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ABSTRACT

In this paper, we present an unsupervised scheme aimed at segmentation of laser radar (LADAR) imagery for
Automatic Target Detection. A coding theoretic approach implements Rissanen’s concept of Minimum Description
Length (MDL) for estimating piecewise homogeneous regions. MDL is used to penalize overly complex segmentations.
The intensity data is modeled as a Gaussian random field whose mean and variance functions are piecewise constant
across the image. This model is intended to capture variations in both mean value (intensity) and variance (texture).
The segmentation algorithm is based on an adaptive rectangular recursive partitioning scheme. We implement a
robust constant false alarm rate (CFAR) detector on the segmented intensity image for target detection and compare
our results with the conventional cell averaging (CA) CFAR detector.
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1. INTRODUCTION

Laser Radar (LADAR) is a promising imaging technology because it is able to collect high resolution 2-D and 3-D
images by raster scanning a field of view. A LADAR sensor typically collects two channels of data: intensity and
range data. An illustrative example of LADAR intensity and range image is shown in Figure 1. The laser radar
transmits a series of laser pulses, one for each pixel. Each pulse passes through the atmosphere and reflects off the
first opaque objects it contacts. The reflected light returns to the sensor and then undergoes optical heterodyne
detection followed by intermediate frequency (IF) filtering and peak detection. The intensity image is a measure
of the reflected energy which takes lighting, color variations and textural properties etc. into account. The range
image is formed by measuring the time delay between the peaks of the transmitted and the detected waveforms.
The range data is a measure of physical distance which unlike intensity, is unaffected by illumination from other
sources such as the weather, internal heat, texture etc.! This basic difference in the formation of the intensity and
range images inspires the difference in the way we process them. LADAR images are degraded by the combined
effects of laser speckle and local oscillator shot noise. The former is due to the rough-surfaced nature of encountered
objects when compared to the laser wavelength which causes constructive and destructive interference in the reflected
signal. The latter is the fundamental noise involved in optical heterodyne detection. Speckle noise degrades LADAR
images through anomalies which occur when a deep speckle fade combines with a strong noise peak resulting in
measurements which is substantially different from the true value.?

The main contribution of this paper is a novel segmentation scheme aimed at automatically identifying regions of
important similar statistical characteristics in LADAR images. Specifically, our model enables capturing variations
in both mean and variance in one step. Segmentation is a necessary step for autonomous target detection and
recognition required in current military practices. An imaged scene may contain man-made objects which are
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Figure 1. Original LADAR Images (a) intensity and (b) range

‘smooth’ and/or natural objects which contain texture information. The goal in segmenting an image of such a
scene would then be to identify these objects with different statistical characteristics before target recognition can be
performed. Several algorithms proposed in the literature perform segmentation based only on one of these features
(intensity or texture)®? or use a multi-stage decoupled scheme.%

The proposed segmentation algorithm is able to detect changes in intensity and/or variance. To the best of our
knowledge, this is the first segmentation scheme that achieves this. Our image model is a Gaussian random field
whose mean and variance functions are piecewise constant. That is, we assume that the m-by-n image under study is
composed of connected regions of pixels with each pixel independently and identically distributed (i.i.d.) according
to a Gaussian density. Our model is:

y(i1,ia) = f(ir,i2) + o(i1,ia) 2(i1,i2), 0 <idr,ia <m,n, (1)

where z(i1,i2) ~ i.i.d. N(0,1) so that y(i,is) is distributed according to N'(f(i1,42),02(i1,i2)). This is different
from the signal plus constant noise models used in most wavelet-based multiscale image analysis procedures.” It
finds applications in a wide class of images and is appropriate for the LADAR intensity image.

We use a predictive coding theoretic approach based on Rissanen’s MDL principle®° to achieve unsupervised
segmentation. MDL is the tool used to penalize overly complex models thereby providing a means for data dependent
model selection. We propose the Adaptive Recursive Partitioning (ARP) algorithm!® which is a top-down, fast
and recursive scheme that achieves rectangular tessellations of the feature space. We explore the performance of
our segmentation scheme on real intensity and range LADAR images, leading us to develop a robust Constant False
Alarm Rate (CFAR) detector scheme.

