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ABSTRACT

This paper introduces multi-scale tree-based approaches to
image segmentation, using Rissanen’s coding theoretic min-
imum description length (MDL) principle to penalize overly
complex segmentations. Images are modelled as Gaussian
random fields of independent pixels, with piecewise con-
stant mean and variance. This model captures variations in
both intensity (mean value) and texture (variance). Segmen-
tation thus amounts to detecting changes in the mean and/or
variance. One algorithm is based on an adaptive (greedy)
rectangular recursive partitioning scheme. The second algo-
rithm is an optimally-pruned “wedgelet” decorated dyadic
partitioning. We compare the two schemes with an alterna-
tive constant variance dyadic CART (classification and re-
gression tree) scheme which accounts only for variations in
mean, and demonstrate their performance on SAR images.

1. INTRODUCTION

In this paper, we propose a method to parse an m�n image
y into homogeneous regions in terms of mean and variance.
We model the image as composed of connected regions of
pixels assumed to be independent and Gaussian distributed:

yij = �ij + �ij : zij ; for 1 � i � m; 1 � j � n;

(1)

where the zij are i.i.d. N (0; 1), so that yij � N (�ij ; �
2
ij).

Both the mean �ij and variance �2ij can vary from region to
region, but are constant within a given region; i.e., we model
images as Gaussian random fields with piecewise constant
mean and variance. This model is intended to capture vari-
ations in both intensity (mean value) and texture (variance).

We adopt Rissanen’s MDL principle [1, 9] to achieve
unsupervised segmentation. MDL provides a mathemati-
cal foundation for data dependent model selection by bal-
ancing the brevity of model description to its fidelity to the
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data. We introduce two different methods which involve a
tradeoff between speed and optimality: adaptive recursive
partitioning (ARP), a greedy scheme which produces rect-
angular (not necessarily dyadic) tessellations; and wedgelet
decorated dyadic partitioning (WDDP), an optimal multi-
scale analysis restricted to dyadic partitions, which allows
for wedge-splits. WDDP differs from the dyadic CART al-
gorithm proposed in [3] in that it detects changes, not only
in mean, but also in variance. The ARP algorithm was de-
veloped for Poisson fields in [8]; here we adapt it to a Gaus-
sian model of unknown mean and variance.

The paper is organised as follows: Section 2 briefly re-
views the MDL principle and derives conditional densities
required by our Gaussian model in the MDL criteria. Sec-
tion 3 describes the two schemes: the ARP and WDDP algo-
rithms. Section 4 presents comparative experimental results
of the two schemes. We conclude in Section 5.

2. THE MDL PRINCIPLE

Suppose we want to optimally encode and transmit a length-
n data sequence Xn

= fx1; � � � ; xng. Given a probability
distribution p(X

nj�), parameterized by �, it is well known
that the optimal code-length for prefix codes is given by
� log p(X

nj�) [1, 9]. If there are K models competing to
explain our data fpk(Xnj�k)gKk=1, the MDL criterion states
that the “best” is the one minimizing the description length
(DL). One form of this DL is obtained by two-part coding,

L(X
n
) = L(b�k)� log p(X

njb�k); k = 1; : : :K; (2)

where L(b�k) is the DL needed to describe b�k, the max-
imum likelihood estimate of �k, such that the decoder
knows the model under which the data code (of length
� log p(X

njb�k)) was obtained. MDL has been successfully
used in several image analysis problems [4, 5, 6, 7, 8, 11].



2.1. MDL for Gaussian Data

In the MDL approach reviewed above, we first encode and
send a parameter estimate (b�k), then the data itself, coded
according to p(X

njb�k). In our image model, we assume
that the pixels in each homogeneous region are i.i.d. Gaus-
sian. Under this data assumption, the elements of b�k are the
sample mean and sample variance. Since these statistics are
real-valued, they have to be quantized to finite precision in
order to yield a finite L(b�k). The standard solution is the
well known 1

2
logn code-length for each components of �k,

which is based on asymptotic approximations [9].
To code the data under the assumed model, we don’t

need code-words for all possible data out-comes; in fact,
once the receiver has the parameter estimate, it knows that
only data out-comes that could have led to this estimate need
to be coded. A code with code-words that are never used is
called incomplete [1, 10]; to avoid incompleteness, we de-
rive below the conditional density of the data, given the pa-
rameter estimates (or equivalently, the sufficient statistics).

