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Abstract

This paper describes novel methods for estimating

piecewise homogeneous Poisson �elds based on mini-

mum description length (MDL) criteria. By adopt-

ing a coding-theoretic approach, our methods are able

to adapt to the the observed �eld in an unsupervised

manner. We present a parsing scheme based on �xed

multiscale trees (binary, for 1D, quad, for 2D) and an

adaptive recursive partioning algorithm, both guided

by MDL criteria. Experiments show that the recursive

scheme outperforms the �xed tree approaches.

1 Introduction

Consider a realization from a spatial Poisson point

process whose underlying intensity function is (or can

be approximated as) piecewise constant (as exempli-

�ed in Figure 1(a)). This type of data arises in photon-

limited imaging, particle and astronomical physics,

computer tra�c network analysis, and many other ap-

plications involving counting statistics. In particular,

photon-limited images are formed by detecting and

counting individual photon events (e.g., in gamma-ray

astronomy or nuclear medicine).

From an observed realization (see Figure 1(b)), our

goal is to parse, or segment, the observation space into

regions of (roughly) homogeneous intensity (Figure

1(c)); i.e., regions of space in which the distribution of

points is well modeled by a spatial Poisson distribution

with constant intensity. In this paper, we propose two

new methods for unsupervised progressive parsing of

Poisson �elds based on Rissanen's minimum descrip-

tion length (MDL) principle [1]. One of the interesting

aspects of our development is that, since the Poisson

data (counts) are integer-valued, we are able to derive
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Figure 1: Illustration of the problem addressed in this

paper: (a) piecewise-constant intensity function (Pois-

son intensities 0.05, 0.2, and 0.4); (b) scatter-plot of

observed photon events; (c) intensity �eld parsing by

MDL-based recursive algorithm.

MDL criteria without recourse to asymptotic approx-

imations. In contrast, most applications of MDL in-

volve Gaussian statistics (which are real-valued) and

require asymptotic arguments. Hence, our application

of MDL here is especially simple and well motivated.

This work is a coding-theoretic alternative to related

Bayesian estimation schemes [2, 3, 4].

2 Mininum Description Length
The MDL principle addresses the following ques-

tion: given a set of generation models, which best

explains the observed data? To get a handle on

the notion of \best," Rissanen employed the follow-

ing gedankenexperiment. Suppose that we wish to

transmit the observed data x to a hypothetical re-

ceiver. Given a (probabilistic) generation model for

the data, say p(xj�), the Shannon-optimal code length

is � log p(xj�). Of course, the receiver would also need

to know the model parameters � to decode the trans-

mission; then, if � is a priori unknown, we also need

to estimate it, code it, and transmit it. Now, consider

a set of K competing model classes fpi(xj�i)g
K
i=1. In

each class i, the \best" model is the one that gives the

minimum code length,

b�i = argmin
�i

f� log pi(xj�i)g = argmax
�i

pi(xj�i);



this is simply the maximum likelihood (ML) estimate

within model class i. But if the class is a priori

unknown, the \best" overall model is the one that

leads to the minimum description length: the sum of

� log pi(xj�i) with the length of the code for �i itself.

The fundamental aspect of MDL is that it performs

model selection (which the ML criterion alone does

not) by penalizing more complex model classes (those

requiring longer parameter code lengths). MDL crite-

ria have been successfully used in several image anal-

ysis/processing problems (see references in [5]).

The delicate issue in applying MDL is in how to

encode the parameter �i; appropriate parameter code

lengths are usually based on asymptotic approxima-

tions; e.g., the well known (1=2) logN , where N is the

amount of data, is an asymptotic code length [1]. In

this paper, we are able to avoid asymptotic approxi-

mations and obtain exact code lengths.

3 MDL for Poisson Data

We introduce next two progressive (multiscale or

multiresolution) approaches to coding Poisson data.

These approaches use MDL model class selection cri-

teria as the basic building block.

