

. (This variance guarantees that, with high probability,
the maximum singular value of is at most 1, which is assumed
by FPC and TwIST.) We choose , where is a
Gaussian white vector with variance , and is a vector
with 160 randomly placed spikes, with zeros in the other
components. We set , as in [39] and [53]; this
value allows the formulation to recover the solution, to
high accuracy.

To make the comparison independent of the stopping rule for
each approach, we first run FPC to set a benchmark objective
value, then run the other algorithms until they each reach this
benchmark. Table I reports the CPU times required by the al-
gorithms tested, as well as the final mean squared error (MSE)
of the reconstructions with respect to . These results show
that, for this problem, SpaRSA is slightly faster than
GPSR and TwIST, and clearly faster than FPC, l1_ls, and AC.
Not surprisingly, given that all approaches attain a similar final
value of , they all give a similar value of MSE. Of course, these
speed comparisons are implementation dependent, and should
not be considered as a rigorous test, but rather as an indication
of the relative performance of the algorithms for this class of
problems.

Fig. 1. Assessment of the empirical growth exponent of the computational
complexity of several algorithms.

One additional one order of magnitude improvement in MSE
can be obtained easily by using the debiasing procedure de-
scribed in Section II-A. In this problems, this debiasing step
takes (approximately) an extra 0.15 s.

An indirect comparison with other codes can be made via
[53, Table 1], which shows that l1_ls outperforms the method
from [29] by a factor of approximately two, as well as -magic
by about two orders of magnitude and pdco from SparseLab by
about one order of magnitude.

The second experiment assesses how the computational cost
of SpaRSA grows with the size of matrix , using a setup sim-
ilar to the one in [39] and [53]. We assume that the computa-
tional cost is and obtain empirical estimates of the expo-
nent . We consider random sparse matrices (with the nonzero
entries normally distributed) of dimensions , with
ranging from to . Each matrix is generated with about

nonzero elements and the original signal with randomly
placed nonzero components. For each value of , we generate
10 random matrices and original signals and observed data
according to , where is white noise of variance

. For each data set (that is, each pair , ), is
set to . The results in Fig. 1 (which are averaged
over the 10 data sets of each size) show that SpaRSA, GPSR,
and FPC have approximately linear cost, with FPC being a little
worse than the other two algorithms. The exponent for l1_ls is
known from [39], [53] to be approximately 1.2, while that of the

-magic algorithms is approximately 1.3.

B. Adaptive Continuation

To assess the effectiveness of the adaptive regularization
scheme proposed in Section III, we consider a scenario similar
to the one in the first experiment, but with two differences. The
data is noiseless, that is, , and the regularization
parameter is set to . The results shown in
Table II confirm that, with this small value of the regularization
parameter, both GPSR and SpaRSA without continuation
become significantly slower and that continuation yields a
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TABLE II
CPU TIMES AND MSE VALUES (AVERAGE OVER TEN RUNS) OF SEVERAL

ALGORITHMS, WITHOUT AND WITH CONTINUATION, ON THE EXPERIMENT

DESCRIBED IN THE TEXT. NOTICE THAT FPC HAS BUILT-IN CONTINUATION,
SO IT IS LISTED IN THE CONTINUATION METHODS COLUMN

Fig. 2. CPU times as a function of the ratio ��� , where � � �� � ,
for several algorithms without and with continuation.

significant speed improvement. (We do not implement the con-
tinuation strategy for l1_ls as, being an interior point method, it
does not benefit greatly from warm starts.) In this example, the
debiasing step of Section II-A takes about 0.15 s, and yields an
additional reduction in MSE by a factor of approximately 15.

The plot in Fig. 2 shows how the CPU time of SpaRSA with
and without continuation (as well as GSPR and FPC) grows
when the value of the regularization parameter decreases, con-
firming that continuation is able to keep this growth very mild,
in contrast to the behavior without continuation.

