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ABSTRACT

We present a new approach to SAR image segmentation based on a Poisson approximation to the SAR amplitude
image. It has been established that SAR amplitude images are well approximated using Rayleigh distributions.
We show that, with suitable modifications, we can model piecewise homogeneous regions (such as tanks, roads,
scrub, etc.) within the SAR amplitude image using a Poisson model that bears a known relation to the underlying
Rayleigh distribution. We use the Poisson model to generate an efficient tree-based segmentation algorithm guided
by the minimum description length (MDL) criteria. We present a simple fixed tree approach, and a more flexible
adaptive recursive partitioning scheme. The segmentation is unsupervised, requiring no prior training, and very
simple, efficient, and effective for identifying possible regions of interest (targets). We present simulation results on
MSTAR clutter data to demonstrate the performance obtained with this parsing technique.
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1. INTRODUCTION

Segmentation of Synthetic Aperture Radar (SAR) images addresses the problem of identifying different regions of
homogeneous “textural” properties within the image. Several texture segmentation schemes have been designed for
this purpose; they naturally fall into two broad categories:

e Supervised — requires training prior to segmentation.

e Unsupervised — direct segmentation with no training.

In supervised schemes, we follow a two-step procedure: training followed by segmentation. In these techniques,
we are required to have several sets of reliable training data for every class (texture), from which we extract a set
of parameters that we label the characteristic signature for the underlying class. The signature could either be a
deterministic set of parameters or a probabilistic model of the training data. Given data belonging to an unknown
class, we then try to determine the class with which the data has the closest match. The key issue in these schemes is
the definition of what constitutes the signature for a class. Given an intelligent and informed technique to determine
the signatures, supervised approaches work well for segmentation problems.

However, there is a drawback in the supervised approach: oftentimes, sufficient data may not be available to form
reliable signatures, or the data may not be accurate or completely representative. Also, in some cases, it may be
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impossible to obtain training data. In these instances, we are faced with the problem of having to segment an image
into textures or homogeneous regions, the nature and number of which we have very little prior knowledge of. In
other words, we are faced with the problem of having to perform a “blind” segmentation.

This situation leads us to examine the second category of segmentation schemes — unsupervised techniques. In
these techniques, we attempt to cluster unknown image data into groups using some predetermined criterion. The
criterion used in a particular problem depends on any prior knowledge we have about the general nature of the
problem. However, it is completely independent of the specific textures or classes we are trying to determine from
the given data. It is important to note that unsupervised techniques are not necessarily better than supervised
techniques, especially when we have very good training data. It is only that certain situations may warrant that we
use unsupervised schemes to effect a reliable (in most cases, coarse) segmentation, and it is to these situations that
our proposed method is targeted.

This paper addresses the following two problems:

e The characterization of SAR amplitude images using suitable Poisson field approximations.

e The use of unsupervised progressive parsing of Poisson fields using the Minimum Description Length (MDL)
criterion.

In the sections to follow, we discuss both the above problems and demonstrate the effectiveness of the overall technique
on MSTAR clutter data.

2. POISSON MODELS AND SAR IMAGES

We first address the issue of why we choose to model the SAR amplitude image using Poisson fields. Our main goal
is to parse, or segment, the observation space into regions of (roughly) homogeneous intensity in an unsupervised
manner. This problem has been studied and successfully solved by Nowak and Figueiredo' using Rissanen’s MDL
principle.? This technique gives good results when the data are well modeled by a spatial Poisson distribution. A
significant advantage of the approach is that, since the Poisson data are integer-valued, we are able to derive MDL
criteria without recourse to asymptotic approximations, which is not the case when the data is modeled by, say,
Gaussian distributions. The success of the technique led us to explore the possibility of applying the same to SAR
data by modeling it using Poisson field approximations.

We begin our study by examining the nature of SAR images in order to see how their properties can be exploited
to determine a suitable Poisson approximation. It is a well-known fact that SAR images are contaminated with
a particular kind of noise, commonly referred to as speckle. This occurs due to the interference of waves reflected
from many elementary scatterers within a resolution cell on the imaged surface. This effect causes a pixel to pixel
variation in intensity, which manifests itself in the granular pattern or speckle typically observed in SAR images.

Suppose we have a random SAR data set (typically complex) represented by X*. Then, it has been observed
that the pixels y =| z | in the speckled SAR amplitude image ¥ =| X | are Rayleigh distributed® with pdf
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where o®> = E[Y?], is the mean of the intensity image Y2. Note that this value is pizel dependent since it is

characteristic of the resolution cell associated with every pixel. However, we can reasonably argue that the mean
intensity associated with every pixel in a homogeneous region is approximately uniform, and hence, such a region

can be characterized by a single Rayleigh distribution with parameter . The mean and variance associated with
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this Rayleigh distribution are given by* p = Y72 and o? = , respectively.

