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Abstract

There exist many approaches to clustering, but the important issue of
feature selection, i.e., selecting the data attributes that are relevant for
clustering, is rarely addressed. Feature selection for clustering is difficult
due to the absence of class labels. We propose two approaches to feature
selection in the context of Gaussian mixture-based clustering. In the first
one, instead of making hard selections, we estimate feature saliencies.
An expectation-maximization (EM) algorithm is derived for this task.
The second approach extends Koller and Sahami’s mutual-information-
based feature relevance criterion to the unsupervised case. Feature selec-
tion is then carried out by a backward search scheme. This scheme can
be classified as a ”wrapper”, since it wraps mixture estimation in an outer
layer that performs feature selection. Experimental results on synthetic
and real data show that both methods have promising performance.

1 Introduction

In partitional clustering, each pattern is represented by a vector of features. However, not
all the features are useful in constructing the partitions: some features may be just noise,
thus not contributing to (or even degrading) the clustering process. The task of selecting
the “best” feature subset, known as feature selection (FS), is therefore an important task.
In addition, FS may lead to more economical clustering algorithms (both in storage and
computation) and, in many cases, it may contribute to the interpretability of the models.
FS is particularly relevant for data sets with large numbers of features; e.g., on the order of
thousands as seen in some molecular biology [22] and text clustering applications [21].

In supervised learning, FS has been widely studied, with most methods falling into two
classes: filters, which work independently of the subsequent learning algorithm; wrappers,
which use the learning algorithm to evaluate feature subsets [12]. In contrast, FS has re-
ceived little attention in clustering, mainly because, without class labels, it is unclear how
to assess feature relevance. The problem is even more difficult when the number of clusters
is unknown, since the number of clusters and the best feature subset are inter-related. [6].

Some approaches to FS in clustering have been proposed. Of course, any method not
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relying on class labels (e.g., [16]) can be used. Dy and Brodley [6] suggested a heuristic to
compare feature subsets, using cluster separability. A Bayesian approach for multinomial
mixtures was proposed in [21]; another Bayesian approach using a shrinkage prior was
considered in [8]. Dash and Liu [4] assess the clustering tendency of each feature by
an entropy index. A genetic algorithm was used in [11] for FS in k-means clustering.
Talavera [19] addressed FS for symbolic data. Finally, Devaney and Ram [5] use a notion
of “category utility” for FS in conceptual clustering, and Modha and Scott-Spangler [17]
weight feature groups with a score similar to Fisher discriminant.

In this paper, we introduce two new FS approaches for mixture-based clustering [10, 15].
The first is based on a feature saliency measure which is obtained by an EM algorithm;
unlike most FS methods, this does not involve any explicit search. The second approach
extends the mutual-information based criterion of [13] to the unsupervised context; it is a
wrapper, since FS is wrapped around a basic mixture estimation algorithm.

2 Finite Mixtures and the EM algorithm
Given N i.i.d. samples Y=fy1; :::;yNg, the log-likelihood of a K-component mixture is

log p(Yj�) = log

NY
i=1

p(yij�) =

NX
i=1

log

KX
j=1

�jp(yij�j); (1)

where: 8j ; �j � 0;
P

j �j = 1; each �j is the set of parameters of the j-th component; and
� � f�1; :::;�K ; �1; :::; �Kg is the full parameter set. Each yi is a D-dimensional feature
vector [yi;1; :::; yi;D]

T and all components have the same form (e.g., Gaussian).

Neither maximum likelihood (b�ML = argmax� flog p(Yj�)g) nor maximum a posteriori
(b�MAP = argmax� flog p(Yj�) + log p(�)g) estimates can be found analytically. The
usual choice is the EM algorithm, which finds local maxima of these criteria. Let Z =

fz1; :::; zNg be a set of N missing labels, where zi = [zi;1; :::; zi;K ], with zi;j = 1 and
zi;p = 0, for p 6= j, meaning that yi is a sample of p(�j�j). The complete log-likelihood is

log p(Y ;Zj�) =

NX
i=1

KX
j=1

zi;j log [�jp(yij�j)] : (2)

EM produces a sequence of estimates fb�(t); t = 0; 1; 2; :::g using two alternating steps:

� E-step: Computes W = E[ZjY ; b�(t)], and plugs it into log p(Y ;Zj�) yielding the Q-
function Q(�; b�(t)) = log p (Y ;Wj�). Since the elements of Z are binary, we have

wi;j � E
h
zi;j j Y ; b�(t)

i
= Pr

h
zi;j = 1jyi; b�(t)

i
/ b�j(t) p(yijb�j(t)); (3)

followed by normalization so that
P

j wi;j = 1. Notice that �j is the a priori probability
that zi;j = 1 (i.e., yi belongs to cluster j) while wi;j is the corresponding a posteriori
probability, after observing yi.

