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Abstract. In this paper we address the orthogonalization of in-

dependent component analysis (ICA) to obtain transform-based

image coders. We consider several classes of training images, from

which we extract the independent components, followed by orthog-

onalization, obtaining bases for image coding.

Experimental tests show the generalization ability of ICA of

natural images, and the adaptation ability to speci�c classes.

The proposed �xed size block coders have lower transform com-

plexity than JPEG. They outperform JPEG, on several classes of

images, for a given range of compression ratios, according to both

standard (SNR) and perceptual (picture quality scale { PQS) mea-

sures. For some image classes, the visual quality of the images ob-

tained with our coders is similar to that obtained by JPEG2000,

which is currently the state of the art still image coder. On �n-

gerprint images, our �xed and variable size block coders perform

competitively with the special-purpose wavelet-based coder devel-

oped by the FBI.

INTRODUCTION

Independent component analysis (ICA) considers a class of probabilistic gen-
erative models in which an observed random vector X is obtained according
to X = AS, where A is an N �M unknown mixing matrix and S is a vector
of independent sources [2, 7, 10]. The standard goal of ICA is to infer (learn)
A from a set of samples of the random vector X. To apply ICA to images,
each sample of X usually contains the pixels in an image block.

It has been found that images of natural scenes are well modelled when the
columns of A are wavelet-like �lters, and the independent sources (elements



of S) have heavy-tailed distributions [1, 7, 10]. This means that, with high
probability, only a small fraction of the components of S have signi�cant val-
ues; this sparse nature of S underlies the potential usefulness of overcomplete
ICA to compression [14] and denoising of natural images [7, 10].

Recently, we have shown that non-orthogonal ICA bases are suited for
class-adapted image compression at low bit-rates using matching pursuit [3,
12] type algorithms [5]. In this paper, we exploit the data-dependent nature
of the ICA decomposition, onto the basis de�ned by the orthogonalization
of the columns of A (basis vectors). We use the FastICA algorithm [7, 8]
to learn complete and overcomplete bases from training images. Since these
bases are non-orthogonal, we apply orthogonalization methods to obtain �xed
transforms for image coding, to be used like a data-independent transform.

The paper is organized as follows. First, we present basis vectors extracted
from natural, �ngerprint, faces, and synthetic images, using ICA. Next, we
present the energy compaction ability of their orthogonalized versions, com-
paratively to other transforms. The coder architecture is then described, and
experimental results are shown, along with the results of other coders. A
�nal section presents some concluding remarks.

BASIS ESTIMATION

We apply the FastICA algorithm [6, 7, 8] to obtain both complete (N =M)
and overcomplete (M > N) bases for randomly selected training sets of (8�8)
image blocks (400 per image), after mean removal and sphering by principal
component analysis [7, 9]. We consider a set of natural and synthetic images
(from the University of Waterloo, Canada1), a set of �ngerprint images2,
and a set of face images (from the Cambridge AT&T laboratories3). Fig. 1
displays the estimated complete ICA bases (the columns of A) for these four
classes. In the overcomplete case, the basis vectors are visually similar to
these ones.

Natural Fingerprint Face Synthetic

Figure 1: ICA bases from natural, �ngerprint, face, and synthetic images.

For natural images, the resemblance between ICA, wavelet basis vectors,

1http://links.uwaterloo.ca/bragzone.base.html
2http://bias.csr.unibo.it/fvc2000/databases.asp
3http://www.uk.research.att.com/facedatabase.html
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Figure 2: Relative angle histograms for the ICA bases in �gure 1.

and Gabor functions has been noted [7, 10]. The basis vectors of each class
are globally di�erent, showing speci�c features. The histograms of relative
angles between all the basis vectors, for the four bases considered, are dis-
played in Fig. 2. As we can see from these histograms, the ICA bases are
non-orthogonal. To deal with this non-orthogonality, two options are avail-
able: apply matching pursuit type algorithms [3, 12] to perform the image
decomposition; orthogonalize the ICA bases. The �rst approach was ex-
ploited in [5]. In this paper, we will follow the second option, depicted in
Fig. 3.

ICA
Orthogonalisation

method
Image

patches
A

Orthonormal
basis

Complete or
over-complete

Figure 3: Orthonormal basis estimation.