C. Group-Separable Regularizers

We now illustrate the use of SpaRSA with the GS regularizers
defined in (9). Our experiments in this subsection use synthetic
data and are mainly designed to illustrate the difference between
reconstructions obtained with the GS- and the GS- regular-
izers, both of which can be solved in the SpaRSA framework.
In Section IV-E below, we describe experiments with GS regu-
larizers, using magnetoencephalographic (MEG) data.

Our first synthetic experiment uses a matrix with the same
dimension and structure as the matrix in Section IV-A. The
vector has components, divided into groups of
length . To generate , we randomly choose 8 groups
and fill them with zero-mean Gaussian random samples of unit
variance, while all other groups are filled with zeros. We set

Fig. 3. Comparison of GS-� regularizer with a conventional � regularizer.
This example illustrates how exploiting known group structure can provide a
dramatic gain.

Fig. 4. Comparison of GS-� and GS-� regularizers. Signals with uniform
behavior within groups benefit from the GS-� regularizer.

, where is Gaussian white noise with variance
. Finally we run SpaRSA, with

and as given by (9), where . The value of
is hand-tuned for optimal performance. Fig. 3 shows the re-

sult obtained by SpaRSA, based on the GS- regularizer, which
successfully recovers the group structure of , as well as
the result obtained with the classical regularizer, for the best
choice of . The improvement in reconstruction quality obtained
by exploiting the known group structure is evident.

In the second experiment, we consider a similar scenario,
with a single difference: Each active group, instead of being
filled with Gaussian random samples, is filled with ones. This
case is clearly more adequate for a GS- regularizer, as illus-
trated in Fig. 4, which achieves an almost perfect reconstruction,
with an MSE two orders of magnitude smaller than the MSE ob-
tained with a GS- regularizer.
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D. Problems With Complex Data

SpaRSA—like IST, FPC, ICD, and TwIST, but unlike
GPSR—can be applied to complex data, provided that the
regularizer is such that the subproblem at each iteration allows
a simple solution. We illustrate this possibility by considering
a classical signal processing problem where the goal is to
estimate the number, amplitude, and initial phase of a set of
superimposed sinusoids, observed under noise [25], [42], a
problem that arises, for example, in direction of arrival (DOA)
estimation [47] and spectral analysis [8]. Several authors have
addressed this problem as that of estimating of sparse complex
vector [8], [42], [47].

A discrete formulation of this problem may be given the form
(2), where matrix is complex, of size (where is
the maximum frequency), with elements given by

for

and for and
. As usual, denotes . For further details, see [42].

It is assumed that the observed signal is generated according to

(28)

where is a -vector in which , for
, with four random complex entries appearing in four

random locations among the first elements. Each sinusoid is
represented by two (conjugate) components of , that is,

and , where is its ampli-
tude and its initial phase. The noise vector is a vector of
i.i.d. samples of complex Gaussian noise with standard devia-
tion 0.05.

The noisy signal, the clean original signal (obtained by (28),
without noise) and its estimate are shown in Fig. 5. These results
show that the formulation and the SpaRSA and FPC algo-
rithms are able to handle this problem. In this example, SpaRSA
(with adaptive continuation) converges in 0.56 s, while the FPC
algorithm obtains a similar result in 1.43 s.

E. MEG Brain Imaging

To see how our approach can speed up real-world op-
timization problems, we applied variants of SpaRSA to a
magnetoencephalographic (MEG) brain imaging problem,
replacing the EM algorithm of [5]–[7], which is equivalent to
IST. MEG imaging using sparseness-inducing regularization
was also previously considered in [47].

In MEG imaging, very weak magnetic fields produced by
neuronal activity in the cortex are measured and used to infer
cortical activity. The physics of the problem lead to an under-
determined linear model relating cortical activity from tens of
thousands of voxels to measured magnetic fields at 100 to 200
sensors. This model combined with low SNR necessitates reg-
ularization of the inverse problem.