3.1 Binary Multiscale Tree

Assume that the observed data is a (1D) sequence

of counts, fxkg
N�1
k=0 , whose length N = 2J . Let xJ;k �

xk, for k = 0; :::; 2J � 1; for j = J � 1; : : : ; 0, let us

de�ne the multiscale analysis of the data according to:

xj;k � xj+1;2k + xj+1;2k+1; k = 0; : : : ; 2j � 1: (1)

The fxj;kg are Haar scaling coe�cients; for more de-

tails on multiscale analyses of Poisson data, see [2, 3].

Now suppose we wish to transmit the observed

data fxJ;kg. Adopting a predictive coding approach,

operating in scale, from coarse to �ne, we naturally

start by transmitting the total count x0;0; this can be

coded using Elias' technique for arbitrarily large in-

tegers [1]. We then progressively transmit the data

(in a coarse-to-�ne fashion) by next sending x1;0, then

x2;0; x2;2, and so on. Note that we only need to send

the scaling coe�cients with even k indices; the cor-

responding odd-indexed data are deduced from them

and the previously transmitted coarser data (e.g.,

x1;1 = x0;0 � x1;0). At each stage, our progressive

transmission scheme takes advantage of the coarser

data already sent. Formally, we are interested in

the conditional probability p(xj+1;2k jxj;k). It is well

known (see [2, 3]) that this probability is binomial

with parameters xj;k and �j;k �
�j+1;2k
�j;k

, where �j;k

and �j+1;2k are the intensities underlying the Poisson

counts xj;k and xj+1;2k , respectively. So,

p(xj+1;2k jxj;k ; �j;k) = Bi(xj+1;2k jxj;k; �j;k)

=

�
xj;k

xj+1;2k

�
�
xj+1;2k
j;k (1� �j;k)

xj+1;2k+1 : (2)

Now consider two available model classes. Model

Class 0 assumes a homogeneous Poisson process; then,

�j+1;2k = �j+1;2k+1 and consequently, since �j;k =

�j+1;2k + �j+1;2k+1, we have �j;k = 1

2
. Alternatively,

in Model Class 1, �j;k is a free parameter.

Hence, we have two possible description lengths (re-

call that xj;k is already known by the receiver).

Model Class 0: Since �j;k = 1=2, it doesn't require

encoding; the description length is then simply

L0 = �logBi(xj+1;2k jxj;k; 1=2) (3)

= �log

�
xj;k

xj+1;2k

�
+ xj;k log 2

Model Class 1: In this case, the �rst step consists in

estimating, coding, and transmitting �j;k. Its ML

estimate is b�j;k =
xj+1;2k
xj;k

. Because xj;k was al-

ready transmitted, it su�ces to encode and trans-

mit xj+1;2k ; since xj+1;2k 2 f0; 1; :::; xj;kg, this re-
quires log(xj;k+1) bits. Surprisingly, we �nd that

while encoding the ML estimate of the parame-

ter, we have encoded the data xj+1;2k itself, and

so no additional coding is needed. The resulting

description length is simply

L1 = log(xj;k + 1) = � log
1

xj;k + 1
: (4)

We transmit the data according to Model Class 0

if L0 < L1, and using Model Class 1, otherwise (what

we choose when L0 = L1 is irrelevant). We then de�ne

the optimal MDL parsing of the data according to the

same criterion, applied at each scale and location. If

L0 < L1, we put b�j;k = 1=2; otherwise, b�j;k = xj+1;2k
xj;k

.

The underlying piece-wise constant intensity (scale

J) is reconstructed/estimated from the total counts

x0;0 and the sequence of splitting proportion esti-

mates fb�j;kg. Set b�0;0 � x0;0. Next, with j = 1,b�1;0 = b�0;0b�0;0 and b�1;1 = b�0;0(1� b�0;0). Repeat this
re�nement process for j = 2; : : : ; J , to obtain fb�J;kg.

