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ABSTRACT

In this paper we introduce a novel method to determine the
model order of a stochastic model for moving objects. The main
assumption is that we make use of the knowledge that the obtained
model is going to be used for some task, specifically, for trajectory
classification. Particularly, the object motion is described by tra-
jectories performed by the objects (e.g., pedestrians), during their
motion, by representing them by a small and meaningful mixtures
of vector fields.

We present a discriminative method for model selection with-
out resort to computationally expensive cross-validation procedures.
The idea is, thus, to select the generative model achieving the best
classification performance.

Although the topic of application is video surveillance, the pro-
posed method can easily be extended to other practical situations.
Experiments with both synthetic and real data concerning pedestrian
activities illustrate the performance of the proposed approach.

1. INTRODUCTION

In this paper we are primarily concerned with the task of model
selection, which occurs in many statistical inference/learning prob-
lems. The model selection problem that must be tackled is that of
choosing a parsimonious model order, capable of describing the ob-
served data, but also able to generalize to unobserved data. More
specifically, we will focus on model selection for non-rigid trajecto-
ries performed by pedestrians in surveillance tasks. The trajectories
are described by a set of vector motion fields, as proposed in [1].
Each trajectory can be split into a set of consecutive segments, each
of which is generated by one vector field. Switching can occur at any
point in the image domain and the switching probabilities depend on
the object location. This model provides a flexible tool to represent
a wide variety of motion patterns. See Fig. 1 for an illustration.

Naturally, the trajectory model described in the previous para-
graph involves a model selection question: how many vector fields
should be used? As is well known, the maximum likelihood criterion
that is used to learn the vector fields and switching matrix, cannot
be used to select the order of the model (i.e., the number of fields),
as it leads to overfitting. Naturally, an arbitrarily large number of
fields allows the model to better explain the training data (trajecto-
ries), assigning larger values of the likelihood for the observed data,
but yielding models with poor generalization.

Common ways for avoiding overfitting have included early stop-
ping criterion, regularization, or cross-validation. Although, it is
possible to use cross-validation for simple searches over model size,
e.g., if the search is restricted to a single parameter that controls the
complexity of the model, the same can not be said for more general
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searches over many parameters in which cross-validation is compu-
tationally prohibitive.

In this paper, we propose a discriminative method for model se-
lection. Our approach is based on the knowledge that the obtained
model is going to be used for a specific task, i.e., classification. The
idea, is thus, to select the generative model achieving the best clas-
sification performance.

2. RELATED WORK

Model selection can be addressed using Bayesian tools, starting with
some prior knowledge or assumptions about the model structure.
However, fully Bayesian approaches to model selection are compu-
tationally expensive, as they require high-dimensional integrations
over model parameters and latent variables; these integrations can
only be performed exactly and cheaply in some special cases (conju-
gate priors), otherwise demanding Monte Carlos approaches. Much
work has been devoted to obtaining simplified/approximate versions
of Bayesian model selection, such as using the Laplace approx-
imation; for a comprehensive review of this area, see [2]. One
such approximate Bayesian method is Schwarz’s Bayesian inference
criterion (BIC) [3]. Another class of approaches to approximate
Bayesian inference includes the so-called variational Bayes (VB)
methods [4],[5].

Discriminative model selection criteria have also been proposed,
e.g. [6], when the ultimate goal is to identify the model configuration
which provides the highest classification accuracy. Our approach
follows this rationale, where the underlying task is to maximize the
performance of the classifier. Our discriminative model is charac-
terized to have a grid-wise vector fields and transition matrices, as
proposed in [1], i.e, each point in the grid has its own vector field a
transition matrix, which are, in general, different within grid points
(see Fig. 1). This suggests a large number of parameters to be es-
timated. In this context, the so-called model selection criteria such
as BIC or AIC can not be directly used, in the sense that these cri-
teria require the distribution of the data to have a known parametric
form, which is not available in the presented case. Recall that the
number of parameters to estimate depends on the grid nodes which
is certainly large. We face this quagmire by proposing a discrimina-
tive model selection. The approach we follow is to split the data into
disjoint training and test sets, and select the model parameters in the
training set that minimizes the classification error on an independent
validation (test) set.

3. ACTIVITY REPRESENTATION

This section describes how trajectories are modeled using switching
vector fields.