Our paper is organised as follows: Section 2 describes the segmentation scheme: The Adaptive Recursive Par-
titioning algorithm and briefly reviews the MDL principle. Section 3 describes the input LADAR imagery and the
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Figure 2. Median filtered LADAR images (a) intensity (b) log-range

preprocessing performed on the range data. Section 4 explains the robust CFAR detection algorithm developed based
on our segmentation scheme, with results and comparisons with the standard CFAR algorithm used on real LADAR
data. We conclude in Section 5.

2. THE ADAPTIVE RECURSIVE PARTITIONING ALGORITHM

The Adaptive Recursive Partitioning Algorithm (ARP) is based on a coding theoretic concept. Suppose we
want to optimally encode and transmit a finite set of data sequence X™ = (zy,---,x,) of length n to some decoder.
The ARP determines whether the data is best represented as a homogenous region of common mean and variance
under the model class 1 or split into two or four homogenous rectangular regions, each region having a different
mean and/or variance, under model class 2. Each subblock is recursively examined and tested in this way until all
subblocks are represented as homogenous. Applying a parametric model on the data in a homogenous subblock and
adopting a progressive coding scheme, we first transmit sufficient statistics for the estimated parameters (in our case
the sample mean and sample variance) of a subblock, and then transmit the data in that subblock based on the
parametric model assumed. This progressive scheme enables us take advantage of previously transmitted information
since if a block is split into H subblocks say, we only need to transmit sufficient statistics for H — 1 of the subblocks
because given mean and variance of the original block and H — 1 of its subblocks, it is trivial to derive the statistics
of the last subblock.

This decision to either split a region or retain it as homogenous is made by applying the MDL criteria.”129 If

we decide to split a region, the ‘best’ split point s is again decided based on the MDL principle. We briefly describe
the MDL principle in the subsection below.



2.1. MDL Principle

The MDL principle enables data dependent model selection.!31%7  Given a probability distribution p(X™|6)
on X", where f parameterizes the distribution, the Shannon-optimal code length for prefix codes is given as
—logp(X™6).141%  Now assume we have a set of K competing models to explain our data {p;(X"[6;)},_,, the
MDL criteria states that among these K possibilities, the “best” model is the one that minimizes the description
length obtained by assuming a two-part code,

where L(8}) is the code length required to describe the maximum likelihood estimate (MLE) 6 of the parameter
0 such that the decoder knows the model under which the code for the data was obtained. This is a penalized
likelihood with L(Hk) as the penalty term. To encode the parameter estimate Gk under a Gaussian data assumption,
the elements of 8), which are real-valued have to be truncated to finite precision in order to yield a finite code-length
(Hk) The standard solution is the well known 2 5 logn code-length for each component of 6, based on asymptotic
approximations.®® MDL has been successfully used in several image analysis/segmentation problems.!1:16

In the MDL approach described above, we first encode and send parameter estimates, then the data itself, coded
according to that parameter estimate. The sufficient statistics that have to be collected to obtain estimates of the
mean f and variance o2 are the sum Y. | #; = t; and sum of squares ). , 27 = t,. These constitute the first-part
information that is initially sent to the decoder. For the second part, to optimally code the data given that the
decoder already knows ¢; and t», we require the conditional distribution p(X™| Y " z;, Y., «7) based on which we
build the code for the data according to Shannon’s codelength. This conditional distribution is given by!”

L™ o X e Cty,t)
P(X "t t2) = 2T ’ (3)
0 < X" ¢EC(t,t2),

where T'() denotes Euler’s gamma function, C(t1,t2) = (X" : Y. 2; = tiandd 27 = t5) is the constraint set and
2

P

n
With Eq.(3) used in Eq.(2) for the MDL criteria, we may now derive simple codelengths for each model class in
the ARP algorithm. First we define some general notation: Given any region or subblock R of size ng-by-mg, let
X% describe the data in region R, i.e., * € R with common mean fr and variance o%. Define th = > wcr® and
th = Y owcR 22, We may split R into H non-overlapping subblocks each represented as R, for h =1,--- H.

2.2. ARP Algorithm

The ARP examines R to determine whether it is best represented as one homogenous block under model class 1,
or else split into either two rectangles (horizontally or vertically) or four rectangles with one common vertex, under
model class 2. Let R, (h=1,2 or 1---4) represent the resulting subblocks after a split. Under model class 2 each
subblock is considered homogenous and different from the others.