�M-step: Updates the parameter estimates, b�(t+1) = argmax� fQ(�; b�(t))+log p(�)g;
in the case of MAP estimation, or without log p(�) in the ML case.

3 A Mixture Model with Feature Saliency
In our first approach to FS, we assume conditionally independent features, given the com-
ponent label (which in the Gaussian case corresponds to diagonal covariance matrices),

p(yjf�jg; f�jlg) =

KX
j=1

�jp(yj�j) =

KX
j=1

�j

DY
l=1

p(ylj�jl); (4)



where p(�j�jl) is the pdf of the l-th feature in the j-th component; in general, this could
have any form, although we only consider Gaussian densities. In the sequel, we will use
the indices i, j and l to run through data points, mixture components, and features, respec-
tively. Assume now that some features are irrelevant, in the following sense: if feature l is
irrelevant, then p(ylj�jl) = q(ylj�l), for j = 1; :::;K, where q(ylj�l) is the common (i.e.,
independent of j) density of feature l. Let � = (�1; :::; �D) be a set of binary parameters,
such that �l = 1 if feature l is relevant and �l = 0 otherwise; then,

p(yj�; f�jg; f�jlg; f�lg) =

KX
j=1

�j

DY
l=1

(p(ylj�jl))
�l(q(ylj�l))

1��l : (5)

Our approach consists of: (i) treating the � l’s as missing variables rather than as parameters;
(ii) estimating �l = P (�l = 1) from the data; �l is the probability that the l-th feature is
useful, which we call its saliency. The resulting mixture model (see proof in [14]) is

p(yjf�jg; f�jlg; f�lg; f�lg) =

KX
j=1

�j

DY
l=1

�
�lp(ylj�jl) + (1� �l)q(ylj�l)

�
: (6)

The form of q(:j:) reflects our prior knowledge about the distribution of the non-salient fea-
tures. In principle, it can be any 1-D pdf (e.g., Gaussian or student-t); here we only consider
q(:j:) to be a Gaussian. Equation (6) has a generative interpretation. As in a standard finite
mixture, we first select the component label j by sampling from a multinomial distribution
with parameters (�1; : : : ; �K). Then, for each feature l = 1; :::; D, we flip a biased coin
whose probability of getting a head is � l; if we get a head, we use the mixture component
p(:j�jl) to generate the l-th feature; otherwise, the common component q(:j� l) is used.

Given a set of observations Y = (y1; : : : ;yN ), with yi = [yi;1; :::; yi;D]
T , the parameters

� = (f�jg; f�jlg; f�lg; f�lg) can be estimated by the maximum likelihood criterion,

b� = argmax
�

NX
i=1

log

KX
j=1

�j

DY
l=1

�
�lp(yilj�jl) + (1� �l)q(yilj�l)

�
: (7)

In the absence of a closed-form solution, an EM algorithm can be derived by treating both
the zi’s and the �l’s as missing data (see [14] for details).

3.1 Model Selection

Standard EM for mixtures exhibits some weaknesses which also affect the EM algorithm
just mentioned: it requires knowledge of K, and a good initialization is essential for reach-
ing a good local optimum. To overcome these difficulties, we adopt the approach in [9],
which is based on the MML criterion [23, 24]. The MML criterion for the proposed model
(see details in [14]) consists of minimizing, with respect to �, the following cost function

� log p(Yj�) +
K +D

2
logN +

R

2

DX
l=1

KX
j=1

log(N�j�l) +
S

2

DX
l=1

log(N(1� �l)); (8)

where R and S are the number of parameters in � jl and �l, respectively. If p(:j:) and q(:j:)
are univariate Gaussians (arbitrary mean and variance), R = S = 2. From a parame-
ter estimation viewpoint, this is equivalent to a MAP estimate with conjugate (improper)
Dirichlet-type priors on the �j’s and �l’s (see details in [14]); thus, the EM algorithm
undergoes a minor modification in the M-step, which still has a closed form.

The terms in equation (8), in addition to the log-likelihood � log p(Yj�), have simple
interpretations. The term K+D

2
logN is a standard MDL-type parameter code-length cor-

responding to K �j values and D �l values. For the l-th feature in the j-th component, the



“effective” number of data points for estimating � jl is N�j�l. Since there areR parameters
in each �jl, the corresponding code-length is R

2
log(n�l�j). Similarly, for the l-th feature

in the common component, the number of effective data points for estimation is N(1�� l).
Thus, there is a term S

2
log(N(1� �l)) in (8) for each feature.