We solve the GS- version of the regularization problem
where each block of coefficients corresponds to a spatio-tem-
poral subspace. The spatial components of each block describe

Fig. 5. Top plot: Noisy superposition of four sinusoidal functions. Bottom plot:
The original (noise free) superposition and its SpaRSA estimate.

the measurable activity within a local region of the cortex, while
the temporal components describe low frequency activity in var-
ious time windows. The cortical activity inference problem is
formulated as

(29)

where is the matrix of the length- time signals
recorded at each of the sensors, where is the linear
mapping of cortical activity to the sensors, is the dictionary
of spatial bases, is the dictionary of temporal bases, and
contains the unknown coefficients that represent the cortical ac-
tivity in terms of the spatio-temporal basis. Both and are
organized into blocks of coefficients likely to be active simul-
taneously. The blocks of coefficients represent individual
space–time events (STEs). The estimate of cortical activity is
the sum of a small number of active (nonzero) STEs,

(30)

where most are zero.
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An expectation-maximization (EM) algorithm to solve the
optimization above was proposed in [5]–[7]. This EM algorithm
works by repeating two basic steps

(31)

where is a step size. It is not difficult to see that this ap-
proach fits the SpaRSA framework, with subproblems of the
form (18), for a constant choice of parameter . To
guarantee that the iterates produce a nonincreasing sequence
of objective function values, we can choose to satisfy

; see [24].
In the experiments described below, we used a data set with

dimensions , , , and there were
1179 and 256 spatial and temporal bases, respectively. A simu-
lated cortical signal was used to generate the data, while matrix

was derived from a real world experimental setup. White noise
was added to the simulated measurements to achieve an SNR (de-
fined as , where is additive noise) of 5 dB.
The dimension of each coefficient block was 3 32. For
more detailed information about the experimental setup, see [7].

We made simple modifications to the EM code to implement
other variants of the SpaRSA approach. The changes required
to the code were conceptually quite minor; they required only
a mechanism for selecting the value of at each iteration (ac-
cording to formulas such as (21)) and, in the case of monotone
methods, increasing this value as needed to obtain a decrease
in the objective. The same termination criteria were used for all
SpaRSA variants and for EM.

In the cold-start cases, the algorithms were initialized with

. In all the SpaRSA variants, the initial value was set
to , where is the constant from (31) that is used in the EM
algorithm. (The SpaRSA results are not sensitive to this initial
value.)

We used two variants of SpaRSA that were discussed above:
• SpaRSA: Choose by the formula (21) at each iteration

;
• SpaRSA-monotone: Choose initially by the formula

(21) at iteration , by increase by a factor of 2 as needed
to obtain reduction in the objective.

The relative regularization parameter was set to various
values in the range (0,1). (For the value , the problem
data is such that the solution is .) Convergence testing
was performed on only every tenth iteration.

Both MATLAB codes (SpaRSA and EM) were executed on
a personal computer with two Intel Pentium IV 3 GHz proces-
sors and 2GB of memory, running CentOS 4.5 Linux. Table III
reports on results obtained by running EM and SpaRSA from
the cold start, for various values of . Iteration counts and CPU
times (in seconds) are shown for the three codes. For SpaRSA-
monotone, we also report the total number of function/gradient
evaluations, which is generally higher than the iteration count
because of the additional evaluations performed during back-
tracking. The last columns show the final objective value and

TABLE III
COMPUTATIONAL RESULTS FROM � � � STARTING POINT, FOR

VARIOUS VALUES OF �. TIMES IN SECONDS. � MAXIMUM

ITERATION COUNT REACHED PRIOR TO SOLUTION

TABLE IV
COMPUTATIONAL RESULTS FOR CONTINUATION STRATEGY. TIMES IN SECONDS

the number of nonzero blocks. These values differ slightly be-
tween codes; we show the output here from the SpaRSA (non-
monotone) runs.

The most noteworthy feature of Table III is the huge improve-
ment in run time of the SpaRSA strategy on this data set over
the EM strategy—over two orders of magnitude. In fact, the EM
algorithm did not terminate before reaching the upper limit of
10 000 function evaluations except in the case .

Table IV shows results obtained using a continuation strategy,
in which we solve for the largest value (the first value
in the table) from a zero initialization, and use the computed
solution of each value as the starting point for the next value
in the table. For the values and , the warm
start improves the time to solution markedly for the SpaRSA
methods. EM also benefits from warm starting, but we do not
report the results from this code as the runtimes are still much
longer than those of SpaRSA.