The Karhunen-Lo�eve transform (KLT) [9] is optimal in the sense of mean-
square error, and decorrelation among the set of orthogonal transforms. The
discrete cosine transform (DCT) [9], which is used in the JPEG standard,
approximates the KLT under certain conditions [9], making it suitable for
image coding. Thus, in Fig. 4 we present the KLT basis vectors for the
same set of natural and �ngerprint images, along with the orthogonalized
ICA bases, obtained by KLT, and by the sequential Gram-Schmidt (GS)
procedure [7]. The majority of DCT and KLT basis vectors are similar [9].
Notice the resemblance between KLT and ICA+KLT vectors, specially on the
�rst row (low frequency basis vectors). Some ICA+GS vectors are similar to
some KLT (and DCT) vectors.

ENERGY COMPACTION

In this section, we compare our orthogonal transforms with KLT and DCT
on natural and �ngerprint images. This comparison is performed by coding
an image of each class (not used in the basis estimation step), using the �rst
n coeÆcients, and measuring the corresponding SNR,

SNRn = 10 log
10

�
�2=MSEn

�
[dB]; (1)



KLT ICA + KLT ICA + GS

KLT ICA + KLT ICA + GS

Figure 4: KLT, ICA+KLT, and ICA+GS bases obtained from natural and �nger-

print images (on �rst and second row, respectively).

where �2 is the original image variance, and MSEn is the mean squared
error between the original image and its block by block n-term representa-
tion. Figure 5 shows the energy packing (SNR as a function of the number of
coeÆcients), of each of these transforms, with orthogonalized complete and
two times overcomplete ICA bases, extracted from natural and �ngerprint
images. We can see that the use of an orthogonalized two times overcom-
plete ICA basis does not improve much the SNR, when compared to the
orthogonalization of a complete basis. The same happens when the degree of
overcompleteness is higher (4 to 8 times). The DCT presents larger energy
compaction than KLT, because the latter is extracted from a set of randomly
selected blocks of several images.

One must be careful with the examination of the sequential GS procedure
on an overcomplete ICA basis, because this procedure converges after using
a number of vectors equal to dimension of the space. It does not really
orthogonalizes all the vectors in the overcomplete ICA basis, and the result
depends on which components are �rst considered. Because of this, and
being aware of the ICA permutation ambiguity [2, 7, 10], the ICA basis
vectors are sorted decreasingly according to their energy concentration on
the spectra. After this procedure, the ICA low-pass vectors appear �rst
(visually similar to the KLT �rst vectors). Symmetric orthogonalization [7]
was also considered, but the energy compaction is much smaller than that
obtained with the presented methods, because this method spreads energy
through the coeÆcients (instead of concentrating it, as desirable).

Although KLT achieves better energy compaction than ICA+KLT and
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Figure 5: Energy compaction for the natural image boat (�rst row), and a �ngerprint

image (second row).

ICA+GS, this does not imply that all KLT-based coders achieve better SNR
as a function of bit-rate. Generally, the coeÆcient distribution on orthogo-
nalized ICA bases tends to be heavy-tailed, more suited for quantization and
entropy coding than the coeÆcients of the KLT and DCT, which tend to a
normal distribution. The orthogonalization by GS is better than KLT for
natural images. The reverse happens for �ngerprint images.

CODER ARCHITECTURE

The proposed image coder is transform-based, as shown in Fig. 6. The trans-
form coeÆcients are obtained by orthogonal projection on the orthogonalized
ICA basis. The basis is not transmitted with the image, thus being used like
for a data-independent transform. Operation modes with �xed and variable
size blocks are considered, using the �rst n transform coeÆcients. Thus, the
coeÆcients vector dimension is less than the dimension of the space, resulting
in a compact representation.

CoeÆcient quantization is performed using a Lloyd I [11] quantizer, learnt
o�-line from the transform coeÆcients. Each coeÆcient is quantized with 6
bits. Entropy coding of the quantizer output is carried out by an adaptive
arithmetic coder [15], using source models (histograms obtained o�-line from
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Figure 6: Transform-based coder architecture.

several test images of the speci�c class being considered). The mean value of
each block is separately quantized (also with 6 bits), and entropy-coded.