We define a trajectory as a length-n sequence of positions of
the person ’mass center’ in the image, x = (x1, ...,xn) with xt ∈
R2 and it is generated by a set of m velocity vector fields T =
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Fig. 1. Several trajectories with switching motion fields (blue lines)
in a grid of 11 × 11 nodes (green dots).

{T1, . . . ,Tm}, with Tk : R2 → R2, for k ∈ {1, . . . , m}. The
velocity vector at point x ∈ R2 of the k-th field is denoted as
Tk(x). At each time instant, one of the velocity fields is active,
i.e., is driving the motion. The object trajectory is, thus, generated
by

xt = xt−1 + Tkt(xt−1) + wt, t = 2, ..., n, (1)

where kt ∈ {1, ..., K} is the label of the active field at time t,
wt ∼ N (0, σ2

kt
I) is white Gaussian noise with zero mean and vari-

ance σ2
kt

, and n is the length (number of points) of the trajectory.
The initial position follows a known distribution p(x1); {kt} is as-
sumed to be a first order Markov sequence characterized by a space
varying transition matrix B(x). The model parameters are defined
by a triplet θ = (T , σ,B) which includes the parameters of the mo-
tion fields T , noise standard deviations σ and space-varying switch-
ing matrix B.

Different types of activities may occur in a scene e.g., people
walking, entering or leaving. In many cases, the type of activity can
be inferred from the trajectory. We will therefore assume that each
activity is represented by a set trajectory patterns to be learned from
the video. We will represent each activity j by a different dynamical

model with a triplet of model parameters θ
(j)
mj = (T (j)

mj ,B
(j)
mj , σ

(j)
mj )

where mj denotes the number of active fields used to represent the j-
th activity. The estimation of the model parameters from the training
trajectories is detailed in [1] assuming that the number of fields is
known. We will now address the estimation of the number of fields
mj for each type of activity.

4. MODEL SELECTION ALGORITHM

The goal is to estimate the model order mj for all activity-classes,
i.e., for j ∈ {1, ..., J}. To accomplish this, we will use a labeled

training set D = {D(1), . . . , D(J)}, where D(j) is the set of tra-

jectories associated to the j-th class, i.e., D(j) = {x(j)
1 , . . . ,x

(j)
l },

where x
(j)
l is a trajectory described by (1).

One possible way to determine the model order is considering all
possible combinations of mj assuming that 1 ≤ mj ≤ M , where M
is the maximum number of vector fields as proposed in [7]. However,
this approach leads to a MJ possible classifications. In this paper,
we follow a better approach which allows to reduce the complexity
(number of classifications) maintaining the performance as in [7].

The new algorithm proposed herein is based on the BIC crite-
rion in which we vary a γ parameter. The BIC approximation is
twofold: (i) it does not depend on the prior; and (ii) it does not take
into account the local geometry of the parameter space and hence is
invariant to reparameterisations of the model. In this work, the BIC
is simply obtained

BIC(L, γ) = −2L + γ(μ log μ) (2)

where L is the log-likelihood and μ = md + (md + m2)N2; m
is the number of vector fields, d = 2 is the dimension of the 2D
motion filed, N2 is the number of grid nodes (N=11). γ is the new

parameter that is defined in an interval, γ ∈ Rγ = [0, 1], i.e. the
“range of γ”. Thus, in the new framework, we propose a quaternion
of model parameters Γ = (θ, γ).

In the training stage, we first take the set D(j) and compute the

parameters set θ
(j)
mj and the corresponding log-likelihoods L(j)

mj . We
repeat this procedure for all models within the j-th class activity, and

then for all activities, thus obtaining the duplet (θ
(j)
mj ,L(j)

mj ) for j ∈
{1, ..., J} and m ∈ {1, ..., M}. Secondly, for a given value of γ,
we compute the BIC criterion for each activity, varying the number

of models, i.e, BIC(L(j)
mj , γ), with mj = 1, ..., M and j = 1, ..., J .

From this set, we determine for each class, the best model order, say
m∗

j , with BIC. We repeat this procedure for the range of γ, Rγ .
The synopsis of the training stage for each activity (the variable

j is fixed) is described next.

Algorithm 1 Modified Bayesian criterion.