Finally, it is worth pointing out that the same cri-

terion to choose between Model Classes 0 and 1 can

be obtained under a Bayesian model selection per-

spective. Let y denote a sample of a binomial ran-

dom variable (same as xj+1;2k) with probability func-

tion Bi(y jn; �) and consider the problem of decid-

ing between two hypotheses: H0: � = 1=2, or H1:



� 6= 1=2 (otherwise totally unknown). Furthermore,

with no a priori preference for H0 or H1 we use a

prior p(H0) = p(H1) = 1=2. The models for � under

the two hypotheses are

p(�jH0) = �(�� 1=2); (5)

p(�jH1) = U(� j 0; 1); (6)

where �(x�a) denotes a Dirac delta function (a point

mass) at a and U(� j a; b) stands for a uniform prob-

ability density function between a and b. Naturally,

we decide for H1 if p(H1jy) � p(H0jy), which is equiv-

alent to p(yjH1) � p(yjH0) because p(H0) = p(H1).

The marginal likelihoods are particular cases of the

binomial-Beta distribution (see [6], pp. 117)

p(yjH0) =

Z
1

0

p(yj�) p(�jH0) d� = Bi(y jn; 1=2)

p(yjH1) =

Z
1

0

p(yj�) p(�jH1) d� =
1

n+ 1
:

Then, comparing p(yjH0) versus p(yjH1) is the same

as comparing L0 versus L1, as given by (3) and (4).

3.2 Adaptive Recursive Parsing

One of the limitations of the multiscale approach

above is that the parsing is restricted to a �xed binary

tree. In general, the best locations for parsing may

not coincide with the dyadic partition enforced by the

multiscale analysis above. Hence, we now consider an

adaptive recursive approach that allows for splits at

arbitrary locations. Again, suppose we wish to trans-

mit a length N sequence of counts x = fxkg
N�1
k=0 . Un-

like in the �xed tree approach, N no longer needs to

be a power of 2.

Under Model Class 0, we code and transmit the N

counts assuming that they are Poisson samples with a

common intensity �. Alternatively, we split the data

into two (connected) components with two di�erent

constant intensities; however, unlike in the �xed tree

approach described in the previous subsection, we are

allowed to look for the best location to split the counts.

Accordingly, this alternative actually consists of N�1

model classes, one for each split location, which we will

index by i 2 f1; 2; :::; N�1g. We thus have a total ofN

candidate classes; if they are all a priori equiprobable,

each index requires the same logN code length which

can then be dropped from any comparisons.

Since this basic building block will be included in a

recursive/predictive, coarse-to-�ne, procedure, we as-

sume that the total count sN =
PN�1

k=0 xk is known to

the receiver and need not be encoded. The description

lengths achieved are:

Model Class 0: With a constant intensity model,

and given the total count sN , the individual

counts follow a multinomial distribution with all

parameters equal to 1=N , i.e.,

p(x1; :::; xN jsN ) =

�
sN

x1 : : : xN

��
1

N

�sN

1N�1X

k=0

xk = sN

;

where 1C is the indicator function of condition

C (equal to one if C is true, zero otherwise); the

multimonial coe�cients are given by�
sN

x1 : : : xN

�
=

sN !

x1! x2! � � �xN !
:

In this case, there is no parameter to estimate and

the resulting description length is simply

L0 = � log

�
sN

x1 : : : xN

�
+ sN logN: (7)

Observe that (3) is a particular case of this ex-

pression, for N = 2, sN = xj;k, and x1 = xj+1;2k .

Model Classes 1; :::;N � 1: Model class i assumes

that fxkg
i�1
k=0 and fxkg

N�1
k=i are sets of Pois-

son samples of di�erent intensities. Given sN ,

the individual counts are still multinomially dis-

tributed. However, the �rst i parameters are now

equal to, say, �=i, and the N � i last ones equal

to (1 � �)=(N � i). Note that with � = i=N , we

recover Model Class 0. Then,

p(x1; :::; xN jsN ; �) =

�
sN

x1 : : : xN

�
�

�
�

i

�si � 1� �

N � i

�sN�si

1N�1X

k=0

xk = sN

(8)

where si �
Pi�1

k=0 xk , i = 1; : : : ; N .