The intensity image Z = Y2, for a single-look SAR image, is exponentially distributed, with pdf
1 -

p(z) = 2¢

“Upper case letters denote realizations of random variables, and lower case the actual values assumed by them.



For our analysis, we could work with either the amplitude or the intensity image. Since our goal is segmentation, we
choose to work with the amplitude image since it has been shown that® it is very difficult to segment an intensity
SAR image based on the exponential distribution.

Consider a (homogeneous) region Yy of the amplitude image Y, having a Rayleigh distribution parameterized by
«, with mean p and variance 2. In order to approximate Y using a Poisson model with parameter AT, we match the
moments of the Rayleigh and the Poisson distributions. Specifically, we match the first (mean) and second (variance)

moments of the two distributions. Then, we must have A = y = o?; that is,
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The above analysis leads us to conclude that we need to normalize the region Yx in the amplitude image Y
such that the associated o? = E[Y}] = (4 "7z~ Suppose ap = E[Y3]. Let ¢ = = ﬂ’; 7o+ Then, E[cYZ] = = 7r)2’
as desired. Thus, we need to scale the region YR by the factor /¢ to achieve the required Poisson approxunatlon
Fig. 1(a) shows the Rayleigh distribution with parameter o = %, and Fig. 1(b) the Poisson distribution with

parameter A\ = r”r) Observe that the Poisson provides a good approximation to the Rayleigh distribution of Fig.

1(a) (also shown superimposed on the Poisson distribution in Fig. 1(b)).

Clearly, the above process results in a spatially varying normalization over the image Y, with areas of approx-
imately uniform mean intensity values (a?’s) having the same normalization factor. This process can be rather
cumbersome in practice, and not always practical. However, we have observed, from experimental data, that fitting
a single Rayleigh density to the amplitude image Y, and adopting one normalization factor for the entire image based
on this density, is much more efficient and produces minimal deterioration in the final segmentation performance.
With this normalization, we can treat the scaled SAR amplitude image data as though it were acquired via a Poisson

process and apply Rissanen’s MDL technique to effect parsing.
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, (b) Poisson density with parameter =y With the Rayleigh

Figure 1. (a) Rayleigh density with parameter ( 4 o
density from Fig. 1(a) superimposed.

fThe Poisson random variable is parameterized by its mean and variance, both of which equal each other and assume a

positive real-valued number, in this case, .



3. MDL ANALYSIS

Suppose we have observed data that is a realization from a spatial Poisson point process whose underlying intensity
function can be well approximated by piecewise constant functions. The MDL principle essentially addresses the
following problem:

Given a set of observed data and a set of possible models, determine the model that best explains the
observed data.

The first step here is to formalize the concept of the ‘best’ model in any given scenario. For this, we base our
formulation on that of Rissanen? and his MDL criterion. The basic principle of the technique is provided here (for
more details, refer to Nowak and Figueiredo!). Suppose we wish to transmit some observed data x to a hypothetical
receiver. Given a probabilistic model for the data, say p(z|f), the Shannon-optimal code length is —logp(x|6). In
order to decode the transmitted information, the receiver also needs to know the model parameters 6. If 8 is unknown
a priori, this would mean that we need to estimate it, code it, and then transmit. Now, consider a set of K competing
model classes {p;(z|6;)}X,. In each class i, the “best” model is the one that gives the minimum code length, and
we express this as:

~

0; = argmin {—logp;(z(6;)} = argmax p;(z|6;).

Note that this is simply the mazimum likelihood (ML) estimate within model class i. But if the class is unknown a
priori, the “best” overall model is the one that leads to the minimum description length: the sum of — logp;(x|6;)
with the length of the code for ; itself. The fundamental aspect of MDL is that unlike the ML criterion, it performs
model selection by penalizing more complex model classes (those requiring longer parameter code lengths).

The critical issue in applying MDL lies in the encoding of the parameter 6;. Appropriate parameter code lengths
are usually based on asymptotic approximations; for example, the well known (1/2)log N, where N is the amount
of data, is an asymptotic code length.? Nowak and Figueiredo! devised a scheme whereby they avoid asymptotic
approximations and obtain exact code lengths using Poisson approximations. Since our unsupervised parsing tech-
nique is based on this work, we first provide an overview of the scheme, and then explain how it applies to SAR
data.