• Compute the parameters and log-likelihood sets
{

θ
(j)
mj ,L(j)

mj

}
,

for mj = 1, ..., M and j = 1, ..., J using the EM algorithm,

for γ ∈ [γmin, ..., γMax] do
• Compute BIC(L(j)

mj , γ), for mj = 1, ..., M and j = 1, ..., J
• For each j-th class activity, compute the best parameters set

θ
(j)
m�

j
, such that m∗

j = arg minmj BIC(L(j)
mj , γ)

end for

For each value of γ ∈ [γmin, ..., γMax] the raining procedure
above described allows to obtain the following parameters set:

Θ =
{

θ
(j)
m�

j

}
, with j = 1, ..., J (3)

where �Θ = J × �Rγ .
Now assuming, in addition to the training set, we have a selec-

tion set, with the trajectories from all classes D = (D(1), ...,D(J)),

where D(j) = {x(j)
1 , ...,x

(j)
Dj

} denotes a set of Dj trajectories from

class j.
The classification procedure is taken on the set D with the es-

timated parameters Θ =
{

θ
(j)
m�

j

}
, with j = 1, ..., J and for each

value of γ ∈ Rγ . In this way, the proposed strategy allows to reduce
the number of classifications from MJ to simply Rγ

1, i.e. the range
of γ (see (3)).

The performance of each classification, i.e., for each value of
γ ∈ [γmin, ..., γMax], is obtained by evaluating the overall clas-
sification over the selection set. The number of misclassifications
M(γ,D) is computed as

M(γ,D) =
J∑

j=1

Dj∑
l=1

e
(j)
l (γ) (4)

e
(j)
l (γ) = δ(j, arg max

r
(p(x

(j)
l |θ(r)

K )))

where r ∈ {1, ..., J}; p(x
(j)
l |θ(r)

K ) is the likelihood of the trajectory

x
(j)
l given the r-th model determined by BIC and for a given value

γ; K is the model configuration K = {m∗
1, ..., m

∗
J} containing the

best model order for all activities and δ(a, b) is a Kronecker symbol,
i.e. δ(a, b) = 1, if a = b, and zero otherwise.

Recall that, the error criterion (4) may be minimized for several
values of γ. Thus, in addition to (4) we also take into account the
model complexity

M̃(γ,D) = M(γ,D) + C(γ) (5)

1Recall that cardinality of the Rγ corresponds to the number of classifi-
cations. In this paper we set this to a small number of ten
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where C(γ) is the cost associated with a particular model γ defined
as the sum of mj . The minimization of (5) is the discriminative
model selection criterion proposed herein.

5. EXPERIMENTS

In this section we provide results in both synthetic and real scenarios.
In both scenarios, a comparison between the proposed method and
the one in [7] is presented. In the synthetic example the equivalence
of the two methods is illustrated. In the real case, the presented ex-
ample allows to focus how the method avoids the exponential growth
of classifications, maintaining at the same time equivalent results.

5.1. Synthetic data

We consider a synthetic example which contains two type of trajec-
tories which resemble trajectories performed by pedestrians (see Fig.
2 top left). The trajectories are generated according to the HMM vec-
tor field (1). The trajectories presented in this example are classified
into two activities: “straight” (green lines) which contains a single
vector field, and “spread” (red lines) which contains three different
vector fields.

Four experiments are performed (see Fig. 2) to illustrate te ro-
bustness of the model with respect to model mismatch. For each ex-
periment, we generated 100 training and testing trajectories. For the
training trajectories we set σ2

trn = 1e−3, for the testing set we used
the following values for the dynamic noise: (i) σ2

tst = σ2
trn (Fig. 2

top left); (ii) σ2
tst = 5σ2

trn (Fig. 2 top right); (iii) σ2
tst = 10σ2

trn

(Fig. 2 bottom left); and (iv) σ2
tst = 20σ2

trn (Fig. 2 bottom right).
The first step is to determine the classes model order for each

value of γ. To accomplish this, we varied the number of models from
one to three (M = 3) for each γ value. This is done independently
for each class and for σ2

trn = 1e−3 (i.e. the smallest value), since we
want to figure out the intrinsic model order for each class. Fig. 3 (top
left) shows the models number determined using the BIC criterion,
for the different values of γ ∈ [0.1, 0.9].

Fig. 3 (top right) shows the classification accuracy for all the
experiments and for γ ∈ [0.1, 0.9]. It can be concluded that the best
accuracy is obtained in the interval γ ∈ [0.1, 0.4]. The most par-
simonious choice in this range corresponds to have:“spread” class
→ 2 vector fields and “straight” class → 1 vector fields (see top left
of the Fig. 2).