One key property of the EM algorithm for minimizing equation (8) is its pruning behavior,
forcing some of the �j to go to zero and some of the �l to go to zero or one. Worries that the
message length in (8) may become invalid at these boundary values can be circumvented
by the arguments in [9]. When �l goes to zero, the l-th feature is no longer salient and � l
and �1l; : : : ; �Kl are removed. When �l goes to 1, �l and �l are dropped.

Finally, since the model selection algorithm determines the number of components, it can
be initialized with a large value of K, thus alleviating the need for a good initialization [9].
Because of this, as in [9], a component-wise version of EM [2] is adopted (see [14]).

3.2 Experiments and Results

The first data set considered consists of 800 points from a mixture of 4 equiprobable Gaus-
sians with mean (

0
3
), ( 1

9
), ( 6

4
), ( 7

10
), and identity covariance matrices. Eight “noisy”

features (sampled from aN (0; 1) density) were appended to this data, yielding a set of 800
10-D patterns. The proposed algorithm is ran 10 times, each initialized with K = 30; the
common component is initialized to cover all data, and the feature saliencies are initialized
at 0.5. In all the 10 runs, the 4 components were always identified. The saliencies of all
the ten features, together with their standard deviations (error bars), are shown in Fig. 1.
We conclude that, in this case, the algorithm successfully locates the clusters and correctly
assigns the feature saliencies. See [14] for more details on this experiment.
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Figure 1: Feature saliency for 10-D 4-component
Gaussian mixture. Only the first two features are rel-
evant. The error bars show � one standard deviation.
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Figure 2: Feature saliency for the
Trunk data. The smaller the feature no.,
the more important the feature is.

In the next experiment, we consider Trunk’s data [20], which has two 20-dimensional
Gaussians classes with means m1 = (1; 1p

2
; : : : ; 1p

20
) and m2 = �m1, and covariances

C1 = C2 = I. Data is obtained by sampling 5000 points from each of these two Gaus-
sians. Note that these features have a descending order of relevance. As above, the initial
K is set to 30. In all 10 runs performed, two components are always detected. The values
of the feature saliencies are shown in Fig. 2. We see the general trend that as the feature
number increases, the saliency decreases, following the true characteristics of the data.

Feature saliency values were also computed for the “wine” data set (available at the UCI
repository at www.ics.uci.edu/˜mlearn/MLRepository.html), consisting of
178 13-dimensional points in three classes. After standardizing all features to zero mean
and unit variance, we applied the LNKnet supervised feature selection algorithm (available
at www.ll.mit.edu/IST/lnknet/). The nine features selected by LNKnet are 7, 13,
1, 5, 10, 2, 12, 6, 9. Our feature saliency algorithm (with no class labels) yielded the values
in Table 1. Ranking the features in descending order of saliency, we get the ordering: 7, 12,
6, 1, 9, 11, 10, 13, 2, 8, 4, 5, 3. The top 5 features (7, 12, 6, 1, 9) are all in the subset selected



Table 1: Feature saliency of wine data
1 2 3 4 5 6 7 8 9 10 11 12 13

0.94 0.77 0.10 0.59 0.14 0.99 1.00 0.66 0.94 0.85 0.88 1.00 0.83

by LNKnet. If we skip the sixth feature (11), the following three features (10, 13, 2) were
also selected by LNKnet. Thus we can see that for this data set, our algorithm, though
totally unsupervised, performs comparably with a supervised feature selection algorithm.

4 A Feature Selection Wrapper

Our second approach is more traditional in the sense that it selects a feature subset, instead
of estimating feature saliency. The number of mixture components is assumed known a
priori, though no restriction on the covariance of the Gaussian components is imposed.

4.1 Irrelevant Features and Conditional Independence

Assume that the class labels, z, and the full feature vector, y, follow some joint probability
function p(z;y). In supervised learning [13], a feature subset yN is considered irrelevant
if it is conditionally independent of the label z, given the remaining features y U , that is,
if p(zjy) = p(zjyU ;yN ) = p(zjyU ), where y is split into two subsets: “useful” features
yU and “non-useful” features yN (here, N � f1; :::; Dg is the index set of the non-useful
features). It is easy to show that this implies

p(yjz) = p(yU jz)p(yN jz;yU ) = p(yU jz)p(yN jyU ): (9)

To generalize this notion to unsupervised learning, we propose to let the expectations w j

(a byproduct of the EM algorithm) play the role of the missing class labels. Recall that the
wj (see (3)) are posterior class probabilities, Prob[y 2 class jjy;�]. Consider the posterior
probabilities based on all the features, and only on the useful features, respectively

wi;j / b�j p(yijb�j); vi;j(N ) / b�j p(yi;U jb�j;U); (10)

where yi;U is the subset of relevant features of sample yi (of course, the vi;j and wi;j have
to be normalized such that