V. CONCLUDING REMARKS

In this paper, we have introduced the SpaRSA algorithmic
framework for solving large-scale optimization problems
involving the sum of a smooth error term and a possibly
nonsmooth regularizer. We give experimental evidence that
SpaRSA matches the speed of the state-of-the-art method
when applied to the problem, and show that SpaRSA
can be generalized to other regularizers such as those with
group-separable structure.
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We note that our computational experience shows relatively
little difference in efficiency between monotone variants of
SpaRSA and standard (nonmonotone) variants. This experience
is at variance with problems in other domains, in which non-
monotone variants can have a large advantage, and we do not
rule out the possibility that nonmonotonicity will play a more
critical role in other instances of sparse reconstruction.

Ongoing work includes a more thorough experimental evalu-
ation involving wider classes of regularizers and other types of
data.

APPENDIX

In this appendix, we present the proof of Theorem 1. We begin
by introducing some notation and three technical lemmas which
support the main proof. Denoting

(32)

the acceptance condition (22) can be written as

(33)

Our first technical lemma shows that in the vicinity of a non-
critical point, and for bounded above, the solution of (5) is a
substantial distance away from the current iterate .

Lemma 2: Suppose that is not critical for (1). Then for
any constant , there is such that for any
subsequence with with

, we have for all
sufficiently large.

Proof: Assume for contradiction that for such a sequence,
we have , so that . By optimality
of in (5), we have

By taking limits as , and using outer semicontinuity of
(see [65, Th. 24.5]) and boundedness of , we have that

(23) holds, contradicting noncriticality of .
The next lemma shows that the acceptance test (22) is satis-

fied for all sufficiently large values of .
Lemma 3: Let be given. Then there is a constant

such that for any sequence , the accep-
tance condition (22) is satisfied whenever .

Proof: We show that in fact

which implies (22) for . Denoting by the Lipschitz
constant for , we have

where the last inequality follows from the fact that
achieves a better objective value in (5) than . The result
then follows provided that

which is in turn satisfied whenever , where
.

Our final technical lemma shows that the step lengths ob-
tained by solving (5) approach zero, and that the full sequence
of objective function values has a limit.

Lemma 4: The sequence generated by Algorithm
SpaRSA with acceptance test (22) has . More-
over there exists a number such that .

Proof: Recalling the notation (32), note first that the
sequence is monotonically decreasing,
because from (32) and (33) we have

Therefore, since is bounded below, there exists such that

(34)

By applying (33) with replaced by , we obtain

by rearranging this expression and using (34), we obtain

which, since for all , implies that

(35)

We have from (34) and (35) that

(36)

We will now prove, by induction, that the following limits are
satisfied for all :

(37)

We have already shown in (35) and (36) that the results holds
for ; we now need to show that if they hold for , then
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they also hold . From (33) with replaced by ,
we have

(We have assumed that is large enough to make the indices
nonnegative.) By rearranging this expression and

using for all , we obtain

By letting , and using the inductive hypothesis along with
(34), we have that the right-hand side of this expression ap-
proaches zero, and hence , proving
the inductive step for the first limit in (37). The second limit in
(37) follows immediately, since

To complete our proof that , we note that
is one of the indices . Hence, we

can write for some
. Thus from the first limit in (37), we have

. For the limit of function values, we
have that, for all

thus . It follows from continuity
of and the second limit in (37) that .

We now prove Theorem 1.
Proof: (Theorem 1): Suppose (for contradiction) that is

an accumulation point that is not critical. Let be
the subsequence of indices such that . If the
parameter sequence were bounded, we would have from
Lemma 2 that for some and
all sufficiently large. This contradicts Lemma 4, so we must
have that is unbounded. In fact we can assume without
loss of generality that increases monotonically to and
that for all . For this to be true, the
value must have been tried at iteration and must
have failed the acceptance test (22). But Lemma 3 assures us
that (22) must have been satisfied for this value of , a further
contradiction.

We conclude that no noncritical point can be an accumulation
point, proving the theorem.
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