Using 8 � 8 blocks, the proposed coders present coding and decoding
complexity similar to JPEG. Calculating only the �rst n coeÆcients, the
transform complexity is lower than for JPEG. On the other hand, our entropy
coding scheme is more complex than that of JPEG. In the case of variable
size blocks, image analysis is performed using blocks of sizes 16�16, 8�8,
and 4�4, organized in a quad-tree structure [9]. Splitting each 16�16 or 8�8
block into its four sub-blocks is done when the maximum absolute di�erence
between the original and the coded block exceeds a prede�ned threshold
denoted �. The resulting tree decomposition is encoded using an adaptive
arithmetic coder. In this case, the complexity is larger than for JPEG, but
still remains below that of JPEG2000.

EXPERIMENTAL RESULTS

We now present results (SNR plots) of several coders, following the archi-
tecture in Fig. 6, considering the previously mentioned transforms: KLT,
ICA+KLT, and ICA+GS. A Lloyd I [11] quantizer was designed for each
of these transforms, and the corresponding coeÆcient source model was es-
tablished for adaptive arithmetic entropy-coding. Fig. 7 plots SNR as a
function of bit-rate, for several coders, on the natural image boat, a face, and
a �ngerprint image, using 8 � 8 blocks. The rate is varied by coding with
an increasing number of coeÆcients, on consecutive tests (each coeÆcient is
quantized with 6 bits). The plot on the left hand side refers to a complete
ICA basis, while the one on the right corresponds to overcomplete bases. The
bases were obtained from randomly extracted blocks of the well-known im-
ages camera, barbara, bird, and goldhill. For �ngerprint and face images, the
bases were extracted from a set of four images of the corresponding class (not
including the test image). The JPEG4 and JPEG20005 [16] coders results are
also displayed for comparison. This comparison makes sense, because JPEG
is the standard 8 � 8 DCT-based block coder, and JPEG2000 is currently
the state of the art still image coder. For �ngerprint images, we also display
the results of WSQ (wavelet scalar quantization [4]) which is a wavelet-based
special-purpose coder for �ngerprint images.

On the face image, the ICA-based coders perform better than JPEG, at
high compression ratios (until 0.8 bpp), being close to JPEG2000. On the
�ngerprint image, the ICA+KLT coder results are better than those of JPEG

4ftp://ftp.simtel.net/%2f/pub/simtelnet/msdos/graphics/jpegsr6.zip
5http://www.ee.unsw.edu.au/~taubman/kakadusoftware/
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Figure 7: SNR plots for the natural image boat, a face image, and a �ngerprint

image, on the �rst, second, and third row respectively. The �rst column refers to a

complete basis, and the second to an overcomplete basis.

(until 0.6 bpp), but worse than WSQ. The ICA+KLT based coder attains
better results than ICA+GS.

We next present results concerning the generalization and adaptation abil-
ities of the ICA bases learnt from the image classes considered.

Natural Images

Extracting the ICA bases from the boat image, we code the bird test image,
at 0.3 bpp, using the �rst 6 coeÆcients. The results are displayed in Fig. 8,
in which we present the corresponding SNR and PQS (picture quality scale

[13]) values. The latter is an objective distortion measure of perceptual image
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Figure 8: Natural image bird, coded at 0.3 bpp.

quality, based on a model of the human visual system [13]. As can be seen,
extracting a basis from a single image gives a transform with generalization
ability comparable to data-independent transforms, such as the DCT. It can
also be noted that the orthogonalization by GS produces worse results than
the KLT orthogonalization (specially on the image contours). The JPEG
image is more blocky than the one obtained with ICA+KLT.

As a test for the generalization ability of the bases learnt from natural
images, we have coded three images from di�erent classes (see results in
Fig. 9): synthetic, faces, and �ngerprints. For the face image, the SNR, the
PQS, and the visual quality achieved by the ICA-based coders are better than
those obtained with JPEG, and close to JPEG2000. These results testify for
the good generalization ability of the ICA bases of natural images.

Speci�c classes

Finally, we study the adaptation ability of ICA to speci�c image classes, by
extracting the ICA bases from face and �ngerprint images. We then code an
image of that class, not used in the basis estimation process. These tests (see
results in Fig. 10 and Fig. 11) reveal the adaptation ability to speci�c image
classes. On face images, the results are clearly better than that of JPEG,
without block e�ects. On �ngerprint images, the variable size block coder
attains SNR and PQS values which are almost exactly the same as WSQ,
and close to JPEG2000.

