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AbatTact-  Accurate and fully automatic assessment of 
artery dimensions in angiograms has been sought as a di- 
agnostic tool, in particular for coronary heart disease. We 
propose a new technique to estimate vessel borders in an- 
giographic images. Unlike in previous approaches, the ob- 
tained edge estimates are unbiased, this being of primordial 
importance since quantitative analysis is the goal. Another 
important feature of the  proposed estimator is that  no con- 
stant background is assumed, making it well suited for noxi- 
subtracted angiograms. The key aspect of our approach is 
that the smoothness constraint is not used to smooth or i n  
some other way modify the estimates directly derived from 
the image (which would introduce bias) but rather elect 
(without modifying) candidate estimates. As a result, tlie 
selected points, if correct, are unbiased estimates. Even at  
low contrast segments and in tlie vicinity of artifacts, the 
true border points still correspond to (possibly faint) local 
maxima of the edge operator, wliicli can be correctly chosen 
if the surrounding context is taken into account. Robust- 
ness against unknown background is provided by tlie use a 
morphological edge detector rather than some linear opera- 
tor such as a matched filter wliicli assumes flat background. 

I. INTRODUCTION 

Accurate automatic assessment of vessel dimensions 
in digital (or digitized) angiographic images is a valuable 
and clinically important diagnostic tool. Objective, ver- 
ifiable, and reproducible quantitative analysis has been 
the goal of much research effort, in particular for coro- 
nariography [l], [2]. Underlying this search is the need to 
accurately assess the severity of coronary disease which re- 
veals itself by vessel narrowings. It is clear that automatic 
border location is a crucial first step of any quantitative 
coronary analysis (QCA) system, for which several tech- 
niques have been proposed. 
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11. PREVIOUS WORK 

To cope with the difficulties which are inherent to 
the vessel contour estimation problem (unknown image 
background, faint contrast, unknown vessel shape) most 
approaches use prior knowledge/constraints about ves- 
sel continuity and smoothness. Recent examples include: 
dynamic programming type search, like in [3], [4], and 
(51; and extended Kalman filter type prediction-correction 
tracking, as proposed in [6]. By adopting smoothness 
constraints these techniques achieve robustness and yield 
smooth vessel edges at the cost of introducing bias. Take 
as an example, the case of a very short but very pro- 
nounced narrowing (stenosis) which can be severely un- 
derestimated if smooth edges are fitted to it. This may 
be a serious problem if quantitative analysis is to be per- 
formed with the obtained border estimates. Note that 
vessel diameters in a typical coronariography can be as 
small as a few pixels, with a one pixel deviation being a 
serious relative error. This is in contrast with the ven- 
tricular boundary estimation problem in which the much 
larger dimensions involved give sense to simple smoothness 
constraints, as we adopted in [7]. Other approaches such 
as those in [8], and [9], are inadequate for coronary arte- 
riograms because they assume constant (or known) back- 
ground and several projections. 

An exception to the smoothness assumption trend is 
the work reported in [lo], in which each vessel cross sec- 
tion is analyzed separately. However, this work presents 
(from our point of view) some problems: the vessel and 
background models are simplistic and unrealistic (e.g. the 
background is modelled as a low order polynomial); by 
performing section-by-section independent analysis, they 
avoid the smoothness bias but throw away the robustness 
that is typical of global approaches (i.e. in which all the 
border points are jointly estimated). 
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111. PROPOSED METHOD 

A .  Rationale 

We propose a technique aiming at producing unbi- 
ased contour estimates, and which does not demand any 
background flatness assumptions. This last characteristic 
makes the method well suited both for digital subtracted 
images and digitized (unsubtracted) cinefilm images. 

The observations and ideas underlying our method 
are: a) Even at low contrast vessel segments (e.g. stenotic 
areas) and in the vicinity of (possibly stronger) image ar- 
tifacts (e.g. ribs, other vessels, catheters) any edge o p  
erator still presents a (possibly weak) local maximum at 
the correct border location. b) This maximum can still 
be correctly chosen if the surrounding contextual informa- 
tion is adequately taken into account. c) The continuity 
(or smoothness) constraint should not be used to mod- 
ify the edge location estimates directly derived from the 
image; rather, it should be used to elect, among several 
candidates, the one that best fits into the global contour. 