To use this model to encode the data, we �rst

have to estimate �; its ML estimate is simplyb� = si
sN

. Since sN is known, all that needs to

be encoded is si which involves a code-length of

log(1 + sN ) (since si 2 f0; 1; :::; sNg). But after

transmitting si, we can build a better code for

the data, because we know that
Pi�1

k=0 xk = si

and
PN�1

k=i xk = sN � si. Speci�cally, each set of

counts is itself multinomially distributed, leading

to a total code length

Li = log(1 + sN )� log

�
si

x1 : : : xi�1

�
+ si log i

� log

�
sN � si

xi : : : xN�1

�
+ (sN � si) log(N � i):



Notice that (4) is a particular case of this ex-

pression for N = 2, sN = xj;k , x1 = xj+1;2k ,

x2 = xj+1;2k+1.

Our progressive/recursive parsing (or transmission)

scheme, proceeds as follows. As above, we start by

encoding the total count sN by using, e.g., Elias'

technique for arbitrary integers [1]. Then, from the

full data set, we compute all the Li's. If L0 <

minfL1; :::; LN�1g, our criterion states that the data

is best encoded as a single piece, and the procedure

stops. Otherwise, there is one best partition of the

data, say fxkg
i�1
k=0 and fxkg

N�1
k=i . We then transmit

i and si and apply the criterion to the two segments

fxkg
i�1
k=0 and fxkg

N�1
k=i . The receiver can compute the

second partial count from sN (which it already re-

ceived) and si as sN � si; i.e., when the procedure

is applied to each of the subsegments, the respective

lengths and totals were already transmitted. By re-

cursively repeating this procedure independently to

the resulting sub-blocks of data we obtain a very ef-

�cient recursive scheme of re�nement. The process

stops when no further splits are indicated by the cri-

terion (i.e., we keep splitting blocks until L0 is selected

for each sub-block). The underlying intensity �eld es-

timate is piece-wise constant, with the segments de-

�ned by the obtained parsing and the corresponding

intensities as the ML estimates inside each segment.

Of course, this is a suboptimal scheme, because at each

level we are ignoring that each segment will be further

subdivided into even smaller pieces, thus achieving an

even shorter code length. An optimal scheme would

be computationally extremely heavy.

We conclude this section with an illustrative exam-

ple. As seen in Figure 2, the recursive parsing scheme

clearly outperforms the binary tree approach when the

underlying intensity is piece-wise constant.

4 Parsing in Two or More Dimensions

The 1D strategies described above are easily ex-

tended to 2D (or higher) using rectangular parsing.

To illustrate the minor modi�cations encountered in

higher dimensions, we look at both methods in the 2D

(image) setting.

4.1 Quadtree-based Image Parsing

In 2D, the Haar multiscale data analysis is as fol-

lows. We begin with Poisson data fxk;lg, k; l =

0; : : : ; 2J � 1, and de�ne xJ;k;l � xk;l and for j =

J � 1; : : : ; 0

xj;k;l = xj+1;2k;2l + xj+1;2k+1;2l +

xj+1;2k;2l+1 + xj+1;2k+1;2l+1:

100 200 300 400 500

20

40

60

80

100

120

100 200 300 400 500

20

40

60

80

100

120

(a) (b)

100 200 300 400 500

20

40

60

80

100

120

100 200 300 400 500

20

40

60

80

100

120

(c) (d)

Figure 2: Example of estimating/parsing a piece-wise

constant intensity function from observed counts. (a)

Intensity. (b) Counts. (c) Estimate frommultiscale bi-

nary tree algorithm. (d) Adaptive recursive estimate.