Model Class 1: Assuming sufficient statistics for the model parameters have already been transmitted, we only
need to code and transmit the data as a homogeneous block. Given the conditional density in Eq.(3), the description
length for the model class is simply:

Li(R) = —log p(X [, 15))

Partitioning of a subblock is stopped once it is determined to best be described as homogenous.

Model Class 2: Under this model class we may split R into 2 or 4 rectangles. The ‘best’ split point s is
determined using the MDL criteria. We examine all possible split points and decide on the one that gives the
minimum codelength. If we decide to split, then we must send the value of s to the decoder in addition to the
sum and sum of squares of the resulting regions, i.e., t7* and #2*. Since there are J = (mp — 1)(ng — 1) possible
split positions, we require log J bits to code s. We emphasize that if we split R into H rectangles (H = 2 or 4) we
only need to send sufficient statistics for the mean and variance of H — 1 of these regions since we already have the
statistics for R due to our progressive scheme. As an example, there are J ways to split R into two rectangles Ry (j)
and Ry(j), j =1,---J, so that the description length under model class 2 is:

Lo {R(j)} = —logp(X Fr |t O) 8100y _1og p(x 2|2 ¢529)) 4 log T + lognpmp



Figure 3. Gradient image of log range data

Comparing codelengths for the different model classes, if L; (R) < min Ly {R(j)} for all j, model class 1 is chosen
for the subblock and processing is stopped, otherwise we split at the point s which minimizes code lengths obtained
from Ly {R(j)}. Each rectangular region is re-examined and split recursively under model class 2 until either model
class 1 is selected or we get to the trivial pixel level. This algorithm was originally developed for Poisson data by
Nowak et al.!! It is a greedy algorithm as it starts from the top with the entire image and proceeds to subdivide
downwards until all subblocks are represented as homogenous.

3. PREPROCESSING OF LADAR IMAGE

Figures 1(a) and (b) show a typical LADAR intensity and range image. They are real data sets collected from
experimental ground-imaging sensors aboard an aircraft. The output has been scaled to 256 gray levels. In the
intensity image, strong reflections are displayed as bright whites while negligible reflectance is in dark gray. For the
range image, the lighter shades indicate greater distance from the sensor to the scene point. The images are 164 x 594
pixels containing some targets situated on a hill in a sloping terrain. The pixel spacing is assumed to be large enough
so that the measurements are statistically independent. Previous work®'® has shown that LADAR images have very
large-error pixels which are uniformly distributed, with the remaining pixels having a Gaussian distributed error.
Therefore the single-pixel statistical model of the observed m x n LADAR data L;fori = 1,---,mn given the true

values L;, has the joint probability density function given as?:

(Li—Li)®
N mn exp (— 2(3L)2 ) 1
Prl|i(L|L) - 1:[ []‘ - PT(A)] 27T((5L)2 PT(A)E for Limin <L; < Lz

where Pr(A) is the probability of anomaly, i.e., the probability that speckle and shot noise effects combine to give
a measurement more than one resolution cell from the true value; AL is the width of the laser radar’s uncertainty
interval and 6L is the local measurement accuracy (or precision). The first term equals the probability that the
measurement, is not anomalous times a Gaussian p.d.f. with mean equal to the true range value. The second
term is the probability that the pixel is anomalous times a uniform distribution over the entire uncertainly interval.
Our initial preprocessing is aimed at suppressing this second term so that our Gaussian model may be used. We
achieve this by a using a simple median filter. Even though more sophisticated methods exist to reduce these sensor
dependent effects (e.g., maximum likelihood wavelet based method?), this ad hoc median filter is sufficient for our
application. Figure 2(a) shows the median filtered intensity image.

Previous work on the statistics of LADAR range data'? show that the logarithm of the range data is shape
invariant and easier to work with. This is seen from the difference between the same two range pixels say L,, and
L,, differing if the distance of the laser radar imager from the imaged scene is varied. However the difference in the

log range i.e, log(L,,) —log(L,,) = log i”‘ stays the same. We choose to use the logarithm of the range data instead
b

of the range data directly. The log of the median filtered range image is shown in Fig. 2(b). Also a mesh plot of the
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Figure 4. (a) Segmented LADAR intensity image. (b) Edge detector on gradient log-range image

log of the range image reveals that it is linearly varying (planar). We therefore use a gradient filter on the logarithm
of the range image (shown in Fig. 3) to obtain an approximately piecewise constant image.