P
j vi;j = 1 and

P
j wi;j = 1). If yN is a completely irrelevant

feature subset, then vi;j equalswi;j exactly, because of the conditional independence in (9),
applied to (3). In practice, such features rarely exist, though they do exhibit different de-
grees of irrelevance. So we follow the suggestion in [13], and findN that gives v i;m(N ) as
close to wi;m as possible. As both wi;j and vi;j(N ) are probabilities, a natural criterion for
assessing their closeness is the expected value of the Kullback-Leibler divergence (KLD,
[3]). In practice, this criterion is computed as a sample mean

�(N ) =

NX
i=1

KX
j=1

wi;j log
wi;j

vi;j(N )
: (11)

A low value of �(N ) indicates that the features in N are “almost” conditionally indepen-
dent from the expected class labels, given the features in U .

In practice, we start by obtaining reasonable initial estimates of fw i;jg by running EM
using all features, and set N = f g. At each stage, we find the feature q 62 N such that
�(N [ fqg) is smallest and add it to N . EM is then run again, using the features not in
N , to update the posterior probabilities fwi;jg. The process is then repeated until only one
feature remains, in what can be considered as a backward search algorithm that yields a
sorting of the features by decreasing order of irrelevance.



4.2 The assignment entropy

Given a method to sort the features in the order of relevance, we now require a method
to measure how good each subset is. Unlike in supervised learning, we can not resort
to classification accuracy. We adopt the criterion that a clustering is good if the clusters
are “crisp”, i.e., if, for every i, wi;j ' 1 for some j. A natural way to formalize this
is to consider the mean entropy of the fw i;jg; that is, the clustering is considered to be
good if H(fwi;jg) = �N�1PN

i=1

PK

j=1 wi;j logwi;j is small. In the sequel, we call H
“the entropy of the assignment”. An important characteristic of the entropy is that it can’t
increase when more features are used (because, for any random variables X , Y , and Z,
H(X jY; Z) � H(X jY ), a fundamental inequality of information theory [3]; note that
H(fwimg) is a conditional entropy H(fwimgjfyi;Ug)). Moreover, H(fwimg) exhibits
a diminishing returns behavior (decreasing abruptly as the most relevant features are in-
cluded, but changing little when less relevant features are used). Our empirical results
show that H indeed has a strong relationship with the quality of the clusters. Of course,
during the backward search, one can also consider picking the next feature whose removal
least increases H , rather than the one yielding the smallest KLD; both options are explored
in the experiments. Finally, we mention that other minimum-entropy-type criteria have
been recently used for clustering [7], [18], but not for feature selection.

4.3 Experiments

We have conducted experiments on data sets commonly used for supervised learning tasks.
Since we are doing unsupervised learning, the class labels are, of course, withheld and
only used for evaluation. The two heuristics for selecting the next feature to be removed
(based on minimum KLD and minimum entropy) are considered in different runs. To assess
clustering quality, we assign each data point to the Gaussian component that most likely
generated it and then compare this labelling with the ground-truth. Table 2 summarizes the
characteristics of the data sets for which results are reported here (all available from the
UCI repository); we have also performed tests on other data sets achieving similar results.

The experimental results shown in Fig. 3 reveal that the general trend of the error rate
agrees well with H . The error rates either have a minimum close to the “knee” of the H
curve, or it becomes flat. The two heuristics for selecting the feature to be removed perform
comparably. For the cover type data set, the DKL heuristic yields lower error rates than the
one based on H , while the contrary happens for image segmentation and WBC datasets.

5 Concluding Remarks and Future Work

The two approaches for unsupervised feature selection herein proposed have different ad-
vantages and drawbacks. The first approach avoids explicit feature search and does not
require a pre-specified number of clusters; however, it assumes that the features are con-
ditionally independent, given the components. The second approach places no restriction
on the covariances, but it does assume knowledge of the number of components. We be-
lieve that both approaches can be useful in different scenarios, depending on which set of
assumptions fits the given data better.

Several issues require further work: weakly relevant features (in the sense of [12]) are not
removed by the first algorithm while the second approach relies on a good initial clustering.
Overcoming these problems will make the methods more generally applicable. We also
need to investigate the scalability of the proposed algorithms; ideas such as those in [1] can
be exploited.



Table 2: Some details of the data sets (WBC stands for Wisconsin breast cancer).

Name cover type image segmentation WBC wine

No. points used 2000 1000 569 178
No. of features 10 18 30 13
No. of classes 4 7 2 3
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Figure 3: (a) and (b): cover type; (c) and (d): image segmentation; (e) and (f): WBC; (g)
and (h): wine. Feature removal by minimum KLD (left column) and minimum H (right
column). Solid lines: error rates; dotted lines: H . Error bars correspond to � one standard
deviation over 10 runs.
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