2.1.1. Conditional Density: Unknown Mean and Variance

Let Xn
=fx1; :::; xng be the pixel values in a homogeneous

region of the image (i.e., n i.i.d. N (�; �
2
) samples). The

sample mean and sample variance, or equivalently the suf-
ficient statistics t1�

Pn
i=1 xi and t2�

Pn
i=1 x

2
i , are sent to

the decoder. To build an incompleteness-free code, we need
the conditional density � log p(X

njt1; t2).
The Gaussian density may be written in exponential

family form with parameters �1 =
�
�2

and �2 = � 1
2�2

,

p(X
nj�1; �2) =

�
��2
�

�n

2

e

�
n�

2

1

4�2

�
e
(�1t1+�2t2); (3)

where t1 and t2 are the sufficient statistics. The fac-
tors in (3) can be interpreted using Neyman’s factoriza-
tion, p(Xnj�1; �2) = p(X

njt1; t2)p(t1; t2j�1; �2), showing
that p(Xnjt1; t2) is uniform (constant) on the constraint set
C(t1; t2) = fXn

:
P

xi = t1 and
P

xi
2
= t2g; this is an

(n�1)-sphere resulting from intersecting an origin-centered
radius-

p
t2 n�sphere, with an hyper-plane at 45Æ in Rn.

To write p(Xnjt1; t2) we need its normalizing constant
which is the measure of C(t1; t2). The vector from the point
on the hyperplane (

t1
n
; � � � t1

n
) to the origin has length t1p

n
,

and is perpendicular to the hyperplane. From Pythagoras’
theorem we conclude that the radius of the (n�1)-sphere is
r = (t2� t1

2

n
)
1=2. Using the formula for the surface area of

a hyper-sphere (where �(�) is Euler’s gamma function)

p(X
njt1; t2) =

1

2
�(

n� 1

2
) r

2�n
�

1�n

2 IC(t1;t2)(X
n
);

(4)

where IA(Xn
) denotes the indicator function of set A.

3. TWO ALGORITHMS

We consider two different multi-scale tree-structured ap-
proaches to segment an image, based on our image model
and the MDL criterion. The entire image is represented by
the root node and final segments correspond to the leafs of
the tree. Our two algorithms differ in the way this tree is
grown, either from top down, in a greedy way (ARP), or
using a bottom-up, optimal pruning scheme (WDDP).

To describe our algorithms, we need some notation.
Given any mR � nR region R of the image y, yR de-
notes the restriction of y to R, tR1 �

P
(ij)2R yij , and

t
R
2 �

P
(ij)2R y

2
ij . A region R can be split into H disjoint

‘sibling’ regions Rh, for h = 1; : : : ; H .

3.1. Adaptive Recursive Partitioning (ARP)

This algorithm recursively takes each sub-block R (starting
with the whole image), determining whether it is best rep-
resented as homogeneous (common mean and variance) or
split into either two or four homogeneous rectangles. We
take advantage of previously transmitted information, i.e.,
if a region is split into H regions, we only need to transmit
sufficient statistics of H � 1 regions, since one set of statis-
tics may be obtained from those previously transmitted for
their ‘parent’. We start by assuming that the statistics tI1 and
t
I
2 corresponding to the entire image I have been transmit-

ted. The ARP algorithm admits two possible model classes.

Model Class 1 (No Split): Since sufficient statistics have
been transmitted, we only need to code the data. The
code-length is then L1(R) = � log p(y

RjtR1 ; tR2 ),
where the probability density is given by equation (4).

Model Class 2 (Split): We examine all possible two-way
(H = 2) and four-way (H = 4) splits and decide
on the one achieving the minimum code-length. In
addition to encoding the data under different mod-
els, we must also code the splitting location k, and
sufficient statistics for the parameters of H � 1 of
the sub-regions. For illustration, let us consider the
code-length involved in two-way horizontal splits of
an mR � nR rectangular region. Since there are
J = (mR � 1) possible horizontal split locations, we
need log J bits to code them. For the sufficient statis-
tics of one of the resulting regions, we use a worst
case analysis, noting that tR1 � t

Rh
1 and t

R
2 � t

Rh
2

(since image data is � 0). Thus we require at most
1
2
log(mRnR) for each statistic. Accordingly,

L
k
2(R) = � log p(y

R1 jtR1(k)
1 ; t

R1(k)
2 ) + log J

� log p(y
R2 jtR2(k)

1 ; t
R2(k)
2 ) + log(nRmR):

The code-length for two-way vertical and four-way horizon-
tal and vertical splits is computed similarly.



If L1(R) < mink L
k
2(R), model class 1 is chosen for

the sub-block and processing is stopped, otherwise we split
at k� = argmink L2(k), and re-apply the same splitting
criterion to each of the resulting sub-rectangles. The pro-
cedure stops when L1 is selected for all sub-regions or we
get to pixel level. Notice that this is a greedy scheme since
at each level we ignore the fact that each sub-block may be
further sub-divided to achieve an even shorter code-length.