4. MDL FOR POISSON DATA

The MDL technique is general enough to be applied to a wide class of data. However, as mentioned earlier, to avoid
the problem of asymptotic approximations, we only consider the special case when our data can be regarded as (at
least approximately) Poisson. In the analysis that follows, we use the 2-D Haar multiscale wavelet analysis as the
underlying framework.

Two approaches are explained here:

e Quadtree-based Segmentation, wherein we progressively parse the Poisson image data into dyadic partitions.

e Adaptive Recursive Segmentation, wherein we progressively partition the image data into rectangular tessela-
tions of the plane.

Both the approaches use the MDL model class selection criteria as the basic building block.

4.1. Quadtree-based Segmentation

Suppose we have Poisson image data {zs,;}, k, =0,...,27 — 1 (note that the data size is restricted to be a power
of 2 in both k and [), and define xj4; = xr; and for j =J —1,...,0

Tikl = Tj+1,2k20 F Tjt1,2k+1,20
FTj41,2k,2041 + Tjt1,2k41,2041- (1)
Here, j = J and j = 0 are the highest (finest) and lowest (coarsest) resolutions (scales), respectively. Adopting a

predictive coding approach, operating in scale, from coarse to fine, we start by transmitting the total count xg o
which we code using Elias’ technique for arbitrarily large integers.? We then progressively transmit the data (in



a coarse-to-fine fashion), wherein, at each stage, we take advantage of the coarser scale data already sent. Thus,
at scale j + 1 we only transmit the triple ;11 28,21, Tj+1,2k+1,20, Tj+1,2k,20+1, since the receiver already has the
corresponding total z; 1, and consequently, can infer ;11 2x41,21+1 from Eq. 1.

The quantity of interest to us is the conditional probability p(z;41 2k 21, Tj+1,2k+1,21, Tj+1,2k,20+1|Tj,k,) Which in

6,7 . _ Ajt12k.20 _ Ajg12k41,21
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this case, follows a multinomial distribution, o
2.k,

)

Aj41,2k,2041

o o2, where the {A; 1} are the intensities underlying the Poisson counts.
IRy

and pjy1ok2041 =

Consider two alternative model classes:

Model Class 0: This model assumes a homogeneous Poisson process, and hence, there is no split, requiring no
encoding. The description length Ly is given by the negative of the log of the multinomial probability
p(l’j+1,2k,21,$j+1,2k+1,2l,$j+1,2k,21+1|56j,k,l)-

Model Class 1: Here, we assume non-homogeneous regions, and split into 4 subregions. The parameters are coded
and transmitted progressively with log,(z;r: + 1), logy(Tj ki — Tj+1,2k,20 + 1), and logy (z5.60 — Tj41,2k,20 —
Tj4+1 2k+1,21 + 1) bits, respectively. Their sum gives us the description length L;.

We transmit the data according to Model Class 0 if Ly < Ly; else, we use Model Class 1 (note that the model class
we choose when Ly = Ly is irrelevant). The optimal MDL parsing of the data is obtained according to this same
criterion, applied at each scale and location; i.e., if Ly < Ly, we transmit the parameters of Model Class 0, else, we
transmit the parameters of Model Class 1. The underlying piecewise constant intensity (scale J) function is then
reconstructed/estimated in a successive refinement scheme starting from the initial Ao 0,0 = 20,0,0, and building on
this using the sequence of splitting proportion estimates transmitted, these being the parameters (p’s) of the selected
model class. This MDL rule can be shown to be equivalent to a Bayesian selection criterion. Complete details can
be obtained from Nowak and Figueiredo.

4.2. Adaptive Recursive Segmentation

The quadtree-based segmentation approach outlined above is limited by the fact that the parsing is restricted to a
fixed quadtree. In general, the best locations for parsing may not coincide with the dyadic partition enforced by
this multiscale analysis. The scheme presented here considers an adaptive recursive approach that allows for splits
at arbitrary locations.

Again, we begin with a Poisson data set {zr;}, k,{ = 0,...,N — 1, but in this case, N need not be a power of
2. We now have greater freedom in how we split the data. However, for purposes of computational tractability, we
restrict the splitting to rectangular tesselations of the plane, giving rise to the following 3 possible model classes.

Model Class 0: Here, we assume homogeneous rectangular regions with constant Poisson intensity. Hence, we have
no splitting.

Model Class 1: Here, we assume non-homogeneous regions within the rectangle, and split it into four sub-rectangles
defined by a common vertex, each characterized by a different constant intensity. The advantage over the
quadtree approach where the split locations were fixed, is that we can now look for the best possible such split.