We also present the results of discriminative approach (see [7]).
In this case, 9 different classifications (as in the proposed method)
are possible. The labels in the X-axis of the Fig. 3 (bottom),
“N1N2”, means the number of models for the class “1” (“spread”
trajectories) and for class “2” (“straight” trajectories), respectively.
From this figure it is shown that the accuracy improves from the
configurations “1X” to “2X” (X - stands for any number of models).
This means that the first activity is suitably described by using at
least two models. The most un-expensive configuration is that of
“21”. This is the same result provided by the proposed method.

5.2. Real data

In this section we present results in a real settings concerning differ-
ent and typical activities/trajectories that unfold in a shopping sce-
nario. Typical trajectories in this scenario are “entering”, “leaving”
or “passing” in the front of a shopping mall. Fig. 4 illustrates the
scenario after a homography transformation in which the trajecto-
ries are superimposed with yellow dots. Three different classes are
considered: (i) converge, (ii)spread and (iii) passing. The trajec-
tories of each class concern the following:

• converge: It contains all the trajectories in which the person
enters into the mall. The pedestrian may enter from the left

Fig. 2. Synthetic examples of trajectories concerning two activities
marked with different colors: “spread” (in red), “straight” (in green)
with σ2

tst = σ2
trn (top left), σ2

tst = 5σ2
trn (top right), σ2

tst = 10σ2
trn

(bottom left) σ2
tst = 20σ2

trn (bottom right).

or the right side of the scenario. We call it converge, since all
trajectories converge at the shop entrance (Fig. 4 left).

• spread: This class contains the trajectories in which the per-
son leaves the mall and it has the opposite direction of the
previous class. People can leave to the right or left side of
the scenario, say that, the trajectories spread or diverge at the
entrance of the mall (Fig. 4 center).

• passing: Here, all the trajectories concern the situations in
which the pedestrian passes in the front of the mall in two
opposite directions (Fig. 4 right).

All the trajectories exhibit a non-smooth direction, and some of them
contain gaps due to the failures in tracking which is based on fore-
ground region detection as in [8].

Fig. 5 (top row) shows the results of the proposed method. The
results on the left were obtained using a training set to determine
the number of models per class for each value of γ. On the right it
is shown the classification accuracy on a disjoint test set. It can be
easily concluded that the classification is highest for the three first
values of γ. From these, the most un-expensive configuration is that
of (see Fig. 5 top left): converge → 1 model, diverge → 2 models,
and passing → 2 models.

Fig. 5 (bottom) shows the results of discriminative approach
without restrictions proposed in [7]. We see that MJ = 27 classi-
fications are needed, whereas in the proposed method just �Rγ = 9
classifications are enough. The X-axis of the Fig. 5 (bottom), con-
tains the configurations of the number of models (vector fields) for
the classes in the following order: “converge”, “spread”, “passing”.
Thus, “1” means the configuration (111), and the “27” corresponds
to the configuration (333). From the graphic, several configurations
are possible which alow to obtain the maximum classification score
(12 configurations). From these, we select the one that uses the min-
imum number of models which is the configuration 5 or (122). This
is precisely the result already obtained with the proposed algorithm.

6. CONCLUSIONS

We have presented a discriminative method for model selection. The
approach presented herein avoids to consider all possible combina-
tions of the activities vs. number of fields reducing the complexity
from O(m2) to simply O(m) maintaining equivalent results.

We applied the proposed framework to surveillance scenarios,
where observed data are trajectories. Further work will address this
methodology for the recognition of human activities and vehicle traf-
fic using the presented framework. These examples often contain a
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Fig. 3. Results with the proposed method (top row) and the method
in [7] (bottom row). Top left: model order for spread class (red)
and straight class (green). Top right: classification accuracy of the
proposed method. Bottom: classification accuracy of the method in
[7]. For the classifications, each color denotes a different experi-
ment: σ2

tst = σ2
trn (red), σ2

tst = 5σ2
trn (green), σ2

tst = 10σ2
trn (blue)

σ2
tst = 20σ2

trn (yellow).

Fig. 4. Tracked trajectories in the shopping mall. From left to right:
converge, diverge and passing classes.

much large number of classes. The presented framework will be suit-
able, since it reduces the number of training/test experiments, and it
reduces the computational burden. Also, extensions of the proposed
method including approaches such as variational based or sampling
methods will be addressed in the future.
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