The points just made are valid for any type of edge 
operator. Here, we adopt the morphological gray-scale 
edge operator proposed in [ll]: the blur and minimum 
operator (BMO). The reason for choosing a morphological 
operator (non-linear) is that the flat background and white 
noise assumptions (required by any matched filter type, 
or derivative based, linear operator) are not guaranteed 
for angiographic images. The BMO is sensitive to the 
faster variations associated with the vessel borders, over 
any slowly varying background, and exhibits high noise 
immunity. For a detailed description of the BMO (and 
other morphological edge detectors) see [ 111. In Fig. 1 (b), 
we present an example of the application of the BMO to 
a coronary cross section intensity profile of Fig. l(a).  

B. Description of the Algorithm 

The proposed method, which is supported on the ob- 
servations and ideas above presented, accomplishes the 
following design goals: a) keep the robustness inherent 
to global approaches, i.e. do not treat each cross section 
separately, but rather take advantage of the contextual in- 
formation provided by the surrounding estimates; b) avoid 
the bias introduced by smoothness constraints. 

The algorithm is structured as follows: 

0 Consider N cross sections of the vessel segment un- 
der study. For each section, we define a set of vessel 
center candidates containing all the local maxima of 
a 1D top-bat operator (THO). The THO operator 
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Figure 1: a) Intensity profile of a true coronary cross section. 
b)Outcome of the BMO. c) Outcome of the tophat operator. 

is a morphological operator able to detect local el& 
vations on arbitrary background [12]. The result of 
applying a THO operator to the intensity profile of 
Fig. l(a) is shown is Fig. l(c). The center candi- 
dates obtained from the vessel segment presented in 
Fig. 2 as just described are presented in Fig. 3(a). 

0 A minimum cost path along the vessel is then ob- 
tained by using dynamic programming [13] to choose 
one candidate from each section. This yields the 80 

called vessel skeleton which is defined by a set of 
vessel center points S = {ci, i = 1,2,  ..., N}. The 
adopted cost function combines a term favoring con- 
tinuity with another term depending on the candi- 
dates strength, 

N 
Cost(S) = ad(c i ,  cj-1) + PT(cj) (1) 

i=l 

where d(ci ,c i - l )  is the distance between the two 
consecutive center points ci and ci-1, T(ci) is the 
strength of the THO operator at  the location of 
point ci , and parameters a and P are wheighting fac- 
tors. In Fig. 3(b), the vessel skeleton obtained ob- 
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Figure 2: Angiogaphic image of a portion of the coronary tree; 
notice the very pronounced and short stenosis. 

tained from the candidates of Fig. 3(a) is presented. 
Note that although some candidates outside the ves- 
sel presented higher THO response, the contextual 
information allowed the correct ones to be chosen. 
Notice also that some candidates were generated by 
background structures (such as other vessels) while 
some others were caused by noise. 

e For each of the N cross sections, two sets of candi- 
dates to border points are created, each containing 
all the maxima of the BMO applied to each side of 
the skeleton. Fig. 4(a) shows all the border candi- 
dates so obtained, superimposed on the vessel image. 

e Again using dynamic programming, two minimum 
cost paths are obtained which are the final vessel 
borders estimates. These vessel edges are repre- 
sented by two sets of border points, one for each 
side of the skeleton, B, = {ai,i = 1,2, ..., N}, and 
Bb = { b i , i  = 1,2,  ..., N}. As before, the cost func- 
tions includes continuity and edge strength terms, 

Cost(&, B b )  = Cost(&) + Cost(&) (2) 

with 
N 

Cost(Ba) = Cyd(a i ,a i - l )  + vBMO(ai) (3) 
i=l 

(and a similarly for Cost(&)), where BMO(a;) is 
the intensity of the BMO response at the location 
of border point ai. Fig. 5 contains the final vessel 
borders obtained by the procedure described. 

Figure 9: (a) Vessel center candidates. (b) Vessel skeloton obtained 
as the minimum cost path through the candidates. 

The method was implemented and tested on a con- 
ventional workstation where it runs in less than 3 seconds, 
thus perfectly compatible with routine use. 

In some mentioned references [3], [4], and [5] (see also 
[14]) dynamic programming is also used, although in afun- 
damentally different way: minimum cost paths are found 
not among sets of candidates but among all the pixels in 
an edge intensity image. Thus, the selected points may 
not be maxima of the edge operator and are possibly bi- 
ased estimates. In our algorithm, continuity is used only 
to select among candidates, without modifying their val- 
ues, i.e. estimates are unbiased. Notice that the short 
but very sharp narrowing present in the coronary vessel of 
Fig. 2. The extracted contours shown in Fig. 4(b) c a p  
ture this stenosis correctly; any smoothing of the borders 
would lead to a seriously underestimated stenosis severity. 
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Figure 4: (a) Vessel border candidates. (b) Vessel borders obtained 
as minimum cost paths through the candidates. 
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