3.2. Wedgelet Decorated Dyadic Partitioning (WDDP)

WDDP is an optimal bottom-up partitioning algorithm
based on the CART wedgelet algorithm proposed by
Donoho [3]. Our multi-scale analysis yields a wedgelet-
decorated tree, optimally grown from the bottom up, fol-
lowing the CART approach [2]. At each level, description
lengths satisfy the additivity property required by the CART
theorem, allowing for sequential optimization. Wedgelet
decompositions add flexibility, enabling non-dyadic parti-
tioning and resulting in more accurate approximation of ar-
bitrary region boundaries [3].

We restrict our analysis to dyadic partitions due to the
prohibitive complexity required to search through all possi-
ble subtrees. Wedgelets [3] enable us to represent wedge-
splits (line segment from a pixel-vertex on an edge of R
to a pixel-vertex on another edge) at different locations and
orientations. To reduce our computational complexity, we
construct a restricted dictionary of wedge-splits for each re-
gion using only vertices marked off at � = 4 equi-distant
points on all edges of dyadic blocks of edge length greater
than 4 pixels. The cardinality of our dictionary is then a
constant B = 80 (i.e., 6� 2 � 4� ). For blocks of size 4 and
less, we consider all possible pixel vertex wedges.

Given a square region R, a quad-split produces four
“children” R1; :::; R4. The additivity property requires that
the description length for R be inherited as the a sum
of the description length of its four children: L(R) =P4

i=1 L(Ri). Starting with individual pixels, we perform
quad-merges proceeding upwards by always inheriting the
best possible cumulative description length. At each node,
the description length is obtained as the best of three model
classes:

Model Class 1: Represent R as homogenous with a com-
mon mean and variance, and code-length given as:

L1(R) = � log p(y
RjtR1 ; tR2 ) + logn;

where n denotes the number of pixels in the image.

Model Class 2: Perform one of theB possible wedge splits
of R to obtain two polygons R1(b) and R2(b) for
b = 1; � � � ; B. In addition to coding the data in
each of the resulting regions, we must encode suf-
ficient statistics for both regions (again using worst

B 
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C 

(a) (b)

(c) (d)

Fig. 1. (a) Original synthetic image. Segmentation maps
obtained using the following schemes: (b) The ARP. (c) The
WDDP. (d) The constant-variance dyadic CART.

case code-lengths), and describe the location of the
wedge using logB bits. Our description length is:

L
b
2(R) = � log p(y

R1(b)jtR1(b)
1 ; t

R1(b)
2 )

� log p(y
R2(b)jtR2(b)

1 ; t
R2(b)
2 ) + 2 logn+ logB

The description length of the ‘best’ wedgelet repre-
sentation of R is L2(R) = minb L

b
2(R).

Model Class 3: In this case, R is split into a set of 4 chil-
dren fR1; R2; R3; R4g. The code-length for R is the
sum of the best description lengths of its children:

L3(R) =

4X
h=1

min fL1(Rh); L2(Rh); L3(Rh)g :

The shortest code-length for R is L(R) = minfL1(R);

L2(R); L3(R)g. We prune the tree if L(R) 6= L3(R).

4. RESULTS AND COMPARISONS

In Fig. 1(a), the patch on the left (A) has a different mean
from B but the same variance; the region on the right (C),
has the same mean as B, but a different variance. The re-
gion boundaries were chosen to illustrate the wedgelet idea.
The segmentation maps produced by the ARP and WDDP
algorithms, in Figs. 1(b) and 1(c), show that both methods
detect the change in texture on the right patch. The ARP
yields a blocky rectangular segmentation of the image; the



(a) (b)
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Fig. 2. MSTAR SAR amplitude data HB06170 (a) origi-
nal image (b) ARP-segmented image (c) WDDP-segmented
image (d) constant-variance WDDP segmentation

WDDP approximates better the linear boundaries by using
wedgelets. Fig. 1(d) shows the segmentation map for the
constant-variance wedgelet-decorated dyadic CART algo-
rithm [3] which performs as well as the WDDP in regions
with varying mean intensity, but fails to detect the change
in variance in region C.

Fig. 2 shows results of all three segmentation algorithms
applied to an MSTAR synthetic aperture radar (SAR) im-
age, in which changes in variance are important features. Fi-
nally, Fig. 3 illustrates our two schemes (ARP and WDDP)
on a SAR image of an agricultural field in Netherlands.

5. CONCLUSION

We have proposed an approach to segmenting images us-
ing an MDL criterion. Images are modeled as piece-wise
homogeneous, with regions described as sets of indepen-
dent Gaussian samples of constant mean and variance. We
presented two schemes: an adaptive recursive partition-
ing (ARP) algorithm, which is greedy but not restricted to
dyadic partitions; a wedgelet decorated dyadic partitioning
(WDDP) scheme, which is optimal but restricted to dyadic
partitions. ARP and WDDP are fast and unsupervised, en-
abling segmentation based on both intensity and variance.
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