4. SEGMENTATION AND ROBUST CFAR DETECTION ON LADAR INTENSITY

We applied the segmentation algorithm discussed in Section 2 (unknown mean and unknown variance) on the intensity
image. Figure 4(a) shows the mean plot of the segmented intensity image. The algorithm does a good job of
segmenting out homogenous regions while staying robust to outliers. Figure 4(b) shows a simple edge detector used
on the gradient log-range image. This is appropriate since the gradient filter basically extracts boundaries where
sharp slope changes occur. The segmented intensity plot is very useful on its own as a front end step fed into
other processings for target detection and recognition. One such application is the robust CFAR detection scheme
described below.

4.1. CFAR Detection

The CFAR detector is often used as a prescreener to identify potential targets in LADAR images on the basis of
pixel brightness.? The conventional CFAR detector is the cell averaging (CA) CFAR detector that examines a
reference window W of samples surrounding the test pixel and returns bright pixels as suspect targets. Every pixel is
sequentially examined as a test pixel. If we denote X; as the amplitude of the test pixel, X, and &, as the estimated
mean and the estimated standard deviation of the surrounding samples in W, we may use the following rule:



Figure 5. Using the typical 9 x 9 block CFAR detector on the intensity image

X; — X,
# > 7 = declare target
Os

X — X,
# < 7 = declare clutter
Os
The threshold 7 is a constant that determines the false alarm rate. This scheme is not adaptive to the varying-size
of regions since W is fixed and performs poorly if the background window is not homogenous as in multiple targets
and clutter edge situations.?! Also there are boundary problems associated with this scheme since pixels at the edge
of the image do not have sufficient surrounding pixels in W to give reasonable CFAR statistics.

To resolve these issues, our robust CFAR detector uses estimates of the mean f(i1,i2) and variance o2 (iy,i2)
obtained from our segmentation scheme on the intensity image. That is, for each test pixel, X, and 6, are the
underlying mean and variance values obtained for the subblock into which X; falls in the segmented image. These
statistics are more robust because they adapt to the size of homogenous regions and therefore give more accurate
estimates of the parameters. They also do not suffer from clutter boundary edge problems within the image. This
makes our scheme less sensitive to outliers that distract the conventional cell-averaging CFAR scheme. We avoid the
afore-mentioned image boundary problems since every pixel is part of a region. The edge image obtained from the
gradient log-range image is thresholded to detect outstanding edges and can be compared with the results from the
robust CFAR detection on the intensity image.

4.2. Results

Figure 5 shows the output from the conventional (CA) CFAR algorithm using a sliding window of 9 x 9 pixels around
the test pixel. We have used a threshold that reflects the 85th percentile of bright pixels in the CFAR image. Several
false alarms can be seen and the target regions are not distinct. To improve detection using this algorithm would
require a larger window size but with a greater penalty at the image boundary. Figure 6 (a) shows the result of
using our robust CFAR algorithm on the intensity image. We are able to get rid of several of the false positives with
more distinct ‘activity’ regions. Figure 6 (b) is the thresholded edge image of the gradient log-range image indicating
boundaries where sharp gradient change occurs.

5. CONCLUSION

In this paper, we have investigated a novel approach to unsupervised segmentation of LADAR images using a coding
theoretic approach based on the MDL principle. Our model is a random Gaussian field with piecewise constant mean
and variance functions. We develop the adaptive recursive partitioning algorithm which is unsupervised, recursive and
not restricted to dyadic partitions. The intensity and range data are treated differently because the latter provides
location information which is fundamentally different from the energy (reflectance) images obtained from the former.



(b)

Figure 6. (a) CFAR detector on the intensity image. (b) Thresholded edge-range image.

Preprocessing transforms the images into a suitable form for our assumed image model. Our segmentation scheme is
applied to the intensity image. We develop a robust CFAR detector based on our segmentation scheme, to indicate
possible target regions. The gradient of the log-range image is thresholded to detect points of change in planar
slope. Results from our segmentation scheme and the robust CFAR detector indicate that it is promising for target
detection in LADAR imagery because it accurately locates areas of ‘activity’ in the intensity and range images.
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