Here, j = J and j = 0 are the highest (�nest)

and lowest (coarsest) resolutions (scales), respec-

tively. In a progressive coding scheme, at scale

j + 1 we transmit each triple xj+1;2k;2l, xj+1;2k+1;2l,

xj+1;2k;2l+1, since the receiver already has the cor-

responding total xj;k;l. The conditional probability

p(xj+1;2k;2l; xj+1;2k+1;2l; xj+1;2k;2l+1jxj;k;l) is multino-
mial (rather than binomial, as in the 1D case) with

parameters �j+1;2k;2l =
�j+1;2k;2l
�j;k;l

, �j+1;2k+1;2l =
�j+1;2k+1;2l

�j;k;l
, and �j+1;2k;2l+1 =

�j+1;2k;2l+1
�j;k;l

, where the

f�j;k;lg are the intensities underlying the Poisson

counts.

Analogous to the 1D case, we consider two alterna-

tive models.

Model Class 0 (no split): The �'s are set to 1=4,

requiring no encoding, and the description length

is the �log of the multinomial probability.

Model Class 1 (split into four): The parameters

are coded and transmitted (which, just as in

the 1D case, encodes the data itself). The pa-

rameters can be transmitted progressively with

log
2
(xj;k;l + 1), log

2
(xj;k;l � xj+1;2k;2l + 1), and

log
2
(xj;k;l � xj+1;2k;2l � xj+1;2k+1;2l + 1) bits, re-

spectively. The sum is the description length.

This MDL rule can be shown to be equivalent to a

Bayesian selection criterion (see Subsection 3.1).



4.2 Adaptive Recursive Image Parsing

In 2D we have more freedom in how we split the

data. To maintain a manageable algorithm, we restrict

the splitting to rectangular tesselations of the plane.

In our recursive scheme, the MDL criterion is applied

to rectangular blocks to select one of the following pos-

sibilities: a) no splitting (the rectangle is considered

homogeneous); b) the rectangle is split into four sub-

rectangles de�ned by a common vertex (the best pos-

sible such splitting is chosen); and, c) the rectangle is

split horizontally or vertically into two sub-rectangles

(the best possible such splitting is chosen). As in the

1D case, the code lengths for these options are derived

from the multinomial probabilities.

We start by applying the criterion to the full image.

Every time one rectangular block (the image itself, to

start) is split (into 2 or 4 sub-rectangles), the crite-

rion is again applied to the resulting sub-regions. The

parsing process stops when no further splits are indi-

cated by the MDL criterion. The �nal estimate of the

intensity �eld is piece-wise at, with the rectangular

regions de�ned by the parsing; the corresponding in-

tensities are the ML estimates based on the data inside

each region.

Application of the quadtree and recursive parsing

schemes to a natural intensity image is shown below in

Figure 3; see also Figure 1. The true intensity is near

piece-wise constant, and because the recursive scheme

is more adaptive in its selection of parsing regions, it

does a better job in this case.

5 Conclusions and Future Work

Our MDL multiscale tree-based parsing scheme is

an alternative to the Bayesian methods of [2, 3]. Re-

call that we have shown that our MDL criterion is,

in fact, a special case of a Bayesian approach. The

MDL approach, however, has no free parameters; it

is fully data-driven. Due to the predictive (coarse-

to-�ne) nature of the encoding/estimation scheme, we

were able to write exact (non-asymptotic) expressions

for the parameter code-lengths.

Our adaptive recursive method is related to the

\Bayesian Blocks" procedure developed in [4] (the re-

cursive structure is similar); however, the Bayesian

selection rule used in [4] di�ers considerably from the

MDL criterion, and only 1D data is considered there.

The 2D methods described here are based on rect-

angular tesselations. We could use more general re-

�nement schemes based on polygonal region splitting.

For example, in the recursive scheme, at each step we

could search for the optimal (in MDL sense) line(s)

partitioning a given polygon into to smaller polygons.

(a) (b)

(c) (d)

Figure 3: Parsing a natural image. (a) Intensity. (b)

Counts, (normalized) MSE = 1.00. (c) Estimate from

multiscale quadtree algorithm, MSE =0.83. (d) Adap-

tive recursive estimate, MSE = 0.54.
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