CONCLUSIONS

In this paper, we have considered the use of orthogonalized ICA bases for
image compression, like for a data-independent transform. The proposed
coder presents better results than JPEG, at the same (and lower) coding
complexity, for a wide range of compression ratios, on several image classes.
These coders also show less block e�ect than JPEG, and images with better
visual quality, using 8�8 blocks. The use of complete and overcomplete ICA
bases followed by orthogonalization produces roughly the same results.

We have shown the generalization ability of the ICA bases extracted from
natural images and the adaptation to speci�c classes, exempli�ed on face and
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Figure 9: Synthetic image circles (at 0.3 bpp), a face image, and a �ngerprint image

(both at 0.6 bpp).

19.6 dB      0.12

ICA + GS

20.4 dB        0.01

ICA + KLT JPEG2000JPEG

15.7 dB      -2.67 23.1 dB      1.40

Figure 10: Face image, coded at 0.6 bpp.

�ngerprint images. For the latter, a comparison with WSQ was carried out,
and we concluded that using variable size blocks, one can attain distortion
values similar to this special-purpose wavelet-based coder developed by the
FBI. Thus, we can conclude that image coding with ICA is an appropriate
and competitive choice for speci�c image classes.

Comparatively to JPEG2000, which is now the state of the art still image
coder, the distortion and perceptual quality of the ICA-based coders are
close, within the speci�c image classes considered, specially at low bit rates.
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Figure 11: Fingerprint image, coded at 0.6 bpp.

REFERENCES

[1] A. Bell and T. Sejnowski, \The 'independent components` of natural scenes

are edge �lters," Vision Research, vol. 37, pp. 3327{3338, 1997.

[2] P. Comon, \Independent component analysis: a new concept?" Signal Proc.

Elsevier, vol. 36, pp. 287{314, 1994.

[3] G. Davis, Adaptive Nonlinear Approximations, Ph.D. thesis, Courant

Institute of Mathematical Sciences, New York University, 1994.

[4] Federal Bureau of Investigation, WSQ gray-scale �ngerprint image com-

pression speci�cation, IAFIS-IC-0110v2 (rev. 2.0), 1993.

[5] A. Ferreira and M. Figueiredo, \Class adapted image compression using in-

dependent component analysis," in Proc. International Conference on

Image Processing (ICIP'2003), Barcelon, Spain, 2003.

[6] A. Hyv�arinen, R. Cristescu and E. Oja, \A fast algorithm for estimating over-

complete ICA bases for image windows," in Proc. Int. Joint Conf. on

Neural Networks, Washington, D.C., 1999, pp. 894{899.

[7] A. Hyv�arinen, J. Karhunen and E. Oja, Independent Component Analy-

sis, Wiley Interscience, 2001.

[8] A. Hyv�arinen and E. Oja, \A fast �xed-point algorithm for independent com-

ponent analysis," Neural Computation, vol. 9, pp. 1483{1492, 1997.

[9] A. Jain, Fundamentals of Digital Image Processing, Prentice Hall, 3rd

edn., 1989.

[10] T.-W. Lee, Independent Component Analysis - Theory and Applica-

tions, Kluwer Academic Publishers, 1998.

[11] S. Lloyd, \Least squares quantization in PCM," IEEE Trans. on Informa-

tion Theory, vol. IT-28, pp. 127{135, 1982.

[12] S. Mallat and Z. Zhang, \Matching pursuits with time-frequency dictionaries,"

IEEE Trans. on Signal Processing, vol. 41, no. 12, pp. 3397{3415, 1993.

[13] M. Miyahara, K. Kotani and V. Algazi, \Objective picture quality scale (PQS)

for image coding," IEEE Trans. on Comm., vol. 46, pp. 1215{1226, 1998.

[14] A. Puga and A. Alves, \An experiment on comparing PCA and ICA in classical

transform image coding," in ICA99, 1999, pp. 105{108.

[15] J. Rissanen and G. Langdon, \Arithmetic coding," IBM Journal of Re-

search and Development, vol. 23, pp. 149{162, 1979.

[16] D. Taubman and M. Marcellin, JPEG2000: Image Compression Funda-

mentals, Standards, and Practice, Kluwer Academic Publishers, 2001.