Model Class 2: Again, we assume non-homogeneous regions, but the rectangle is split either horizontally or verti-
cally into two sub-rectangles, each with its own intensity. As in Model Class 1, we can select the best possible
location to effect the splitting.

In reality, we actually have under Model Classes 1 and 2, several sub-classes, each corresponding to a split at a
specific location. However, if we assume that every split location in the sub-classes is a priori equiprobable, then
each index requires the same code length which can then be dropped from any comparisons. The description lengths
L;’s for each of these classes can be derived from the associated multinomial probabilities - for complete details, refer
Nowak and Figueiredo.!

The MDL-based parsing process is as follows: we start by encoding the total count sy = iV;Ol Eﬁgl 2. Then,
from the full data set, we compute the description lengths for all possible splits. Unless we have Lq (description length
for Model Class 0) less than all other L;’s, we split, either using Model Class 1 or Model Class 2 (the actual splitting



location is of course determined by the corresponding L; that is minimum). This process is recursively applied to
rectangular blocks in the image data (at the start, the block is the entire image), and every time one rectangular
block is split (into 2 or 4 sub-rectangles), the criterion is again applied to the resulting sub-regions. At each stage, we
need to transmit the s;’s (total Poisson counts of the sub-rectangles) corresponding to the splits chosen. The parsing
process stops when no further splits are indicated by the MDL criterion, which implies the selection of Model Class
0 for every sub-block. The final estimate of the intensity field is piecewise flat, with the rectangular regions defined
by the parsing; the corresponding intensities are the ML estimates based on the data inside each region. Thus, we
have an efficient adaptive recursive partitioning scheme, which we can now apply to parse Poisson data.

5. SIMULATION RESULTS

In this section, we present the results of applying the above two parsing techniques to SAR data. Since this is an
unsupervised approach, we do not require any prior training.

We use, as an illustrative example, the MSTAR clutter data HB06170,® which is a SAR image containing forest
and field imagery (Fig. 2). The SAR amplitude data is Rayleigh distributed (see Fig. 3(a)), and the corresponding
intensity data is exponentially distributed (see Fig. 3(b)), which suggests that we have a single-look image. We
normalized the amplitude data shown in Fig. 2, to approximate a Poisson process using the approach outlined in
Section 2. The resulting normalized image is shown in Fig. 4. We can now assume that this normalized image is well
approximated by Poisson fields, and apply the MDL-based parsing techniques to it. Fig. 5 shows the reconstructed
image obtained by applying the fixed quadtree-based parsing technique, while Fig. 6 shows the reconstructed image
using the adaptive recursive parsing scheme. The data shown in Figs. 5 and 6 represent the different (homogeneous)
regions, each characterized by a constant Poisson intensity determined by the fixed (Fig. 5) and adaptive (Fig. 6)
tree-based parsing algorithms. The main difference between the two approaches is the flexibility in the adaptive
approach which results in a finer delineation of the forest boundary, and in far fewer regions. In both cases, observe
that we obtain a fairly good segmentation, especially in the homogeneous field region. We tested this approach on
several SAR images with uniformly good results. This suggests that this technique yields a good and reliable coarse
segmentation, which can then be fed to more sophisticated segmentation algorithms to effect better final results.

6. CONCLUSIONS

We have presented a technique that performs unsupervised parsing of SAR data using the MDL criterion, specifically
adapted to Poisson processes. For this, we showed first how we can approximate a SAR amplitude image by a
Poisson process by using a suitable normalization, and then explained how we can apply MDL-based parsing to the
normalized image. Two parsing approaches were enunciated — a fixed quadtree-based approach, and an adaptive
recursive approach. Both these are based on a progressive multiscale refining hypothesis, with the adaptive approach
giving us greater flexibility in selecting the optimal partitions.

We illustrated the effectiveness of this technique in providing coarse segmentations of SAR images through an
example. It is important to stress that our main goal here was not to obtain the best possible segmentation; rather,
we wanted to obtain, with no prior training, a reliable coarse segmentation in a reasonably efficient manner.
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Figure 2. Original SAR amplitude data HB06170 containing forest and field imagery.

(a) (b)
Figure 3. Histogram plots of the amplitude and intensity of the data in Fig. 2: (a) Approximates a Rayleigh
distribution with parameter o = 58.36, (b) Approximates an exponential distribution with parameter a = 58.36.



Figure 4. The SAR data of Fig. 2, normalized to approximate a Poisson process.

Figure 5. Unsupervised segmentation of the data in Fig. 4 using the multiscale quadtree algorithm of Section 4.1.



Figure 6. Unsupervised segmentation of the data in Fig. 4 using the adaptive recursive parsing algorithm of Section
4.2.



